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Abstract

Background: Artificial intelligence (AI) has the potential to revolutionize health care by enhancing both clinical outcomes and
operational efficiency. However, its clinical adoption has been slower than anticipated, largely due to the absence of comprehensive
evaluation frameworks. Existing frameworks remain insufficient and tend to emphasize technical metrics such as accuracy and
validation, while overlooking critical real-world factors such as clinical impact, integration, and economic sustainability. This
narrow focus prevents AI tools from being effectively implemented, limiting their broader impact and long-term viability in
clinical practice.

Objective: This study aimed to create a framework for assessing AI in health care, extending beyond technical metrics to
incorporate social and organizational dimensions. The framework was developed by systematically reviewing, analyzing, and
synthesizing the evaluation criteria necessary for successful implementation, focusing on the long-term real-world impact of AI
in clinical practice.

Methods: A search was performed in July 2024 across the PubMed, Cochrane, Scopus, and IEEE Xplore databases to identify
relevant studies published in English between January 2019 and mid-July 2024, yielding 3528 results, among which 44 studies
met the inclusion criteria. The systematic review followed PRISMA (Preferred Reporting Items for Systematic reviews and
Meta-Analyses) guidelines and the Cochrane Handbook for Systematic Reviews. Data were analyzed using NVivo through
thematic analysis and narrative synthesis to identify key emergent themes in the studies.

Results: By synthesizing the included studies, we developed a framework that goes beyond the traditional focus on technical
metrics or study-level methodologies. It integrates clinical context and real-world implementation factors, offering a more
comprehensive approach to evaluating AI tools. With our focus on assessing the long-term real-world impact of AI technologies
in health care, we named the framework AI for IMPACTS. The criteria are organized into seven key clusters, each corresponding
to a letter in the acronym: (1) I—integration, interoperability, and workflow; (2) M—monitoring, governance, and accountability;
(3) P—performance and quality metrics; (4) A—acceptability, trust, and training; (5) C—cost and economic evaluation; (6)
T—technological safety and transparency; and (7) S—scalability and impact. These are further broken down into 28 specific
subcriteria.

Conclusions: The AI for IMPACTS framework offers a holistic approach to evaluate the long-term real-world impact of AI
tools in the heterogeneous and challenging health care context and lays the groundwork for further validation through expert
consensus and testing of the framework in real-world health care settings. It is important to emphasize that multidisciplinary
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expertise is essential for assessment, yet many assessors lack the necessary training. In addition, traditional evaluation methods
struggle to keep pace with AI’s rapid development. To ensure successful AI integration, flexible, fast-tracked assessment processes
and proper assessor training are needed to maintain rigorous standards while adapting to AI’s dynamic evolution.

Trial Registration: reviewregistry1859; https://tinyurl.com/ysn2d7sh

(J Med Internet Res 2025;27:e67485) doi: 10.2196/67485
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Introduction

Background
Artificial intelligence (AI) is profoundly transforming health
care across a range of applications, enhancing both clinical
outcomes and operational efficiency. In medical imaging, AI
algorithms improve diagnostic accuracy by analyzing complex
imaging data, such as from magnetic resonance imaging and
computed tomography scans, for highly precise and rapid
clinical diagnostics [1]. Decision support systems powered by
AI assist clinicians in making evidence-based decisions by
providing real-time data-driven insights and predictive analytics
[2]. Large language models are increasingly used for generating
detailed medical reports and streamlining triage processes by
analyzing and summarizing patient data quickly and accurately
[3]. In addition, innovative digital health technologies such as
electronic skins use wearable sensor technologies and AI to
offer continuous, real-time monitoring of various health
indicators, further enhancing personalized care [4]. These
advancements have the potential to contribute to a more
efficient, accurate, responsive, and holistic health care, reshaping
how patient care is delivered and managed.

Despite the growing body of literature on AI in health care, its
implementation has lagged behind other industries [5,6].
Previous studies have highlighted substantial barriers to the
successful adoption of AI in health care, including issues related
to trust; potential risks of harm; accuracy and perceived
usefulness; reproducibility; evidentiary standards; and ethical,
legal, and societal concerns [7,8]. In addition, uncertainty
surrounding postadoption outcomes further complicates the
implementation process [7].

A significant barrier identified by health care leaders worldwide
is that despite the emergence of various new frameworks for
assessing AI in health care, most focus primarily on the quality
of study methodologies or technical aspects [9,10]. There
remains a lack of a comprehensive, systematic framework that
assesses the real-world impact of AI and offers guidance on
clinical implementation, monitoring, procurement, and
evaluation [9,11]. Most research overlooks the complex,
multistep process required for successful AI integration, leaving
critical gaps in understanding how to effectively implement and
sustain AI tools in clinical practice [9,11]. As a result, the
adoption of AI in clinical practice has fallen short of
expectations, with only a few algorithms showing sustained
clinical impact [12]. This gap is often due to inadequate or
incomplete evaluation and the lack of universally recognized

standards for AI assessment. The limited understanding of AI’s
true added value in health care highlights the need for a more
comprehensive evaluation framework [13-15]. To ensure
confidence in the added clinical value and successful integration
of AI into health care workflows, a practical, comprehensive
tool is needed so that the translational readiness of AI systems
can be evaluated. Current approaches assessing AI in health
care often focus on foundational technical metrics such as
sensitivity and specificity, which fail to capture the full clinical
impact [13,16]. A robust valuation should encompass factors
such as patient outcomes, effects on clinical decision-making,
workflow efficiency, and the tangible benefits for patients to
fully determine AI’s true contribution to and impact on health
care [10,17,18].

In the context outlined earlier, regulatory approval is an
important milestone for demonstrating overall performance,
although the scientific evidence supporting AI tools in health
care remains limited compared to traditional medical standards
[9,19]. In addition, new regulations are being introduced to keep
pace with rapidly evolving AI technologies, such as the
European Union (EU) AI Act, which aims to ensure the
trustworthiness of high-risk AI tools including those used in
health care [20]. Despite the potentially positive impact of
regulatory frameworks on AI-related developments, a recent
study revealed that nearly half of Food and Drug Administration
(FDA)–authorized AI devices lacked clinical validation data,
raising concerns about their safety and effectiveness [21].
Without robust clinical validation, these technologies could
pose significant risks to patient care. Despite efforts to create
reporting guidelines for AI in health care, such as Standard
Protocol Items Recommendations for Interventional
Trials–Artificial Intelligence (SPIRIT-AI) [13], CONSORT-AI
(Consolidated Standards of Reporting Trials–Artificial
Intelligence) [14], Standards for Reporting of Diagnostic
Accuracy Studies–Artificial Intelligence [22], Checklist for
Artificial Intelligence in Medical Imaging [23], Prediction
Model Risk of Bias Assessment Tool–Artificial Intelligence
[24], and others, a unified international consensus on the
evaluation of AI-based tools has yet to be established. While
these guidelines address key methodological issues and share
significant overlap, indicating the importance of certain
assessment criteria, the absence of a standardized, universally
accepted framework remains a significant challenge [4]. This
lack of consensus complicates the consistent evaluation and
implementation of AI technologies in clinical practice.
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Objectives
The goal of this study was to develop a comprehensive
framework for assessing the impact of AI tools in health care.
This involved synthesizing and consolidating the various
evaluation criteria found in existing literature regarding the
quality and impact of AI tools. On the basis of the outcomes of
this study, we plan on validating the framework through expert
consensus using the Delphi process. However, this validation
effort will be addressed in the subsequent phase of the project
and is beyond the scope of this foundational paper. This
approach aims to create a rigorous, evidence-based structure
for AI evaluation, ensuring its relevance and applicability in
health care settings.

In doing so, we adopted the perspective of the World Health
Organization (WHO) on AI in health care, defining it as “the
ability of algorithms and software to analyze complex medical
data and support health care providers by improving
decision-making, predicting outcomes, and enhancing clinical
efficiency” [25]. AI tools in health care span a broad spectrum
of applications, such as (1) diagnostic support, (2) prognosis of
diseases course, (3) personalized treatment recommendations,
(4) patient monitoring, and (5) overall health management,
driving innovation across the health care landscape [25].

To address this, a systematic review was conducted to offer a
comprehensive and current analysis of the criteria used in
existing research to evaluate the quality and impact of AI in
health care, from technological, social, and organizational
perspectives. The review also explores the potential implications
of AI implementation for key stakeholders and offers
recommendations on how to effectively assess AI-powered
clinical tools under consideration for clinical impact. This study
builds upon and extends the findings of a prior research project,
which examined the sociotechnical assessment criteria for
patient-facing eHealth tools, that is already published [26,27].

We believe the results of this review will provide valuable
insights for clinicians, pharmaceutical leaders, insurance
professionals, technology providers, and policy makers by
presenting an up-to-date, thorough overview of the criteria used
to assess AI-powered clinical tools. These insights will help
stakeholders make informed decisions about which tools to
implement, recommend to patients, invest in, partner with, or
provide reimbursement for, based on their assessed quality and
potential impact.

