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Abstract

Background: Gastrointestinal bleeding (GIB) is a severe and potentially life-threatening complication in patients with acute
myocardial infarction (AMI), significantly affecting prognosis during hospitalization. Early identification of high-risk patients
is essential to reduce complications, improve outcomes, and guide clinical decision-making.

Objective: This study aimed to develop and validate a machine learning (ML)–based model for predicting in-hospital GIB in
patients with AMI, identify key risk factors, and evaluate the clinical applicability of the model for risk stratification and decision
support.

Methods: A multicenter retrospective cohort study was conducted, including 1910 patients with AMI from the Affiliated
Hospital of Guangdong Medical University (2005-2024). Patients were divided into training (n=1575) and testing (n=335) cohorts
based on admission dates. For external validation, 1746 patients with AMI were included in the publicly available MIMIC-IV
(Medical Information Mart for Intensive Care IV) database. Propensity score matching was adjusted for demographics, and the
Boruta algorithm identified key predictors. A total of 7 ML algorithms—logistic regression, k-nearest neighbors, support vector
machine, decision tree, random forest (RF), extreme gradient boosting, and neural networks—were trained using 10-fold
cross-validation. The models were evaluated for the area under the receiver operating characteristic curve, accuracy, sensitivity,
specificity, recall, F1-score, and decision curve analysis. Shapley additive explanations analysis ranked variable importance.
Kaplan-Meier survival analysis evaluated the impact of GIB on short-term survival. Multivariate logistic regression assessed the
relationship between coronary heart disease (CHD) and in-hospital GIB after adjusting for clinical variables.

Results: The RF model outperformed other ML models, achieving an area under the receiver operating characteristic curve of
0.77 in the training cohort, 0.77 in the testing cohort, and 0.75 in the validation cohort. Key predictors included red blood cell
count, hemoglobin, maximal myoglobin, hematocrit, CHD, and other variables, all of which were strongly associated with GIB
risk. Decision curve analysis demonstrated the clinical use of the RF model for early risk stratification. Kaplan-Meier survival
analysis showed no significant differences in 7- and 15-day survival rates between patients with AMI with and without GIB
(P=.83 for 7-day survival and P=.87 for 15-day survival). Multivariate logistic regression showed that CHD was an independent
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risk factor for in-hospital GIB (odds ratio 2.79, 95% CI 2.09-3.74). Stratified analyses by sex, age, occupation, marital status,
and other subgroups consistently showed that the association between CHD and GIB remained robust across all subgroups.

Conclusions: The ML-based RF model provides a robust and clinically applicable tool for predicting in-hospital GIB in patients
with AMI. By leveraging routinely available clinical and laboratory data, the model supports early risk stratification and personalized
preventive strategies.

(J Med Internet Res 2025;27:e67346) doi: 10.2196/67346
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Introduction

Acute myocardial infarction (AMI) remains one of the leading
causes of mortality worldwide and is a significant contributor
to long-term disability and health care resource use [1].
Nosocomial gastrointestinal bleeding (GIB), as a common
complication of patients with AMI, may lead to a large number
of morbidity and mortality and remains one of the key factors
affecting the prognosis of patients [2,3]. The high incidence
and profound clinical implications of GIB have made it a focal
point of concern in the management of patients with AMI [4].

Existing studies have established a close association between
AMI and the occurrence of GIB, particularly in patients
undergoing antiplatelet or anticoagulant therapy [5]. In patients
with AMI, the development of GIB not only complicates
in-hospital treatment but also markedly increases mortality rates
during hospitalization [6]. However, the precise mechanisms
underlying GIB in patients with AMI have yet to be fully
elucidated. Potential mechanisms include gastrointestinal
mucosal injury induced by anticoagulant therapy, stress-related
ulceration, and inflammatory responses [7,8]. In addition,
underlying comorbidities such as coronary heart disease (CHD),
diabetes mellitus, and hypertension may also play significant
roles in the development of GIB [9,10].