Methods

Overview
The methodology for this review was based on established best
practices, specifically following the PRISMA (Preferred
Reporting Items for Systematic reviews and Meta-Analyses)
guidelines [28] and the Cochrane Handbook for Systematic
Reviews of Interventions [29]. These frameworks were chosen
to ensure a rigorous and methodologically sound approach to
the systematic literature review process. All review methods
were predetermined and documented in advance, with the
protocol being publicly registered in the research registry
(reviewregistry1859) to enhance transparency and accountability

[30]. The primary research question guiding this systematic
review was the following: What technical, social, and
organizational criteria should be considered when assessing the
quality and impact of AI-powered clinical tools? This question
served as the foundation for the analysis and exploration of the
criteria relevant to AI’s evaluation in clinical settings. The study
remained highly consistent with the initial protocol from a
methodological standpoint, adhering to the predefined review
question; search strategy; databases; inclusion and exclusion
criteria; participants, intervention, comparators, and outcomes
(PICO) framework elements; data extraction strategy; quality
assessment; and data synthesis approach as originally outlined.
The only variation from the protocol was in the presentation of
the findings: rather than merely listing the results as an inventory
of criteria, we organized them into a cohesive framework. This
structured approach enhances both the memorability and
practical applicability of the results in real-world settings.

Search Strategy
A comprehensive search of the PubMed, Cochrane, Scopus,
and IEEE Xplore databases was conducted in July 2024 to
identify relevant studies. The review was limited to
peer-reviewed papers published in English between January
2019 and mid-July 2024. We focused on this specific time frame
and limited the search to the last 5 years to ensure the findings
reflect the most recent advancements and challenges, particularly
with the emergence of new generative AI technologies. Going
back further would have added limited value, as older studies
may not capture the rapid technological shifts and evolving
complexities that are relevant today. Only fully published
research articles were included, while other formats, such as
editorials and study protocols, were excluded from the analysis.
In accordance with the Cochrane Handbook for Systematic
Reviews of Interventions, we chose not to include articles
sourced through manual reference list searches, as “positive
studies are more likely to be cited,” which could introduce bias
[29].

This systematic review focused on AI-powered tools designed
specifically for clinicians, excluding tools meant solely for
patients or medical students as these will most likely not reflect
the implementation aspects in real-world health care
organizations. The search strategy targeted manuscripts with
titles including the terms “AI” or “Artificial Intelligence,”
reflecting the intervention focus on AI technologies. Outcomes
of interest were assessment criteria, captured through titles
containing the terms “assessment,” “assess,” “evaluation,”
“evaluating,” “effectiveness,” “efficacy,” “quality,” “efficiency,”
“usability,” or “usefulness,” as well as abstracts mentioning
“criteria,” “framework,” “method,” “methodology,”
“methodologies,” “measurement,” “toolkit,” “tool,” “tools,”
“approach,” or “scorecard.” No condition-based restrictions
were applied, aligning with a broad approach to capture all
relevant studies on assessment methodologies for
clinician-targeted AI tools.

Textbox 1 illustrates the search string designed using the PICO
framework. To ensure the relevance of the retrieved papers, the
search was mostly restricted to manuscript titles, focusing on
studies that addressed AI assessment criteria comprehensively
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rather than those evaluating specific tools or pilot studies.
Because comparators were not relevant to this review, they were

excluded from the search parameters.

Textbox 1. The search string according to the participants, intervention, comparators, and outcomes framework.

Participants: clinicians

• Focus on artificial intelligence (AI)–powered tools for clinicians, excluding those designed solely for patients or medical students.

Intervention: AI-powered clinician tools

• Focus is on AI-powered clinician tools: the search targeted manuscript titles containing the terms (AI OR “Artificial Intelligence”).

Comparator: not applicable

• There were no restrictions on eligible conditions for inclusion.

Outcome: assessment criteria

• The search targeted manuscript titles also containing AND (assessment OR assess OR evaluation OR evaluating OR effectiveness OR efficacy
OR quality OR efficiency OR usability OR usefulness). As well as manuscript tiles and abstracts containing AND (criteria OR framework OR
method OR methodology OR methodologies OR measurement OR toolkit OR tool OR tools OR approach OR scorecard).

Study Selection
Two researchers (CJ and EL) participated in the screening,
eligibility, and inclusion phases of the study. Any discrepancies
during these stages were resolved through discussion among
them. If consensus could not be reached, a third coauthor was
consulted to make the final decision. The team used the
open-source Rayyan app (Qatar Computing Research Institute)
to streamline collaborative screening efforts [31]. The screening
process took place between July and August 2024.

The inclusion and exclusion criteria, outlined in Textbox 2,
were developed following the PICO framework. Included studies
centered on AI-powered tools in clinical settings, addressing
criteria to assess the quality and impact of these tools. Eligible
studies were peer-reviewed, published between January 2019
and mid-July 2024, and written in English. Exclusions were
made for studies involving only patients or medical students as
they were not likely to reflect implementation factors, AI
technologies outside clinical settings (eg, patient use chatbots),
studies assessing specific tools in isolation, or frameworks solely
evaluating AI research methodology or clinical trials rather than
the implementation of the tools in real-world settings. Editorials,

study protocols, and non-English publications were also
excluded.

Following the completion of the screening process and
resolution of any conflicting views among the researchers, CJ
and EL proceeded to assess the full texts of the selected studies
for eligibility. Any remaining disagreements were addressed
through consultation with a third coauthor. CJ evaluated the
risk of bias using the Critical Appraisal Skills Program (CASP)
checklist [32], which assesses key quality criteria in the included
studies. These criteria include the following: the presence of a
clear statement of the research aims, the appropriateness of the
methodology for the research objectives, the suitability of the
research design in addressing those aims, the relevance of the
recruitment strategy, the adequacy of data collection methods
in relation to the research question, the consideration given to
the researchers’ roles, the evaluation of ethical issues, the rigor
of data analysis, the clarity of the study’s findings, and whether
the researchers discussed the study’s contribution to existing
knowledge, such as its implications for current practice, policy,
or relevant literature. The results of this appraisal are available
in Multimedia Appendix 1.

J Med Internet Res 2025 | vol. 27 | e67485 | p. 4https://www.jmir.org/2025/1/e67485
(page number not for citation purposes)

Jacob et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Textbox 2. Inclusion and exclusion criteria according to the participants, intervention, comparators, and outcomes framework.

Inclusion criteria

• Participants: focused on clinicians

• Intervention: focused on artificial intelligence (AI)–powered clinician tools

• Comparators: does not apply

• Outcomes: addresses the different criteria used to assess the quality and impact of AI-powered clinician tools regardless of the condition

• Publication type: peer-reviewed and published papers

• Time frame: studies published between January 2019 and mid-July 2024

• Language: studies published in English

Exclusion criteria

• Participants: focused solely on patients or medical students

• Intervention: technologies used outside of clinical environments, such as chatbots used by patients to obtain health care information

• Comparators: does not apply

• Outcomes: individual assessments of pilot studies singling out specific tools, and assessment frameworks that focus on the reporting and
methodological quality of AI research and clinical studies rather than evaluating the AI tool itself

• Publication type: editorials and study protocols

• Time frame: studies published before January 2019 or after mid-July 2024

• Language: studies published in languages other than English

Data Collection and Synthesis
The procedures and outcomes across the included studies were
too diverse to support a quantitative analysis. As a result, a
narrative synthesis was used following the sociotechnical
approach, organized around the social, organizational, and
technical criteria used to evaluate the quality and impact of
AI-powered tools for clinicians. The authors were influenced
by the sociotechnical theory, which emphasizes that the design
and performance of innovations can only be fully understood
when both social and technical aspects are considered as
interdependent components of a larger system [33]. This
approach aligns with recommendations from several scholars
who advocate for moving beyond purely technology-focused
frameworks to incorporate the broader context, including
societal and implementation factors [34-36]. To facilitate this
process, NVivo (version 1.7.2; Lumivero), a qualitative data
analysis software, was used.

Data coding began with a preliminary extraction grid, which
was structured around themes derived from previous research
and established technology acceptance frameworks. The initial
codebook was informed by our prior work on factors influencing
eHealth evaluation and adoption [26,27,36-38], with additional
codes being incorporated as new themes emerged during the
review. Thematic analysis, as outlined by Braun and Clarke
[39], was conducted to identify and extract themes based on the
social, technical, and organizational assessment criteria relevant
to the research question. This analysis followed 7 key phases:
familiarizing with the data, generating initial codes, searching
for themes, reviewing themes, defining and naming themes,
linking themes to explanatory frameworks, and producing the
final report.

In line with the approach of Braun and Clarke [40], we opted
not to use interrater reliability as it aligns more closely with
quantitative methods and standardized interpretation. Thematic
analysis in a qualitative context prioritizes depth, subjectivity,
and the unique insights each researcher brings to the data. Rather
than using numerical reliability measures such as interrater
reliability, reliability in this approach is often ensured through
collaborative discussions that allow for consensus and a nuanced
understanding of the themes. Accordingly, the first author, CJ,
conducted the initial analysis and coding and NB reviewed the
coding. Any cases of disagreement were discussed and mutually
agreed upon in conjunction with a third author. Using the
sociotechnical framework as our guide, we developed our initial
codebook and grouped the criteria accordingly. This approach
ensures a holistic evaluation of each tool, capturing the complex
interdependencies between technical capabilities, social contexts,
and organizational fit and readiness. By doing so, we moved
beyond a narrow technical focus or methodological evaluation
at the study level, ensuring that the social and organizational
dimensions are fully integrated into the analysis. As a result,
this work prioritizes the often-overlooked social and
organizational dimensions that are critical for the successful
implementation of AI technologies. Unlike frameworks that
focus solely on clinical study quality, our analysis and synthesis
specifically emphasize social and organizational factors such
as user trust, support and training, interoperability, and
integration.