Although several studies have investigated the incidence and
clinical manifestations of GIB in patients with AMI, there is
still a lack of systematic analysis regarding its potential risk
factors [11]. Previous research has identified common risk
factors for GIB in patients with AMI, including anemia, renal
insufficiency, advanced age, and polypharmacy [12,13].
However, many of these studies rely on traditional univariate
or multivariate statistical methods, which may be limited in
addressing the complexity of multifactorial interactions [14].
With the increasing application of machine learning (ML)
methods in medical research, there is an opportunity to leverage
advanced algorithms for more precise prediction and
identification of GIB risk factors in patients with AMI.

In this real-world study, we aimed to integrate ML methods
with traditional statistical analysis to comprehensively evaluate
the risk factors for in-hospital GIB in patients with AMI. The
objectives were to develop and validate an effective predictive
model and to assess the impact of GIB on short-term prognosis,
ultimately providing more robust guidance for clinical practice.

Methods

Data Source
Participants were retrospectively included based on their
admission to the Affiliated Hospital of Guangdong Medical
University between January 2005 and June 2024. A total of
10,046 patients with AMI were initially screened for eligibility.
Patients were excluded if they had a history of GIB within 1
month before admission or if more than 20% of their data were
missing. After applying these criteria, 1910 eligible patients
with AMI were included (more details in the patient selection
flowchart in the Results section). The cohort was divided based
on the admission date: patients admitted before January 1, 2023,
were assigned to the training cohort (n=1575), and those
admitted after this date were included in the testing cohort
(n=335).

Data for external validation were extracted from the publicly
available, single-center Medical Information Mart for Intensive
Care IV (MIMIC-IV) database (version 3.0). A total of 1801
patients with AMI from MIMIC-IV were initially screened.
After applying the same exclusion criteria as in the training
cohort, a total of 1746 patients with AMI were included in the
external validation cohort. The Beth Israel Deaconess Medical
Center and the Massachusetts Institute of Technology have
approved MIMIC-IV. The diagnosis of AMI was based on the
Fourth Universal Definition of Myocardial Infarction, including
both ST-segment elevation (ST elevation) and non–ST-segment
elevation (non-ST elevation) AMI. GIB was defined as a
clinically significant bleeding event diagnosed by a physician
(manifesting as coffee-ground emesis, hematemesis, melena,
or hematochezia) or the presence of blood in the upper or lower
gastrointestinal tract identified during endoscopic evaluation.

Data and Variables
The extracted variables included demographic characteristics,
duration of hospital stay, discharge status, basic vital signs, and
laboratory parameters. Cardiac injury biomarkers were recorded
at their peak levels. Blood and biochemical test results were
collected on the first day of admission. In cases where multiple
test results were available for a specific variable, the first
measurement was used in the analysis.

Model Construction and Validation
The Boruta algorithm was used in this study to select significant
variables from the training dataset. Boruta is a feature selection
method based on random forests (RFs) that determines the
importance of each variable by comparing its z score with that
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of its “shadow” counterparts [15]. During the algorithm’s
execution, all real features were duplicated and randomly
shuffled to generate z scores. If a real feature’s z score
consistently exceeded the maximum z score of the shadow
features across multiple independent tests, it was deemed
important and included in subsequent ML model construction.

The important variables screened by the Boruta algorithm were
incorporated into 7 different ML algorithms for model
construction, including logistic regression (LR), k-nearest
neighbor (KNN), support vector machine (SVM), decision tree
(DCtree), RF, extreme gradient boosting (XGBoost), and
artificial neural network (NNET) [16]. Hyperparameter tuning
was conducted using grid search combined with 10-fold
cross-validation to optimize the performance of all ML models.
Key parameters such as the number of trees, maximum tree
depth, and minimum samples per leaf were systematically varied
during the grid search. To prevent overfitting, the dataset was
divided into 10 folds, with 9 folds used for training and 1 fold
for validation. This process was repeated across all folds to
identify the combination of hyperparameters that yielded the
highest area under the curve (AUC).