However, we intentionally did not apply any hierarchy or
prioritization within this foundational framework, as the purpose
here is to treat all criteria as equally significant. Prioritization
and potential gap identification will occur in the next phase
(beyond the scope of this paper), where the Delphi process will
engage an expert panel to further refine and prioritize these
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criteria. The coding and analysis process was carried out from
August to October 2024.

Results

Study Selection Flow and Characteristics of the
Included Studies
Figure 1 presents the PRISMA flow diagram, illustrating the
progression of study selection during the systematic review. It

details the number of records identified, screened, included, and
excluded, along with reasons for exclusion. After applying these
criteria, 44 articles were selected for the qualitative synthesis.

Figure 1. Study selection flow diagram based on the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. AI:
artificial intelligence.

Table 1 outlines the characteristics of these studies, offering
insights into their research methodologies, geographic
distributions, and clinical focuses. This comprehensive overview

highlights the diversity of approaches and topics addressed
within the included studies.
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Table 1. Characteristics of the included studies (N=44).

ReferencesStudies, n (%)Study characteristics

Country of authors

[41-61]21 (48)Multiple

[62-66]5 (11)United States

[67-69]3 (7)France

[70-72]3 (7)Netherlands

[73,74]2 (5)Australia

[75,76]2 (5)Canada

Others

[77]1 (2)China

[78]1 (2)Denmark

[79]1 (2)Germany

[80]1 (2)Greece

[81]1 (2)India

[82]1 (2)Saudi Arabia

[83]1 (2)Sweden

[84]1 (2)United Kingdom

Focus (some papers encompassed multiple areas of focus)

[49,54,56,63,65,67,68,70,75]9 (21)No specific focus

Clinical focus

[43,58,59]3 (7)Cardiovascular

[42,66]2 (5)Dermatology

[82]1 (2)ENTa

[41,45,46,55,64,69,74,76,78,81,83,84]12 (27)Medical imaging

[48]1 (2)Nuclear medicine

[47]1 (2)Radiation oncology

Technology focus

[48]2 (5)ANNb

[52,53,77]3 (7)CDSSsc

[51]1 (2)DQMsd

[57,62,73]3 (7)LLMse

[46,53]2 (5)MLf

[58,71]2 (5)Prediction models

Thematic focus

[44,61,72,79]4 (9)EEsg

[60,63,66]3 (7)Ethics and equity

[80]1 (2)Explainability

[50,70]2 (5)Regulatory and trust

Paper type

Original research

[44,75,77]3 (7)Delphi process

[80,82]2 (5)Survey or questionnaire
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ReferencesStudies, n (%)Study characteristics

[42,57,69]3 (7)Expert consensus

[51,52,54,55,62,64-66,76]9 (21)Expert perspective or comment

[41,47,48,58,60,63]6 (14)Guidelines or statements

[70]1 (2)Policy brief

[45,46,50,53,56,59,74,81,83,84]10 (23)Review

[43,68,71,73,78,79]6 (14)Scoping review

[49,61,67,72]4 (9)Systematic review

Publication year

[46,52]2 (5)2019 (from January)

[53,60]2 (5)2020

[50,55,56,70,74,77]5 (11)2021

[42,45,48,59,71,72,78,79,83]10 (23)2022

[43,47,51,58,61,63,65,67,69,73,75,76,80,81]12 (27)2023

[41,44,49,54,57,62,64,66,68,82,84]13 (30)2024 (until mid-July)

Frameworks resulting from the included studies

[63]1 (2)ABCDSh

[44]1 (2)CHEERS-AIi

[42]1 (2)CLEARj

[51]1 (2)DQMk

[69]1 (2)DRIM France AI gridl

[55]1 (2)ECLAIRm

[66]1 (2)HEALn

[78]1 (2)MAS-AIo

[41]1 (2)RADARp

[48]1 (2)RELAINCE guidelinesq

[45]1 (2)R-AI-DIOLOGY checklistr

[56]1 (2)TEHAIs

[60]1 (2)TREEt

Frameworks used in or referred to in the included studies

[44,61,72]3 (7)CHEERSu

[67,76,78,81]4 (9)CLAIMv

[42,44,61,67,68,74]6 (14)CONSORT-AIw

[42,84]2 (5)DECIDE-AIx

[41]1 (2)FUTURE-AIy

[52]1 (2)GEP-HIz

[43,59,61,67,68,78]6 (14)HTAaa

[43,78]2 (5)MASTab

[42,44,67,74]4 (9)PROBAST-AIac

[57]1 (2)QAMAIad
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ReferencesStudies, n (%)Study characteristics

[65]1 (2)QMSae

[76]1 (2)RQSaf

[42,44,61,67,68,74]6 (14)SPIRIT-AIag

[42,67,74]3 (7)STARD-AIah

[52]1 (2)STARE-HIai

[42,44,58,60,63,68,74]7 (16)TRIPOD-AIaj

aENT: ear, nose, and throat.
bANN: artificial neural network.
cCDSS: clinical decision support system.
dDQM: diagnostic quality model.
eLLM: large language model.
fML: machine learning.
gEE: economic evaluation.
hABCDS: Algorithm-Based Clinical Decision Support.
iCHEERS-AI: Consolidated Health Economic Evaluation Reporting Standards for Interventions That Use Artificial Intelligence.
jCLEAR: Derm Consensus Guidelines from the International Skin Imaging Collaboration Artificial Intelligence Working Group.
kDQM: Diagnostic Quality Model.
lDRIM France AI grid: French community grid for the evaluation of radiological artificial intelligence solutions.
mECLAIR: Evaluating Commercial Artificial Intelligence Solutions in Radiology.
nHEAL: Health Equity Assessment of Machine Learning Performance.
oMAS-AI: Model for Assessing the Value of Artificial Intelligence in Medical Imaging.
pRADAR: Radiology Artificial Intelligence Deployment and Assessment Rubric.
qRELAINCE guidelines: Recommendations for Evaluation of Artificial Intelligence for Nuclear Medicine.
rR-AI-DIOLOGY checklist: a practical checklist for evaluation of artificial intelligence tools in clinical neuroradiology.
sTEHAI: Translational Evaluation of Healthcare Artificial Intelligence.
tTREE: transparency, reproducibility, ethics, and effectiveness.
uCHEERS: Consolidated Health Economic Evaluation Reporting Standards.
vCLAIM: Checklist for Artificial Intelligence in Medical Imaging.
wCONSORT-AI: Consolidated Standards of Reporting Trials–Artificial Intelligence.
xDECIDE-AI: Reporting Guideline for the Developmental and Exploratory Clinical Investigations of Decision Support Systems Driven by Artificial
Intelligence.
yFUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in health care.
zGEP-HI: Good Evaluation Practice in Health Informatics.
aaHTA: Health Technology Assessment.
abMAST: Model for Assessment of Telemedicine.
acPROBAST-AI: Prediction Model Risk of Bias Assessment Tool–Artificial Intelligence.
adQAMAI: Quality Analysis of Medical Artificial Intelligence.
aeQMS: Quality Management System.
afRQS: Radiomics Quality Score.
agSPIRIT-AI: Standard Protocol Items: Recommendations for Interventional Trials–Artificial Intelligence.
ahSTARD-AI: Standards for Reporting of Diagnostic Accuracy Studies–Artificial Intelligence.
aiSTARE-HI: Statement on Reporting of Evaluation Studies in Health Informatics.
ajTRIPOD-AI: Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis–Artificial Intelligence.

Critical Appraisal
We evaluated the quality of the included studies using the CASP
checklist [32]. This tool was selected due to the variety of
methodologies used in the studies and the narrative approach
of our synthesis, which differed from meta-analyses and other
quantitative methods. The CASP is widely recognized as the

most frequently used tool for appraising the quality of qualitative
evidence in health research, with endorsement from the
Cochrane Qualitative and Implementation Methods Group [85].
The studies included in our review used a range of
methodologies (quantitative, qualitative, mixed methods, and
systematic literature reviews), which meant that some questions
on the checklist were not applicable to all study types. As per
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the checklist’s recommendations, we did not assign scores to
the studies.

Following the critical appraisal of the 44 studies, several issues
were identified. While all studies clearly stated their aims,
presented well-defined findings, and provided valuable insights
for health care stakeholders, 21 (N=44, 48%) studies lacked a
dedicated methods section, making it difficult to assess the
appropriateness and suitability of their approach. Similarly, the
absence of clear methods in these studies hindered the evaluation
of the research design and data collection techniques.

In addition, out of 44 studies, 25 (57%) studies did not detail
their analysis methods, making it challenging to gauge the rigor
and reliability of their approach. Furthermore, 28 (64%) studies
lacked validation of their findings, while 8 (18%) offered only
partial validation (eg, expert consensus), highlighting the need
for empirical validation in real-world clinical applications to
ensure the findings’ robustness. The comprehensive quality
assessment of the included studies can be found in Multimedia
Appendix 1.

Studies were not excluded based on the results of the quality
assessment, as this was unlikely to significantly impact the
definition of the assessment criteria or the development of the
aggregated framework. However, the quality assessment offered
valuable insight into the overall robustness of the development
processes behind the existing frameworks, helping to gauge the
strength and reliability of the evidence presented [85]. An
in-depth exploration of this topic can be found in the Discussion
section, where the challenges associated with current initiatives
and frameworks are examined.

Synthesized Assessment Criteria
We synthesized comparable measures from various papers,
frameworks, and initiatives, ultimately identifying a set of
unique criteria that reflected all relevant assessment methods
referenced in the included studies. Notably, several criteria are
closely interrelated and could fit into multiple categories;
however, they were placed in the most appropriate category
based on their significance and impact. For instance, while “user
trust” and “model explainability” are inherently linked, because
trust often correlates with the level of explainability provided
by an AI system, we categorized trust under the cluster
“acceptability, trust, and training,” which focuses on user-centric
aspects, whereas “explainability” was assigned to the cluster
evaluating model performance metrics, given its technical focus.
In addition, we intentionally included assessment criteria
applicable to high-risk tools, enabling us to compile a more
comprehensive list. We recognized that not all criteria would
apply to lower-risk AI-powered health care tools, such as patient
safety assessments, which are more relevant to high-risk tools
that pose potential safety concerns. We are guided by National
Institute for Health and Care Excellence’s Evidence Standards
Framework for Digital Health Technologies to assess and
understand the risk levels of health care technologies [86].

Figure 2 provides a visual overview of the aggregated criteria,
organized into clusters and subclusters, while Table 2 presents
these criteria grouped into 7 primary clusters and their respective
subcriteria, outlining their occurrences across the included
studies, along with their definitions and corresponding
references. A detailed exploration of each criteria cluster and
its corresponding subcriteria is provided in the Discussion
section.
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Figure 2. Visual overview of the aggregated assessment criteria, organized into clusters and subcriteria. AI: artificial intelligence.
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Table 2. Assessment criteria, their definitions, occurrence, and respective references (N=44).

Studies in which the criteria occurredStudies,
n (%)

DefinitionCriteria

Integration

[41,44,49,53-55,60,65,68,69,71,75,76,78,84]15 (34)Infrastructure • The underlying technological, hardware, and software
systems required to support the deployment and scalability

of the AIa tool

[41,45,51,53-56,59,64,67-69,71,74-78,82]19 (43)Interoperability • The AI tool’s ability to seamlessly exchange and integrate
data with different health care platforms and devices

[41,45,47,49,51-56,58,64,65,67-69,71,76,78,79,82,84]22 (50)Workflow and
organizational
changes

• The degree to which the AI tool impacts existing clinical
workflows and health care operations, ensuring minimal
disruption while enhancing efficiency, communication,
and overall care delivery

Monitoring, governance, and accountability

[49-51,54,55,63-65,70,75,78,81,84]13 (30)Accountability
and liability

• The clear attribution of responsibility for errors or out-
comes and the establishment of legal and ethical frame-
works to address potential issues and ensure proper re-
course

[49,54,68,78,81]5 (11)Consent and da-
ta ownership

• Evaluates the processes for obtaining informed consent
from patients regarding the use of their data and ensuring
clear policies on data ownership, privacy, and control

[44,45,49,50,52,53,55,59,65,69,71,76,77]13 (30)Maintenance
and updates

• Evaluates the processes for ongoing support, including
regular updates and bug fixes, to ensure the AI tool remains
effective, secure, and aligned with evolving medical stan-
dards and practices

[44,48-56,59,60,64,65,68,69,71,74,76,81,83,84]22 (50)Monitoring and
governance

• Evaluates the systems in place for overseeing the AI’s
performance, including regular assessments and audits to
ensure ethical use and effectiveness

[45,49-55,59,60,63-65,67-69,72,74,76,78,81,83,84]23 (52)Regulatory
compliance

• Evaluates adherence to established regulations throughout
the AI tool’s life cycle, including ongoing monitoring and
reporting after deployment to ensure continued safety, ef-
ficacy, and adherence to legal requirements

[45,51-56,60,62,64-71,73-75,77,78,80-83]26 (59)Security and
privacy

• Evaluates the measures implemented to protect sensitive
patient data from unauthorized access and breaches while
ensuring compliance with privacy regulations

Performance quality metrics

[41,43,45-53,57,58,60,62,67,69,70,73,74,76,80-84]26 (59)Accuracy, sensi-
tivity, and

• Accuracy: the proportion of correct predictions (both true
positives and true negatives) out of all predictions. It gives
an overall measure of performance but may be misleadingspecificity
if the dataset is imbalanced (ie, when one class dominates).(foundational

metrics) • Sensitivity (recall): the ability of the model to correctly
identify true positives (ie, people with the condition). In
health care, this often refers to how well the model detects
cases like diseases. High sensitivity ensures that most
cases of the disease are caught, reducing the chance of
missing sick patients.

• Specificity: the ability to correctly identify true negatives
(ie, people without the condition). High specificity means
the model avoids false positives, reducing unnecessary
interventions for healthy people
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Studies in which the criteria occurredStudies,
n (%)

DefinitionCriteria

[45,47-49,51,52,55,60,62,67,68,71,73-75,78,80,81,83]19 (43)• Explainability: refers to the degree to which the model’s
predictions and decisions can be understood by humans.
In health care, explainability is crucial because clinicians
need to trust AI recommendations and understand why the
AI made a particular decision.

• Interpretability: closely related to explainability, it is about
how easily a human can comprehend the internal workings
of the model. For example, an interpretable model may
allow clinicians to track how specific features (like patient
age or laboratory results) influenced the AI’s prediction

Explainability
and inter-
pretability
(ethics and
trustworthiness)

[42-47,49,51-56,58,60,62-69,71,73-75,77,78,81,83,84]32 (73)• Fairness: ensures that the AI model does not systematically
discriminate against any specific group of people (eg, based
on race, gender, or socioeconomic status). Fairness in
health care is key to avoid bias in diagnoses or treatments.

Fairness (equi-
ty)

[42,43,45,48,50-56,58-60,64,67,68,71,74,76,77,81,83,84]24 (55)• Reliability: refers to the consistency of the model over
time. Can the AI be trusted to perform in the same way
under similar conditions in the future?

• Repeatability: the ability of the model to provide consistent
results when the same input is given multiple times in the
same environment. In health care, this ensures that if a
patient is reevaluated using the same AI tool, it will give
the same outcome.

• Reproducibility: refers to how well the model performs
when applied to different datasets or by different teams.
This is critical in health care, where models trained on one
population must still perform well when tested on different
populations or data collected in different hospitals.

Reliability, re-
peatability, and
reproducibility
(consistency
and stability)

[41-46,48,49,52,54-56,58,60,64,67,68,70,71,75,76,83,84]23 (52)• Robustness: the model’s ability to maintain performance
despite slight variations or noise in the input data. In a
health care setting, this might mean the model works well
even with slightly lower-quality images or laboratory re-
sults from different equipment.

• Generalizability: the ability of the model to perform well
on new, unseen data that may differ from the training data.
In health care, it is crucial that an AI model trained in one
hospital or region can generalize to others.

Robustness and
generalizability
(adaptability)

[42,45-48,55,69,76,81,83]10 (23)• These may include area under the curve; data partitioning
and annotation (for training and evaluating models);
defining image datasets (training, validation, and testing);
figures of merit; mean absolute error; region of interest
and image segmentation

Imaging-fo-
cused

[57,62,73]3 (7)• These may include completeness and relevance; empathy
and engagement functions; floating point operation count;
hallucination; memory efficiency; number of parameters;
token limit and usefulness; voice and device control

Large language
model-focused

Acceptability, trust, and training
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Studies in which the criteria occurredStudies,
n (%)

DefinitionCriteria

[47,49,52-54,56,60,63,65,67-69,72,73,75,77,78,82]18 (41)• Evaluates how well the AI tool is embraced by health care
professionals and patients, including their willingness to
integrate it into routine practice

Acceptance and
adoption

[45,49,52-55,64,65,67,69,71,76,78,80-82,84]17 (39)• Evaluates the effectiveness and availability of resources
provided to users for learning and using the AI tool, ensur-
ing they have the necessary guidance and assistance for
successful implementation and operation

Training and
support

[45,47,49,52,60,62,68,73,75,82,84]11 (25)• Evaluates the degree to which health care professionals
and patients believe in the reliability, accuracy, and ethical
considerations of the AI tool, influencing their willingness
to use it

Trust

[47,49-53,55,56,62,63,68,71,73,75-77,82,84]18 (41)• Evaluates how easily and effectively health care profession-
als and patients can interact with and use the AI tool, en-
suring it enhances rather than hinders the user experience
and clinical workflows

Usability

[42,45,49,52,53,55,56,58,60,62,64,65,71,73,75-77]19 (43)• Evaluates how well the AI tool is designed to meet the
specific needs, preferences, and contexts of its users, do-
main-specific requirements, and task types it is intended
to support

User centricity
(user, domain,
and task type)

Cost and economic evaluation

[44,49,51,55,59-61,64,67-69,72,73,75,76,79,82,84]18 (41)• Evaluates the financial implications of implementing the
AI tool, ensuring it provides value without imposing exces-
sive financial burdens on health care systems or patients

Costs and eco-
nomic evalua-
tion in general

[41,53,55,59-61,68,71-74,84]12 (27)• Compares the relative costs and outcomes of different in-
terventions. The outcomes are typically measured in natural
units like life years saved, cases prevented, or symptom-
free days

Cost-effective-
ness analysis

[41,61,72,78,82]5 (11)• Used when 2 or more interventions or treatments are as-
sumed to produce identical outcomes or equivalent effec-
tiveness. Given that the outcomes are considered the same,
the focus is entirely on minimizing costs.