The model with the highest area under the receiver operating
characteristic (ROC) curve was selected to determine model
performance. Model discrimination was further assessed using
sensitivity, specificity, recall, accuracy, and F1-score metrics.
Decision curve analysis (DCA) was conducted to evaluate the
clinical use of the models [17]. The best-performing model was
subsequently used for further interpretive analysis. After training
the model on the training cohort, all model parameters were
fixed, and the model’s performance was further evaluated using
the testing and validation cohort.

To better understand the decision-making process of the
best-performing model, Shapley additive explanations (SHAP)
were used [18]. Based on cooperative game theory’s Shapley
values, SHAP rationally allocates contributions to the model’s
output among individual input features. SHAP also reveals
feature importance and visually displays the direction and
magnitude of each feature’s contribution to the predictive
outcome, thereby providing a deep understanding of the model’s
decision-making process. In this study, SHAP analysis was
instrumental in identifying risk factors associated with GIB in
patients with AMI and evaluating their consistency and accuracy
in clinical applications using the testing and validation cohort.

Statistical Analysis
Multiple imputation was used to address missing data, including
variables with a missing ratio of less than 20%. Continuous

variables were expressed as medians and IQRs, while categorical
variables were expressed as total numbers and percentages.

Chi-square (χ2) tests, Wilcoxon rank-sum tests, or Fisher exact
tests were used as appropriate. For survival analysis,
Kaplan-Meier curves were used. Logistic regression analysis
was also performed to evaluate the association between CHD
and the occurrence of GIB in patients with AMI. Propensity
score matching (PSM) was also conducted using the nearest
neighbor method with a 1:1 ratio without replacement and a
caliper width of 0.15. The analyses were performed using R
software (R Foundation for Statistical Computing; version
4.2.2). Statistical significance was determined by a 2-tailed P
value of less than .05.

Ethical Considerations
This study was approved by the Institutional Review Board of
the Affiliated Hospital of Guangdong Medical University
(approval PJKT2024-176). The study used deidentified,
retrospective clinical data, and informed consent was waived
as the original consent obtained during initial data collection
included provisions for secondary analysis. All patient data
were anonymized, and confidentiality was strictly maintained.
For the external validation cohort, database access was granted
upon the completion of an online course and exam. As this
portion of the study used a publicly accessible, deidentified
database, informed consent was not required. Both data sources
complied with all applicable ethical guidelines and privacy
protection standards. The data from the training and testing
cohorts were anonymized, eliminating the need for informed
consent. In addition, the health information obtained from the
MIMIC-IV database was deidentified, and therefore, patient
consent was not required.

Results

Comparative Analysis of Clinical Profiles in Patients
With AMI With and Without In-Hospital GIB
A total of 1575 patients with AMI were included in the training
cohort (Figure 1), of whom 775 experienced in-hospital GIB.
To minimize potential confounding factors, PSM was performed
on variables such as sex, occupation, blood type, marital status,
age, and length of hospital stay, achieving a balanced
distribution of these selected characteristics between the groups.
Table 1 compares the baseline characteristics before and after
matching. After PSM, no statistically significant differences
were observed between the groups for the matched variables
(P>.05), indicating that the matching process effectively reduced
confounding bias.
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Figure 1. Patient selection flowchart for the training, testing, and validation cohorts. A total of 10,046 local patients and 1801 patients from the
MIMIC-IV database were screened. After applying exclusion criteria, 1910 patients were included in the local cohort and 1746 patients in the external
validation cohort. AMI: acute myocardial infarction; GIB: gastrointestinal bleeding; MIMIC-IV: Medical Information Mart for Intensive Care IV.

Table 1. Baseline demographic and clinical characteristics of patients with acute myocardial infarction with and without GIBa, before and after
propensity score matching (2005-2024, Guangdong Medical University Hospital).