Cost-minimiza-
tion analysis

[41,61,72]3 (7)• Measures outcomes in terms of both quantity (life expectan-
cy) and quality of life. It uses a metric called quality-ad-
justed life years or disability-adjusted life years to quantify
health benefits

Cost-utility
analysis

Technological safety and transparency

[42,47,49-56,60,62-68,71,73,75,78,80,81,83,84]26 (59)• Evaluation of an AI tool’s ability to avoid causing harm
to patients by ensuring that it operates reliably, adheres to
clinical standards, and mitigates potential risks

Safety

[42,44,46,49,50,52-54,56,58-61,63-65,67,68,70,71,73-76,78,80,81]27 (61)• Refers to the extent to which an AI tool’s processes, deci-
sion-making logic, and data sources are made understand-
able and accessible to stakeholders

Transparency

[41,42,45,49,51,64,65,67,68,70,74,75,78,80]14 (32)• Assesses whether the AI tool is designed to support human
decision-making, allowing clinicians to maintain control
and override AI decisions when necessary, ensuring AI
complements rather than replaces human judgment

Ethical over-
sight, human in
command

Scalability and impact
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Studies in which the criteria occurredStudies,
n (%)

DefinitionCriteria

[41-44,47-49,51-54,60,63-65,67-69,71-73,75,77,78,83,84]26 (59)• Assesses how well the AI tool works in real-world practice,
including its ability to achieve desired clinical outcomes
across diverse populations and settings

Clinical effec-
tiveness

[47,52,53,55,56,68,76,79]8 (18)• Focuses on the optimal use of resources (time, staff, and
cost) to deliver care

Clinical efficien-
cy

[41-43,47,48,50,52,56,58,60,62,69,77,82]14 (32)• Refers to the practical benefits of a treatment or interven-
tion in improving patient care, such as guiding clinical
decision-making or reducing risks

Clinical utility

[75]1 (2)• Evaluates how the development, deployment, and operation
of AI tools affect environmental sustainability, such as
energy consumption and carbon footprint

Environmental
impact

aAI: artificial intelligence.

With our focus on assessing the long-term real-world impact
of AI technologies in health care, we named the framework AI
for IMPACTS. The criteria were organized into seven key
clusters, each corresponding to a letter in the acronym: (1) I —
integration, interoperability, and workflow; (2) M — monitoring,
governance, and accountability; (3) P — performance and
quality metrics; (4) A — acceptability, trust, and training; (5)
C — cost and economic evaluation; (6) T — technological
safety and transparency; and (7) S — scalability and impact.

Discussion

Principal Results
Through our systematic review of the literature, which
culminated in the inclusion of 44 relevant papers, we conducted
a narrative synthesis guided by the sociotechnical framework.
This synthesis identified and categorized the key technical,
social, and organizational criteria critical for the practical and
effective implementation of AI technologies in health care. The
results are organized into 7 main clusters, further divided into
28 specific subcriteria, providing a structured framework to
address the multifaceted considerations highlighted in the
reviewed literature.

By synthesizing and aggregating the assessment criteria from
all included studies, we developed the AI for IMPACTS
framework. This framework goes beyond focusing solely on
technical metrics or methodological guidance at the study level.
It integrates the clinical context and real-world implementation
factors to ensure AI tools are evaluated holistically. Most criteria
in our proposed framework can be aligned with existing
frameworks, but none covers all relevant categories without
extensions. For successful AI implementation in health care, it
is essential to integrate these tools within the broader
organizational context. Frameworks should account for the
complexities of the sociotechnical environment, recognizing
the interplay between technical, social, and organizational
dimensions. Our consolidated framework achieves this by
synthesizing and expanding existing frameworks for AI
assessment in health care. It uses a sociotechnical approach to
consider all contextual factors, their interactions, and the

long-term real-world impact of these technologies in clinical
practice.

The sociotechnical theory, which emphasizes the dynamic
interplay between social, organizational, and technical aspects,
provides a holistic approach to evaluating novel technologies
[33]. This is critical in health care, where the successful
implementation of novel technologies requires a balance of
these factors to optimize both technology adoption and clinical
outcomes [36]. Each component of the AI for IMPACTS
framework reflects this sociotechnical foundation, as described
below.

• I: integration, interoperability, and workflow —
sociotechnical theory stresses the need for alignment
between technology and workflow. This criteria cluster
ensures that AI tools integrate seamlessly within existing
systems and workflows, minimizing disruptions and
supporting health care professionals in their work.

• M: monitoring, governance, and accountability —
governance structures are vital for ensuring AI applications
adhere to clinical standards and ethical norms. The
sociotechnical theory supports the need for oversight that
considers not just technical capabilities but also social and
organizational responsibilities, promoting accountability
in decision-making.

• P: performance and quality metrics — effective AI
assessment requires robust performance metrics that span
technical and clinical outcomes. By applying sociotechnical
principles, this criteria cluster ensures that quality standards
are met in ways that resonate with both technical
requirements and patient care priorities.

• A: acceptability, trust, and training — for AI to be widely
adopted, it must be trusted and understood by users. The
sociotechnical theory emphasizes the role of social factors
such as trust and user training, which are essential for
fostering acceptance among health care providers and
patients.

• C: cost and economic evaluation — costs are a key concern
in health care. The sociotechnical approach underscores
the importance of evaluating not just technical
implementation costs but also the economic implications

J Med Internet Res 2025 | vol. 27 | e67485 | p. 15https://www.jmir.org/2025/1/e67485
(page number not for citation purposes)

Jacob et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


for patients and health care systems, ensuring that AI tools
are financially sustainable and valuable.

• T: technological safety and transparency — safety and
transparency are core to AI in health care, as they directly
affect user trust and patient safety. The sociotechnical theory
highlights that these technical attributes must be coupled
with transparent communication and organizational
processes that make AI’s functioning understandable and
dependable.

• S: scalability and impact — sociotechnical principles stress
adaptability within complex systems. This criteria cluster
considers how AI can be scaled effectively across diverse
health care settings, evaluating both technical scalability
and the social and organizational impact for expansion.

By leveraging the sociotechnical theory, the AI for IMPACTS
framework ensures that each criterion is evaluated in a way that
respects the complex interdependencies between technical

capabilities, social context, and organizational readiness,
providing a balanced and comprehensive approach to AI
assessment in health care. We selected the acronym IMPACTS
to underscore our emphasis on real-world outcomes over
isolated, study-level evaluations. This highlights our
commitment to assessing the broader, practical effects in health
care settings.

Figure 3 depicts the 7 assessment clusters of the AI for
IMPACTS framework. Each cluster contains multiple
subcriteria, all of which are summarized in a comprehensive
checklist presented in Table 3. The framework provides a
systematic approach for evaluating AI’s holistic role and
potential in health care applications. The following subsections
provide a detailed analysis of each criteria cluster and their
respective subcriteria, offering a comprehensive breakdown of
how each factor contributes to the overall assessment.

Figure 3. AI for IMPACTS: a comprehensive framework for evaluating the long-term real-world impacts of artificial intelligence (AI)–powered
clinician tools.
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Table 3. The AI for IMPACTS framework assessment criteria for evaluating the long-term real-world impacts of artificial intelligence–powered
clinician tools.

AssessmentCriteria

Integration

Does the deployment and scalability of the AIa tool require additional technological, hardware, or software in-
frastructure beyond what is already available in the current clinical setting?

Infrastructure

Does the AI tool seamlessly integrate and exchange data with various health care platforms and devices, ensuring
interoperability across different systems without requiring significant modifications?

Interoperability

Does the AI tool integrate smoothly into existing clinical workflows and health care operations, minimizing
disruption while enhancing efficiency, communication, and the overall delivery of care?

Workflow and organizational
changes

Monitoring, governance, and accountability

Is there clear attribution of responsibility for errors or outcomes, supported by well-defined legal and ethical
frameworks that ensure accountability and proper recourse in the event of any issues?

Accountability and liability

Does the AI tool have clear and robust processes for obtaining informed consent from patients, including
transparent policies on data ownership, privacy, and control, ensuring patients fully understand how their data
will be used?

Consent and data ownership

Does the AI tool have established processes for ongoing support, including regular updates and bug fixes, to
ensure it remains effective, secure, and compliant with evolving medical standards and practices?

Maintenance and updates

Does the AI tool have systems in place for ongoing oversight of its performance, including regular assessments
and audits to ensure ethical use, effectiveness, and adherence to relevant standards?

Monitoring and governance

Does the AI tool demonstrate adherence to established regulations throughout its entire life cycle, with systems
in place for ongoing monitoring and reporting postdeployment to ensure continued safety, efficacy, and compliance
with legal requirements?

Regulatory compliance

Does the AI tool have robust measures in place to protect sensitive patient data from unauthorized access and
breaches, while ensuring full compliance with relevant privacy regulations?

Security and privacy

Performance quality metrics

These are application-specific metrics to ensure each tool is assessed appropriately based on its function:Foundational metrics

• Diagnosis and prediction applications: use classification metrics (eg, accuracy, sensitivity, specificity, and
area under the curve) for diagnosis tasks and regression metrics (eg, mean absolute error and root mean
square error) for predicting continuous outcomes (classification, anomaly detection, and recommendation
systems)

• Image and pattern analysis: focus on segmentation accuracy and reinforcement learning’s long-term per-
formance optimization (eg, Dice coefficient, Jaccard index, and cumulative reward)

• Text and language processing applications: evaluate the accuracy and quality of AI-extracted or generated
text (eg, completeness and relevance, empathy and engagement, floating-point operation count, and hallu-
cination)

Is the AI tool able to clearly show how it reached a specific decision or prediction in a way that clinicians can
understand?

Explainability (ethics and
trustworthiness)

Is it easy for clinicians to understand the relationship between the input data and the AI tool’s outputs, without
needing detailed technical explanations?

Interpretability

Does the AI tool ensure fairness by avoiding systematic discrimination against any specific group, such as race,
gender, or socioeconomic status, and promoting equitable outcomes in diagnoses and treatments?

Fairness (equity)

Does the AI tool demonstrate reliability, repeatability, and reproducibility by consistently delivering the same
results over time, under similar conditions, and when applied to different data sets or used by different teams?

Reliability, repeatability, and
reproducibility (consistency
and stability)

Does the AI tool demonstrate both robustness and generalizability by maintaining strong performance despite
variations or noise in input data, and by performing well on new, unseen data from different hospitals or regions
compared to its training data?

Robustness and generalizability
(adaptability)

Acceptability, trust, and training

Does the AI tool demonstrate strong acceptance by health care professionals and patients, including their will-
ingness to adopt and integrate it into routine clinical practice?

Acceptance and adoption

Does the AI tool provide comprehensive and readily available resources for users, ensuring they have the nec-
essary guidance, training, and assistance to successfully implement and operate it in clinical practice?

Training and support
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AssessmentCriteria

Does the AI tool inspire trust among health care professionals and patients in terms of its reliability, accuracy,
and ethical considerations, thereby positively influencing their willingness to use it?

Trust

Does the AI tool offer an intuitive and user-friendly interface that allows health care professionals and patients
to interact with it easily and effectively, ensuring it enhances the user experience and integrates smoothly into
clinical workflows?

Usability

Does the AI tool effectively meet the specific needs, preferences, and contexts of its users, while addressing
domain-specific requirements and supporting the relevant tasks for which it is intended?

User centricity (user, domain,
and task type)

Cost and economic evaluation

Does the AI tool provide financial value by enhancing care without imposing excessive costs on health care
systems or patients, ensuring that its implementation is economically sustainable? This can be measured using
one or more of the following methods:

• Does the AI tool demonstrate cost-effectiveness by offering a favorable balance between its costs and the
health outcomes it achieves, such as life years saved, cases prevented, or symptom-free days, when compared
to alternative interventions?

• Does the AI tool demonstrate cost-utility by providing measurable improvements in both life expectancy
and quality of life, quantified through metrics such as quality-adjusted life years or disability-adjusted life
years?

• Does the AI tool demonstrate cost-minimization by achieving equivalent outcomes or effectiveness compared
to alternative interventions, while focusing on minimizing overall costs?

Costs and economic evaluation

Technological safety and transparency

Does the tool reliably adhere to clinical standards, consistently mitigate potential risks, and demonstrate the
ability to avoid causing harm to patients through reliable operation and risk management?

Safety

Does the AI tool provider ensure transparency by making its processes, decision-making logic, and data sources
understandable and accessible to all relevant stakeholders?

Transparency

Does the AI tool incorporate ethical oversight by ensuring that it supports human decision-making, allowing
clinicians to maintain control and override AI-generated decisions, when necessary, thereby complementing
rather than replacing human judgment?

Ethical oversight, human in
command

Scalability and impact

Does the AI tool demonstrate clinical effectiveness by consistently achieving the desired clinical outcomes in
real-world practice, across diverse patient populations and health care settings?

Clinical effectiveness

Does the AI tool demonstrate clinical efficiency by optimizing the use of resources, including time, staff, and
costs, to effectively deliver care without compromising quality?

Clinical efficiency

Does the AI tool demonstrate clinical utility by offering practical benefits that improve patient care, such as
guiding clinical decision-making or reducing risks during treatment?

Clinical utility

Does the AI tool minimize its environmental impact by considering sustainability in its development, deployment,
and operation, including factors such as energy consumption and carbon footprint?

Environmental impact

aAI: artificial intelligence.

Integration
This criteria cluster focuses on evaluating how effectively the
AI tool integrates into existing clinical workflows and health
care systems.

Infrastructure plays a crucial role in the successful
implementation of AI tools in health care settings. Adequate
computational power, specialized hardware, and robust IT
infrastructure are often necessary to support the processing of
large datasets and the operational demands of AI technologies
[49,71]. This may include advanced components such as
graphics processing units, which are not always standard in
health care systems [55]. In addition, integrating these tools
might require significant investment in new hardware or
upgrades [60,69]. For cloud-based AI solutions, attention must
be paid to network security and performance [55]. Ensuring
infrastructure compatibility is essential for the smooth

deployment and optimal functionality of AI in health care
[41,54].

Interoperability ensures seamless integration with existing
systems, such as electronic health records and imaging software.
It allows AI tools to operate within current workflows without
disrupting established clinical processes, enhancing data
exchange across platforms [41,68]. It also ensures that AI tools
adhere to industry standards, facilitating communication between
different health care technologies and minimizing issues such
as data misinterpretation or workflow inefficiencies [71]. Proper
integration can reduce the resource burden on health care
facilities and improve the overall usability and effectiveness of
AI systems in diverse clinical settings [64].

Understanding the impact on clinical workflows and
organizational structures is essential. AI tools must be
seamlessly integrated into workflows to avoid disrupting clinical
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processes [49,82]. Evaluating how AI affects the redistribution
of tasks among health care professionals and identifying
necessary organizational changes are essential [64,67]. Poor
integration or failure to align with clinical routines can
negatively impact efficiency, increase cognitive burdens, and
require significant resources to adapt systems [45,58].

Monitoring, Governance, and Accountability
This criteria cluster focuses on evaluating how effectively the
AI tool is monitored throughout its life cycle, addressing critical
aspects such as model drift, data governance, and adherence to
ethical standards.

Clarity on accountability and liability is essential when assessing
AI tools in health care due to the potential risks involved in
their implementation [49,81]. AI systems can make errors or
offer recommendations that may not be followed by clinicians,
raising complex questions about who is responsible when
mistakes occur [54,78]. The lack of clear guidelines on whether
liability lies with the developer, the health care institution, or
the clinician using the tool poses significant legal and ethical
concerns [55,84]. Proper assessment frameworks must ensure
that accountability is well-defined, including clear roles for all
stakeholders involved (eg, clinicians, developers, and
institutions) particularly in cases of adverse events or errors
[50,64,70].

Data security, privacy, informed consent, and data ownership
are vital criteria for assessing AI tools in health care. These
tools often require large amounts of sensitive patient data, which
must be protected from unauthorized access, breaches, or misuse
[75,83]. Ensuring compliance with relevant regulations, such
as General Data Protection Regulation or Health Insurance
Portability and Accountability Act, is essential to safeguard
patient privacy [55,60,71]. In addition, clear processes for
obtaining informed consent are critical, ensuring that patients
understand how their data will be used [68,81]. Proper data
ownership policies must also be in place, ensuring transparency
around who controls the data and how it can be accessed or
shared [49,78]. These measures are crucial for building trust
and ensuring ethical AI deployment in health care settings
[54,68].

Regulatory compliance and certification are essential but
insufficient assessment criteria for AI tools in health care [21].
Although regulatory bodies like the FDA in the United States
and CE marking in the EU set minimum safety and efficacy
standards, there are significant gaps between legal certification
and real-world clinical validation, workflow integration, and
ongoing use [21,45]. For instance, FDA clearance does not
always assure users that an AI tool will meet their expectations
for effective performance in all clinical settings, leading to
skepticism among health care professionals [21,84]. Similarly,
in the EU, AI tools with CE marking are often assumed to be
clinically validated, but many lack sufficient validation for
real-world clinical use, such as in dementia diagnosis via
magnetic resonance imaging [45,83]. These gaps highlight the
need for stronger regulatory frameworks and postmarket
surveillance to ensure AI tools are not only certified but also
thoroughly validated and integrated into health care workflows
for effective and safe use [21,72,76].

Monitoring and governance mechanisms, including feedback
loops, are critical for ensuring the continued safety,
effectiveness, performance, and reliability of AI tools in health
care [71]. It is essential that the responsibility for monitoring
these tools is shared between the developer, regulator, and the
health care organization deploying the tool [84]. Developers
are responsible for ongoing performance evaluations, including
regular updates to address issues such as data drift or algorithmic
failure [48,74]. Regulators must ensure compliance with
postmarket surveillance requirements and set clear guidelines
for monitoring practices [60,84]. Health care organizations must
implement local oversight systems, ensuring that the AI tool
continues to meet clinical needs without causing disruption or
harm [49,64,65,71,83]. By assigning responsibility to all 3
entities, health care systems can ensure comprehensive,
multi-layered oversight that addresses technical, clinical, and
regulatory concerns [84].

The maintenance and updating of AI tools are critical to
ensuring their continued effectiveness and safety in health care
[71]. Regular updates, including adjustments to algorithms and
reference datasets, are essential to avoid performance
degradation and ensure accurate results [53,71]. Without proper
maintenance, different software versions could introduce biases
or inconsistencies, which might affect clinical outcomes [45,76].
Establishing clear protocols for updates, including version
control and procedures for managing software changes, ensures
that AI tools remain reliable and aligned with current medical
standards, safeguarding patient care [50].

Performance Quality Metrics
This criteria cluster focuses on evaluating the performance and
quality of the AI tool by assessing key metrics such as
foundational performance metrics, fairness, explainability,
reliability, and robustness.