MatchedUnmatchedCharacteristics

P valueGIB (n=731)No GIB (n=731)P valueGIB (n=775)No GIB (n=800)

.1971 (12)70 (13)<.00171 (12)69 (13)Age (years), mean (SD)

.9511 (9)11 (10).8511 (9)11 (9)In-hospital length of stay (days), mean (SD)

.68.008Gender, n (%)

531 (73)524 (72)573 (7)543 (68)Male

200 (27)207 (28)202 (26)257 (32)Female

.66.15Marriage status, n (%)

685 (94)689 (94)721 (93)758 (95)Married

46 (6)42 (6)54 (7)42 (5)Single, divorced, or windowed

.86.65Occupation, n (%)

134 (18)139 (19)135 (17)147 (18)Farmer

379 (52)383 (52)397 (51)419 (52)Employee

218 (30)209 (29)243 (31)234 (29)Retired or unemployed

.84.29ABO blood type, n (%)

170 (23)183 (25)189 (24)202 (25)A

299 (41)287 (39)318 (41)301 (38)O

213 (29)215 (29)214 (28)250 (31)B

49 (7)46 (6)54 (7)47 (6)AB

aGIB: gastrointestinal bleeding.

The detailed demographic and baseline clinical characteristics
of the PSM-adjusted training cohort are summarized in Table
S1 in Multimedia Appendix 1. The results revealed significant
differences in several laboratory parameters between patients
with and without GIB. Specifically, patients with GIB exhibited

significant differences in red blood cell count (RBC),
hemoglobin, gamma-glutamyl transferase (GGT), total bilirubin
(TBIL), direct bilirubin (DBIL), indirect bilirubin, albumin,
total protein (TP), calcium, chloride, phosphorus, and N-terminal
pro-brain natriuretic peptide maximum (NT-proBNP max),
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suggesting distinct clinical profiles related to anemia,
cardiovascular status, liver function, electrolyte imbalance, and
coagulation function.

The analysis suggests that patients with AMI who experience
in-hospital GIB may have distinct clinical profiles, particularly
in terms of anemia, cardiovascular health, liver function,
electrolyte balance, and coagulation, which could inform more
targeted management strategies.

Key Predictor Identification Using Boruta Algorithm
for In-Hospital GIB Risk in Patients With AMI
To identify key variables associated with GIB occurrence in
patients with AMI, the Boruta algorithm was used for feature

selection. Figure 2 illustrates the z scores of each variable,
demonstrating how this analysis enhanced model optimization
by concentrating on the most relevant features. A total of 20
variables were identified as important, including CHD, white
blood cell count, RBC, hematocrit, hemoglobin, GGT, TBIL,
DBIL, globulin, TP, total bile acids, creatinine, uric acid,
phosphorus, alkaline phosphatase, cystatin C, fibrinogen,
NT-proBNP max, maximal myoglobin, and maximal
high-sensitivity cardiac troponin T, indicating their strong
explanatory power in predicting GIB occurrence.

These variables were incorporated as primary predictors in the
subsequent model construction and analysis, providing a solid
foundation for developing predictive models.

Figure 2. Feature selection for predicting gastrointestinal bleeding in patients with acute myocardial infarction using the Boruta algorithm. The horizontal
axis displays the names of each variable, while the vertical axis displays the corresponding z scores of each variable. The box plot shows the z score of
each variable during model calculation. The blue boxes represent important variables, the red represents tentative variables, and the green represents
rejected variables. AG: anion gap; ALB: albumin; ALB/GLO: albumin-to-globulin ratio; ALP: alkaline phosphatase; ALT: alanine aminotransferase;
Apob: apolipoprotein B; Apoai: apolipoprotein A-I; APTT: activated partial thromboplastin time; APTTR: activated partial thromboplastin time ratio;
Baso: basophils; Ca: calcium; CHD: coronary heart disease; ChE: cholinesterase; Cl: chloride; Crea: creatinine; CysC: cystatin C; DBIL: direct bilirubin;
Eos: eosinophils; Fbg: fibrinogen; Glu: glucose; GGT: gamma-glutamyl transferase; GLO: globulin; HDLC: high-density lipoprotein cholesterol; Hb:
hemoglobin; HCT: hematocrit; HCY: homocysteine; IBIL: indirect bilirubin; K: potassium; LDH: lactate dehydrogenase; LDLC: low-density lipoprotein
cholesterol; Lymph: lymphocytes; Mb max: myoglobin maximum; MCH: mean corpuscular hemoglobin; MCHC: mean corpuscular hemoglobin
concentration; MCV: mean corpuscular volume; Mono: monocytes; Na: sodium; Neut: neutrophils; NT proBNP max: N-terminal pro b-type natriuretic
peptide maximum; P: phosphorus; PA: prealbumin; PCT: plateletcrit; PLT: platelets; PTR: prothrombin time ratio; PT: prothrombin time; PTINR:
prothrombin time international normalized ratio; RBC: red blood cell; RDWCV: red cell distribution width; TG: triglycerides; TC: total cholesterol;
TBIL: total bilirubin; TBA: total bile acids; TT: thrombin time; UA: uric acid; WBC: white blood cell.
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The RF Model Outperforms Other ML Models in
Predicting In-Hospital GIB in Patients With AMI
The performance of 7 ML models in predicting GIB in patients
with AMI was compared, and their ROC curves and DCA results
were presented for the training cohort (Figure 3). The ROC
curves (Figure 3A) demonstrate the discriminative ability of
the various models, with the RF model achieving the highest
AUC value (0.77, outperforming the others. The XGBoost (0.74)
and SVM (0.72) models followed, while the DCtree model

performed the poorest, with an AUC of 0.66. DCA (Figure 3B)
assessed the clinical use of the models, further confirming that
the RF model provided the highest net benefit across most
threshold ranges, particularly within the intermediate range,
highlighting its superiority in predicting GIB. The RF model
demonstrated the best overall performance, with the highest
AUC and net benefit, indicating its superior predictive capability
for GIB. While other models, such as XGBoost and SVM, also
performed well in certain scenarios, they were overall less
effective than the RF model.

Figure 3. (A) Receiver operating characteristic curve and (B) decision curve analyses for 7 machine learning models predicting gastrointestinal bleeding
in patients with acute myocardial infarction (training cohort). DCtree: decision tree; KNN: k-nearest neighbors; LR: logistic regression; NNET: neural
network; RF: random forest; SVM: support vector machine; XGBoost: extreme gradient boosting.

Further detailed performance metrics for each model, including
sensitivity, specificity, recall, accuracy, and F1-score, are
provided in Table 2. The RF model emerged as the top
performer, with an accuracy of 0.66; an F1-score of 0.65; and
balanced recall and specificity of 0.64 and 0.67, respectively,
indicating its strong ability to distinguish between patients with
and without GIB. The XGBoost model excelled in specificity,
reaching 0.73, but its recall was lower at 0.58, resulting in an
overall accuracy of 0.65 and an F1-score of 0.62. The SVM
model achieved the highest recall (0.73) but suffered from low

specificity (0.45), yielding an overall accuracy of 0.59 and an
F1-score of 0.64. In contrast, the LR and KNN models exhibited
similar performance, with accuracies of 0.61 and 0.60 and
balanced recall and specificity around 0.60, reflecting moderate
ability in distinguishing patients with GIB. The DCtree model
reached a specificity of 0.73 but had lower recall (0.51), leading
to an overall accuracy of 0.62 and an F1-score of 0.57. The
NNET model performed the worst, with an accuracy of only
0.55 and an F1-score of 0.52, suggesting it may not be suitable
for GIB prediction in this dataset.
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Table 2. Performance comparison of machine learning models for predicting gastrointestinal bleeding in the training cohort.

F1-scoreRecallSpecificitySensitivityAccuracyModel

0.650.640.670.640.66RFa

0.620.580.730.580.65XGBoostb

0.640.730.450.730.59SVMc

0.520.490.620.490.55NNETd

0.600.600.600.600.60KNNe

0.610.610.600.610.61LRf

0.570.510.730.510.62DCtreeg

aRF: random forest.
bXGBoost: extreme gradient boosting.
cSVM: support vector machine.
dNNET: neural network.
eKNN: k-nearest neighbors.
fLR: logistic regression.
gDCtree: decision tree.