Foundational performance metrics play a crucial role in
assessing the effectiveness of AI tools. The systematic review
revealed that 59% (26/44) of studies primarily focused on
accuracy, sensitivity, and specificity as key metrics. However,
it is essential to consider application-specific metrics when
evaluating AI performance, as different AI tools require tailored
measures depending on their intended use. For example,
diagnosis and prediction tools encompass applications like
classification (eg, disease diagnosis), regression (eg, predicting
disease progression), anomaly detection, and recommendation
systems. These tools can be assessed through metrics such as
accuracy, sensitivity, specificity, and the area under the curve
for classification tasks [41,43,69] and mean absolute error and
root mean square error for regression tasks [46,81]. Image and
pattern analysis covers tasks such as image segmentation and
reinforcement learning, using metrics like the Dice coefficient
and Jaccard index for segmentation accuracy [87,88], and
cumulative reward for evaluating reinforcement learning
performance [89]. On the other hand, text and language
processing applications, such as natural language processing
and large language models, are assessed using metrics like
relevance, engagement, empathy, token limits, hallucination
rates, memory efficiency, and floating-point operation count
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[57,62,73]. These metrics ensure the AI tool is properly
evaluated based on its intended use and technology type.

Explainability and interpretability are essential for ensuring the
ethical and trustworthy use of AI tools in health care. These
criteria allow health care professionals to understand how AI
models arrive at their conclusions, fostering trust in their
recommendations [47,83]. Explainability helps to demystify
the AI’s decision-making process, making it transparent and
accessible to users [67,68]. This, in turn, improves adoption, as
clinicians are more likely to trust and rely on AI tools that are
interpretable [49,60]. Ultimately, clear explainability supports
ethical deployment, reducing risks associated with “black box”
systems [73,78].

Fairness or equity ensures that AI models provide unbiased,
consistent performance across diverse demographic groups,
including those defined by race, gender, age, or socioeconomic
status [62,66,83]. This criterion addresses the risk of bias in
training data, including sample size and representativeness,
which can lead to unequal treatment or outcomes for
underrepresented populations [42,43,71]. By focusing on
fairness, AI tools can avoid perpetuating disparities and
contribute to more equitable health care delivery for all patients
[55,63,71].

Reliability, repeatability, and reproducibility ensure that the AI
tool can produce consistent outputs when presented with similar
inputs, is repeatable under identical conditions, and is
reproducible in diverse environments, including different
institutions or patient populations [52,55,56,64]. Maintaining
consistency and stability is essential for the tool’s
trustworthiness and its broader applicability in real-world health
care scenarios [54,84].

Robustness and generalizability are essential criteria for
assessing the adaptability of AI tools in health care [42,83].
Robustness ensures the tool can maintain high performance
even when exposed to slight variations in input data or
operational environments [70,83]. Generalizability, on the other
hand, evaluates whether the AI tool can effectively perform
across different populations, clinical settings, or geographic
regions beyond the environment in which it was trained [48,83].
These criteria ensure that AI tools remain reliable and effective
when scaled or applied to diverse health care contexts [49,54].

Acceptability, Trust, and Training
This criteria cluster evaluates user-centric aspects of the AI tool,
focusing on its acceptance, trustworthiness, and the adequacy
of user training and support.

User acceptance and adoption are crucial for the successful
implementation and translation of AI-powered health tools in
real-life settings [56,65,82]. Key challenges include fostering
trust and confidence among health care professionals, ensuring
ease of use, and integrating these tools seamlessly into clinical
workflows [77]. User acceptance depends significantly on the
perceived benefits, transparency, and safety of the AI systems
[47,49,52]. Moreover, ethical concerns, the potential for bias,
and the need for comprehensive testing also impact adoption
[67]. Clinicians are more likely to embrace these tools when
they complement human expertise and are introduced with

adequate training and support, ensuring they enhance patient
outcomes without compromising safety [68]. User acceptance
and adoption of technology are typically measured through
surveys (eg, Technology Acceptance Model and Unified Theory
of Acceptance and Use of Technology) assessing factors like
perceived usefulness and ease of use, as well as use metrics
such as adoption rates, frequency, and retention.

Trust is built through factors such as validation, transparency,
safety, privacy, and interpretability of the AI tool [62]. Both
health care professionals and patients must trust that the AI tool
is reliable, safe, and effective in clinical practice [60,68].
Validating AI performance using local data is essential to build
clinician confidence, while demonstrating that the tool adheres
to rigorous standards helps address concerns about its real-world
application [49,84]. Trust also influences adoption, making it
vital for the successful implementation of AI tools in health
care [82]. User trust in technology is commonly assessed
through surveys and trust scales, such as the Technology Trust
Index, which evaluate key dimensions like reliability,
competence, transparency, and security. Behavioral metrics,
including use patterns and reliance during critical tasks, offer
additional insights into how trust manifests in practice.

User centricity emphasizes the need for a clear understanding
of the intended users, domain, and specific tasks the AI tool is
designed to support [42,58,71]. AI tools must be tailored to
meet the unique requirements of their end users, whether
clinicians, nurses, or patients, and address the particular medical
conditions they aim to diagnose, monitor, or treat [42,56].
Clarity in defining the tool’s intended use, the health care
domain it serves, and the tasks it performs ensures that it delivers
meaningful value in its practical application [64,73].

Usability ensures that the tool is user-friendly and intuitive for
both health care professionals and patients [49,53]. An AI tool’s
ease of use and minimal training requirements are essential for
successful adoption [47,53]. Usability also impacts user
satisfaction, influencing acceptance and trust in the system
[52,77]. Proper design should minimize cognitive load, provide
relevant information in context, and allow customization by
users [71]. Evaluating usability ensures that AI tools can be
effectively deployed in real-world clinical environments,
enhancing rather than hindering care delivery [55,56].

Adequate training ensures that clinicians and other end users
can effectively use AI tools, minimizing user error and
maximizing the tool’s potential to improve patient outcomes
[55,65,71]. Training programs should cover how to interact
with the AI interface, interpret its outputs, and understand the
tool’s limitations [49,54]. Continuous education is also crucial,
and end users should not only be trained on interpreting the
algorithm’s output but also be made aware of the factors that
can affect its performance [64]. Moreover, accessible and
responsive technical support is necessary to address user
concerns, provide ongoing assistance, and maintain confidence
in the AI tool’s reliability and safety over time [52]. Without
proper training and support, the integration of AI tools into
clinical practice may face significant barriers, limiting their
overall effectiveness [45,65].
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Cost and Economic Evaluation
This criteria cluster evaluates the economic implications of the
AI tool to determine its financial viability and long-term
sustainability.

Economic evaluation and cost considerations are crucial in
assessing AI tools in health care. AI interventions must
demonstrate not only clinical value but also health economic
impact to ensure their long-term sustainability [76,84]. This
includes evaluating both direct costs, such as acquisition,
maintenance, and implementation, as well as indirect costs like
staff training or workflow disruptions [49,61]. Transparent and
comprehensive economic evaluations help health care
organizations determine the financial viability of AI tools,
guiding decision-making on investments, reimbursement, and
long-term sustainability [59,64,67,79]. Incomplete or unclear
cost assessments can hinder AI adoption and create financial
risks [72,79].

The choice of an economic evaluation method for an AI tool in
health care depends on its intended use and desired outcomes.
Cost-effectiveness analysis is useful when comparing costs with
health outcomes like life years saved [41,59,68,71]. Cost-utility
analysis is ideal when focusing on both life expectancy and
quality of life improvements, measured in quality-adjusted life
years or disability-adjusted life years [41,61,72].
Cost-minimization analysis is appropriate when the AI tool
achieves similar outcomes as alternatives but aims to reduce
costs [61,72,78]. The method chosen should align with the tool’s
specific goals and intended health care impact.

Technological Safety and Transparency
This criteria cluster focuses on evaluating the technological
safety and transparency of the AI tool by assessing the
safeguards in place to ensure safe and ethical operation.

Safety ensures that AI systems operate reliably and securely in
clinical environments beyond laboratory settings and clinical
trials [73,78]. This includes compliance with safety regulations,
minimizing the risks of harmful outcomes, and maintaining
high standards for long-term safety and patient protection
[53,67,68]. Safety also encompasses the reliability of the AI
model after its implementation, ensuring it consistently avoids
errors and unintended consequences [47,65,78]. Ongoing
monitoring, risk management, and thorough clinical validation
are necessary to ensure that AI tools remain safe and effective
in diverse health care settings and the long-term safety of
constant updates [49,67,68,83].

Transparency is a critical assessment criterion for AI tools in
health care, ensuring clarity in data processing, coding standards,
and the overall functioning of AI systems [71,78,80].
Transparent models allow health care professionals to
understand how decisions are made, promoting trust and
enabling accurate assessments of the AI’s performance
[63,67,68,73]. Clear documentation and disclosure of data
processing methods, coding protocols, and the AI’s
decision-making processes ensures accountability and
reproducibility [42,54,64]. A recent review of 692
FDA-approved AI enabled medical devices highlighted major
gaps in transparency and safety reporting [90]. Key data such

as ethnicity (reported in only 3.6% of approvals), socioeconomic
information (absent in 99.1%), and study participants’ age
(missing in 81.6%) were often underreported [90]. In addition,
only 46.1% of devices provided detailed performance results
and only 1.9% were linked to scientific publications on safety
and efficacy [90]. These findings underscore the urgent need
for improved transparency and more comprehensive safety
reporting to reduce algorithmic bias and ensure equitable health
care outcomes.

Ethical oversight and human in command ensure human control
and responsibility in the AI decision-making processes [64,70].
This criterion emphasizes that humans must retain ultimate
authority over AI-generated decisions, particularly in critical
health care scenarios [68,70]. Human in command ensures that
clinicians can review, intervene, or override AI decisions,
maintaining ethical standards and safeguarding patient outcomes
[42,70]. This oversight protects against overreliance on
automated systems and ensures that AI tools support, rather
than replace, human judgment in clinical practice [45,68,80].