Additional evaluations were conducted using both the testing
and validation cohorts to assess the robustness of the models
(Figures S1 and S2 in Multimedia Appendix 1; Tables S2 and
S3 in Multimedia Appendix 1). The model’s performance was
consistent, with an ROC value of 0.77 in the testing cohort and
0.75 in the validation cohort, demonstrating its generalizability
and reliability across different datasets.

Overall, the RF model consistently outperformed other ML
models in both predictive accuracy and clinical use, making it
the most reliable tool for predicting in-hospital GIB in patients
with AMI across multiple datasets.

SHAP Analysis Quantifies Feature Contributions to
In-Hospital GIB Risk in Patients With AMI
The SHAP analysis was used to interpret the predictions of the
best-performing model, the RF. SHAP analysis highlighted the
impact of 15 key features on the GIB prediction model in
patients with AMI, ranked by SHAP values (Figure 4A).

Features with positive SHAP values were associated with higher
predicted GIB risk, while negative SHAP values indicated a
lower risk. Darker colors represent decreases, while lighter
colors indicate increases in the respective parameters, with all
predictive factors positively correlated with GIB. The SHAP
analysis also emphasized the importance of specific variables
and provided insights into their directional influence on the
prediction outcomes. RBC exhibited the strongest predictive
influence, with lower values significantly increasing the
predicted risk, followed by myoglobin maximum, CHD,
hemoglobin, phosphorous, and NT-proBNP max, which also
contributed to the prediction. TBIL and hematocrit further
demonstrated their significance in the model. Other influential
features included globulin, highly sensitive cardiac troponin T
maximum, fasting blood glucose, GGT, DBIL, uric acid, and
alkaline phosphatase. With varying SHAP values, these features
illustrated their multidimensional impact within the predictive
model (Figure 4B).
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Figure 4. (A) SHAP (Shapley additive explanations) analysis of the top-15 predictors for gastrointestinal bleeding (GIB) in patients with acute myocardial
infarction (AMI) using a random forest model ranked by mean absolute SHAP value, and (B) the impact of SHAP values on the occurrence of GIB in
patients with AMI. ALP: alkaline phosphatase; CHD: coronary heart disease; DBIL: direct bilirubin; Fbg: fibrinogen; GGT: gamma-glutamyl transferase;
GLO: globulin; HCT: hematocrit; Hb: hemoglobin; Hs cTnT Max: high-sensitivity cardiac troponin T maximum; Mb max: myoglobin maximum; NT
proBNP max: N-terminal pro b-type natriuretic peptide maximum; P: phosphorus; RBC: red blood cell; TBIL: total bilirubin; UA: uric acid.

These features provided insights into the driving factors for GIB
occurrence in patients with AMI, playing a crucial role in GIB
prediction and understanding the underlying mechanisms.
Notably, the SHAP values for CHD history indicated that an
increase in this variable significantly heightened the risk of GIB,
suggesting that CHD may play a crucial role in the
pathophysiological mechanisms underlying GIB.

Kaplan-Meier Analysis Shows No Significant Impact
of GIB on Short-Term Survival in Patients With AMI
To assess the impact of GIB on short-term survival in patients
with AMI, a Kaplan-Meier survival analysis was performed.
Figure S3 in Multimedia Appendix 1 shows the survival curves
for patients with and without GIB at 7 and 15 days. The results
indicated that while overall survival rates were lower in the GIB
group compared to the non-GIB group, the differences did not
reach statistical significance (P=.83 for 7-day survival and P=.87
for 15-day survival). This suggests that in the study population,
the occurrence of GIB did not significantly affect short-term
survival in patients with AMI.

These findings suggest that while GIB is associated with lower
survival rates, it does not significantly influence short-term
mortality in patients with AMI within the study population.