Scalability and Impact
This criteria cluster focuses on evaluating scalability and impact
by determining the AI tool’s clinical utility and effectiveness
and examining its broader impact.

Clinical effectiveness focuses on the tool’s ability to positively
impact patient outcomes [68,71,78]. This involves evaluating
whether the AI tool contributes to better therapeutic results or
patient-reported outcomes [43,71]. The assessment examines
how well the AI tool integrates into real-world clinical settings
and measures its tangible benefits in terms of patient health and
health care quality [49,69]. Clinical effectiveness ensures that
AI tools do more than function technically; they must provide
meaningful improvements in patient care [47,51].

Clinical utility focuses on how effectively the tool supports
clinical tasks and decision-making, including its ability to assist
with diagnoses, treatment recommendations, and overall health
care delivery [51,82]. Ensuring clinical utility means the AI
tool must provide tangible benefits that align with clinical needs
and enhance health care practices [43,79]. Clinical efficiency
focuses on the tool’s ability to optimize resource use while
maintaining or improving care quality [68]. This includes
evaluating how well it improves productivity, reduces time
spent on routine tasks, and streamlines workflows for health
care professionals [47,53,55].

Environmental impact is an important, yet often overlooked,
criterion for assessing AI tools in health care; only 1 out of 44
studies addressed this criterion. The energy consumption and
resource use associated with developing, deploying, and
maintaining AI systems, such as data centers, computational
power, and device infrastructures, can lead to significant
environmental harm, including e-waste and greenhouse gas
emissions [75]. Implementing eco-responsible practices, such
as energy-efficient computing and sustainable data storage, is
essential to minimizing the ecologic footprint of AI tools [75].
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Practical Implications and Persisting Challenges
The wide array of frameworks and initiatives focused on AI
assessment in health care shown in this systematic review
highlights the significant lack of standardization in this field,
creating additional challenges for stakeholders [43,70,71]. Faced
with a growing number of assessment tools, they often struggle
to determine which approach is most appropriate or how to
apply it effectively [63]. This diversity in assessment methods
can lead to confusion and hinder comparability [43,68,69,79].
Variations in data collection and evaluation methods, ranging
from self-reported to objective measures, and from qualitative
to quantitative assessments, only add to the complexity, further
complicating the establishment of clear, universal guidelines
for AI evaluation in health care [62].

Most frameworks included in this analysis were driven by the
recognition that many existing methods for assessing AI tools
in health care were not specifically tailored to AI-based medical
devices or health care applications [62,65,67]. Traditional
technology assessments often lack a critical focus on the unique,
dynamic challenges and opportunities AI presents [57]. This
underscores the need for health care–specific frameworks that
account for the evolving nature and complexities of AI systems
in clinical environments [60]. Moreover, existing frameworks
tend to prioritize technical metrics such as algorithm accuracy,
precision, and validation [62,73]. While these factors are
undeniably important, this narrow focus often overlooks broader
considerations, including clinical relevance, practical
application, and long-term impact on patient outcomes
[41,56,82]. Consequently, these frameworks can fall short in
delivering a holistic evaluation of AI tools, which is essential
for ensuring their safe, effective, and seamless integration into
real-world health care settings [47,83].

This study builds upon and advances the ongoing discussion
on AI assessment in health care, aiming to address the
recognized gaps by developing the AI for IMPACTS framework.
This proposed framework integrates technical, social, and
organizational dimensions, ensuring that the adaptive nature of
AI and the complexity of the health care ecosystem are fully
considered. By encompassing these critical aspects, the
framework provides a more comprehensive and nuanced
approach to evaluating AI tools, helping shape the field and
offering a robust method for assessing AI’s real-world impact
in health care settings.

However, numerous challenges still remain. These challenges
extend beyond just setting the assessment criteria, to include
practical difficulties in implementing, validating, and
standardizing these criteria across diverse health care
environments. A key challenge in assessing AI tools in health
care is the variation across different contexts and settings
[64,71]. Most available evidence focuses on high-income
countries, limiting the generalizability of findings to diverse
health care environments, particularly in low- and
middle-income countries [43,49]. Recent studies underscore
the importance of collaborative efforts and context-sensitive
solutions to effectively address the unique health care challenges
faced in these regions [91]. Another challenge is the need for a
multidisciplinary team of assessors. Effective evaluation requires

collaboration among professionals from various fields, such as
medicine, IT, and social sciences to ensure a comprehensive
assessment [77,83]. This diversity of expertise is necessary to
address the complexities of AI, from technical and ethical
considerations to clinical relevance and real-world impact
[55,65,84].

It is crucial to emphasize the importance of adequate training
in assessment methods [69,74]. Many assessors may lack the
specific expertise required to thoroughly evaluate AI-based
tools [46]. Proper training in the complexities of AI technology
and appropriate evaluation techniques is essential for conducting
accurate and meaningful assessments [55]. Without this, the
assessment process may be compromised, potentially leading
to inaccurate or incomplete evaluations of an AI tool’s safety
and effectiveness, which could undermine its implementation
in health care settings [68]. Furthermore, the rapid pace of AI
development, with AI-based medical devices having shorter
product life cycles compared to traditional medical devices,
underscores the need for more adaptive and fast-tracked health
technology assessment processes [49,68]. Conventional health
technology assessments are often too time-consuming, taking
about a year to complete, which is incompatible with the
fast-evolving nature of AI technologies [59]. Balancing the need
for robust evidence with the dynamic nature of AI development
is essential to ensure timely, informed decision-making and
avoid delays in implementation and potential reimbursement
[59,68].

Limitations and Future Research
This study enhances the understanding of various criteria for
assessing the quality and impact of AI tools in health care, but
several limitations must be acknowledged. Relevant studies
may have been missed due to language restrictions or limited
database searches, and the exclusion of gray literature may have
omitted valuable insights. In addition, no follow-up was
conducted with the study authors to validate the findings, and
manual reference searches were avoided to minimize citation
bias. As a result, some relevant frameworks or assessment
criteria may not have been captured in this review. Future
research could expand to include studies in other languages,
offering a more comprehensive understanding of potential
interregional or intercultural differences in the assessment of
AI tools in health care.

The critical appraisal of the frameworks included in this review
highlighted that many papers discussing AI tool assessment in
health care lacked rigorous validation, with some omitting the
methods section entirely. To address this gap, we propose
rigorously validating the AI for IMPACTS framework proposed
in this work through a Delphi process. The Delphi method was
selected as a means to validate the framework as it is specifically
designed to achieve reliable expert consensus, particularly in
addressing complex issues [92,93]. This method is widely
recognized across various fields of medicine, especially for
developing best practice guidance and clinical guidelines, where
expert agreement is critical [94,95]. This approach will involve
key stakeholders to critically apply, reflect on, and refine the
framework, ensuring it is relevant, comprehensive, and
user-friendly. The goal is to cocreate practical, accessible tools
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with industry experts that can support the effective evaluation
of AI tools in real-world health care settings.

It is also important to highlight that new frameworks were
published after the cutoff date of this systematic review,
including the Organizational Perspective Checklist for Artificial
Intelligence Adoption [96], Stanford’s framework for evaluating
Fair, Useful, and Reliable Artificial Intelligence Models in
Health Care Systems [97], and the Transparent Reporting of
Ethics for Generative Artificial Intelligence checklist [98]. While
an initial review shows that their assessment dimensions align
with this work, a deeper integration will be undertaken before
the validation study. This will ensure that the foundation for
the Delphi process is as comprehensive and up-to-date as
possible.

Conclusions
AI has the potential to transform health care by improving
clinical outcomes and operational efficiency. However, its
adoption has progressed more slowly than anticipated, partly
due to the absence of robust and comprehensive evaluation
frameworks. Existing frameworks often focus too narrowly on
technical metrics, such as accuracy and validation, neglecting
real-world factors like clinical impact, workflow integration,
and economic viability. Furthermore, the variety of frameworks
and initiatives focused on AI assessment in health care, as
highlighted in this systematic review, underscores a significant
lack of standardization in the field, creating additional challenges

for stakeholders and making it difficult to compare and
implement AI tools effectively.

This study builds on and advances the ongoing discussion
surrounding AI assessment in health care by developing the AI
for IMPACTS framework. It aims to address key gaps identified
in existing evaluation approaches, offering a comprehensive
model that incorporates technical, social, and organizational
dimensions. It is organized around 7 key criteria clusters:
I—integration, interoperability, and workflow; M—monitoring,
governance, and accountability; P—performance and quality
metrics; A—acceptability, trust, and training; C—cost and
economic evaluation; T—technological safety and transparency;
S—scalability and impact.

While the framework provides a more holistic approach,
significant challenges persist. The diverse contexts and settings
in health care make it difficult to apply a one-size-fits-all
framework. Multidisciplinary teams are necessary to evaluate
AI tools thoroughly, as expertise from fields such as medicine,
IT, and social sciences is required to address the complexities
of AI. In addition, many assessors lack the specific training
needed to evaluate these tools accurately. The rapid pace of AI
development further complicates the assessment process, as
conventional evaluation methods are often too slow to keep up
with AI’s short product life cycles. To ensure successful AI
integration in health care, adaptive and fast-tracked assessment
processes are essential, allowing for timely decision-making
and implementation while maintaining the necessary rigor.
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