CHD Identified as a Significant Predictor of
In-Hospital GIB Risk in Patients With AMI
Multivariate logistic regression was used to analyze further the
association between CHD and in-hospital GIB in patients with

AMI. The results, presented in Table 3, showed a significant
association between CHD and the occurrence of GIB during
hospitalization. In the unadjusted crude model, CHD was
significantly positively associated with GIB (odds ratio [OR]
2.88, 95% CI 2.29-3.63; P<.001). After PSM, the association
remained significant, with the OR slightly reduced to 2.50 (95%
CI 1.98-3.17; P<.001). Even after stepwise adjustment for
additional confounding variables, including sex, occupation,
ABO blood type, marital status, age, and length of hospital stay
(Model 1), hypertension, diabetes, smoking, alcohol
consumption, body temperature, pulse, heart rate, respiratory
rate, blood pressure (Model 2), and all laboratory parameters
(Model 3), the significant association between CHD and GIB
persisted. The OR values remained consistent across the
different models, all retaining statistical significance (P<.001),
indicating that CHD is an important risk factor for GIB during
hospitalization in patients with AMI.

Furthermore, Figure 5 presents the results of subgroup analysis
and interaction tests conducted using the LR model to further
explore the moderating effects of various characteristics on the
relationship between CHD and GIB. Stratified analyses by sex,
age, occupation, marital status, and other subgroups consistently
showed that the association between CHD and GIB remained
robust across all subgroups. This underscores the generalizability
of CHD as a significant risk factor for GIB in patients with
AMI, highlighting the importance of considering this risk factor
in diverse patient populations.
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Table 3. Association between coronary heart disease and risk of gastrointestinal bleeding in patients with acute myocardial infarction.

Propensity-score matchedOverallVariable

P valueOR (95% CI)P valueORa (95% CI)

<.0012.50 (1.98-3.17)<.0012.88 (2.29-3.63)Crude modelb

<.0012.56 (2.01-3.27)<.0012.74 (2.16-3.49)Model 1c

<.0012.54 (1.98-3.25)<.0012.70 (2.12-3.45)Model 2e

<.0012.79 (2.09-3.74)<.0012.92 (2.20-3.86)Model 3e

aOR odds ratio.
bCrude model: No covariates were adjusted.
cModel 1: adjusted for gender, occupation, ABO blood type, marriage status, age, and in-hospital length of stay.
dModel 2: Model 1 and adjusted for hypertension, diabetes, smoking, drinking, temperature, pulse, heart rate, respiratory rate, diastolic pressure, and
systolic pressure.
eModel 3: Model 2 and adjusted for all laboratory parameters.

Figure 5. Subgroup analysis of coronary heart disease (CHD) impact on gastrointestinal bleeding (GIB) risk in patients with acute myocardial infarction
(AMI). These results confirm that CHD is a consistent and significant risk factor for in-hospital GIB in patients with AMI, reinforcing its importance
in risk stratification across diverse patient subgroups. OR: odds ratio.
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Discussion

Principal Findings
This study systematically analyzes the risk factors associated
with GIB in patients with AMI. Using the Boruta algorithm,
significant variables were selected and compared across various
ML models to construct an effective RF model for predicting
GIB occurrence. This research not only enhances understanding
of the mechanisms behind GIB in patients with AMI but also
provides clinicians with a robust predictive tool aimed at
reducing patient complications. In addition, Kaplan-Meier
survival analysis was used to assess GIB’s impact on short-term
survival rates and analyze the association between CHD and
GIB, as well as its prognosis implications.

Comparison With Previous Work
In comparison with existing literature, our study exhibits several
unique advantages. First, we found that patients with GIB had
significantly lower RBC, hemoglobin, and multiple liver
function indicators compared to patients without GIB, aligning
with previous research findings [19,20]. For instance, Martí et
al [21] similarly identified anemia and hepatic dysfunction as
pivotal risk factors for GIB in patients with AMI. Furthermore,
Holster et al [22], through systematic review and meta-analysis,
underscored the heightened risk of GIB associated with
anticoagulant use, particularly among patients with underlying
hepatic or hematologic conditions. This study further
substantiates the significance of these factors through
multivariable analysis and enhances prediction accuracy using
ML methods. However, models from different studies exhibit
variability in predicting GIB occurrence. For example, Chin et
al [23] model heavily relies on traditional multivariable
regression analysis, identifying significant risk factors such as
advanced age, renal impairment, and anticoagulant use, albeit
with limited predictive performance [23]. In contrast, our study’s
adoption of the Boruta algorithm for feature selection and
integration of the RF model not only enhances model robustness
but also significantly improves predictive performance with an
AUC value of 0.771. This underscores the capability of ML
methods to offer precise risk prediction when handling complex,
high-dimensional data.

Furthermore, through multivariable logistic regression analysis,
this study further confirms a significant association between
CHD and GIB occurrence, which persists even after adjusting
for various confounding factors. Consistent with previous
research, this suggests that patients with CHD may face
increased GIB risk due to heightened inflammatory response
and the necessity for anticoagulant therapy [24]. Subgroup
analysis underscores the consistent impact of CHD across
different patient demographics, emphasizing the need for
heightened management attention, particularly in administering
antiplatelet and anticoagulant therapies, which may necessitate
stricter monitoring and personalized adjustments [25,26].
Kaplan-Meier survival analysis results indicate that although
GIB is a common complication in patients with AMI, it does

not significantly impact short-term survival rates. This finding
aligns with the observations by Nikolsky et al [27] in patients
after coronary artery bypass graft, suggesting minimal short-term
prognosis effects among actively treated patients [27]. However,
this does not negate the potential long-term impacts of GIB on
patient outcomes, warranting further investigation.

Strengths and Limitations
This study represents an innovative application of ML
techniques to predict GIB in patients with AMI, integrating both
clinical and laboratory data. The multicenter design, coupled
with external validation using the MIMIC-IV database, enhances
the generalizability of the findings across diverse patient
populations. Robust validation methods, including PSM and
the use of independent datasets, further strengthen the reliability
of the predictive models and mitigate potential biases.

This study has several limitations that should be acknowledged.
First, although it used a multicenter retrospective cohort design,
the sample size may still be insufficient to fully capture the
variability and complexity of GIB in patients with AMI. External
validation using the MIMIC-IV database partially mitigates this
limitation by increasing the generalizability of the findings.
However, larger, multicenter prospective studies are needed to
further validate these results across diverse populations. Second,
some important variables, such as dietary habits and medication
adherence, were not included in the analysis. These unmeasured
confounding factors could influence the occurrence of GIB and
limit the comprehensiveness and clinical applicability of the
model. Incorporating additional predictors, such as dietary
habits, medication adherence, and genetic markers, in future
studies could enhance the model’s accuracy and provide a more
holistic understanding of GIB risk. Third, the retrospective
nature of the study introduces inherent limitations, including
potential selection bias and reliance on existing medical records,
which may include missing or incomplete data. In addition, in
datasets where the limit of detection is an important factor,
alternative imputation methods, such as minimal imputation,
may provide more accurate processing of missing data. While
this is not the main focus of this study, future studies could
explore advanced imputation techniques tailored to specific
missing mechanisms to improve the robustness of predictive
models. To address this, PSM was applied to minimize
confounding factors, and multiple imputation techniques were
used to handle missing data. Despite these efforts, prospective
studies with real-time clinical data collection would provide
stronger evidence, reduce bias, and further validate the findings.
In addition, leveraging advanced ML techniques and
incorporating real-time clinical data may improve the model’s
predictive performance and facilitate early intervention for
high-risk patients.

Conclusion
In summary, ML models, particularly the RF model, offer
reliable tools for predicting GIB in patients with AMI and lay
the groundwork for future research into its pathophysiology and
prevention.
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CHD: coronary heart disease
DBIL: direct bilirubin
DCA: decision curve analysis
DCtree: decision tree
GGT: gamma-glutamyl transferase
GIB: gastrointestinal bleeding
KNN: k-nearest neighbors
LR: logistic regression
MIMIC-IV: Medical Information Mart for Intensive Care IV
ML: machine learning
NNET: neural network
NT-proBNP max: N-terminal pro-brain natriuretic peptide maximum
OR: odds ratio
PSM: propensity score matching
RBC: red blood cell count
RF: random forest
ROC: receiver operating characteristic
SHAP: Shapley additive explanations
SVM: support vector machine
TBIL: total bilirubin
TP: total protein
XGBoost: extreme gradient boosting
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