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Abstract

Background: Oral microenvironmental disorders are associated with an increased risk of heart failure with preserved ejection
fraction (HFpEF). Hyperspectral imaging (HSI) technology enables the detection of substances that are visually indistinguishable
to the human eye, providing a noninvasive approach with extensive applications in medical diagnostics.

Objective: The objective of this study is to develop and validate a digital, noninvasive oral diagnostic model for patients with
HFpEF using HSI combined with various machine learning algorithms.

Methods: Between April 2023 and August 2023, a total of 140 patients were recruited from Renmin Hospital of Wuhan
University to serve as the training and internal testing groups for this study. Subsequently, from August 2024 to September 2024,
an additional 35 patients were enrolled from Three Gorges University and Yichang Central People’s Hospital to constitute the
external testing group. After preprocessing to ensure image quality, spectral and textural features were extracted from the images.
We extracted 25 spectral bands from each patient image and obtained 8 corresponding texture features to evaluate the performance
of 28 machine learning algorithms for their ability to distinguish control participants from participants with HFpEF. The model
demonstrating the optimal performance in both internal and external testing groups was selected to construct the HFpEF diagnostic
model. Hyperspectral bands significant for identifying participants with HFpEF were identified for further interpretative analysis.
The Shapley Additive Explanations (SHAP) model was used to provide analytical insights into feature importance.

Results: Participants were divided into a training group (n=105), internal testing group (n=35), and external testing group (n=35),
with consistent baseline characteristics across groups. Among the 28 algorithms tested, the random forest algorithm demonstrated
superior performance with an area under the receiver operating characteristic curve (AUC) of 0.884 and an accuracy of 82.9%

J Med Internet Res 2025 | vol. 27 | e67256 | p. 1https://www.jmir.org/2025/1/e67256
(page number not for citation purposes)

Yang et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

mailto:lileiyu@whu.edu.cn
http://www.w3.org/Style/XSL
http://www.renderx.com/


in the internal testing group, as well as an AUC of 0.812 and an accuracy of 85.7% in the external testing group. For model
interpretation, we used the top 25 features identified by the random forest algorithm. The SHAP analysis revealed discernible
distinctions between control participants and participants with HFpEF, thereby validating the diagnostic model’s capacity to
accurately identify participants with HFpEF.

Conclusions: This noninvasive and efficient model facilitates the identification of individuals with HFpEF, thereby promoting
early detection, diagnosis, and treatment. Our research presents a clinically advanced diagnostic framework for HFpEF, validated
using independent data sets and demonstrating significant potential to enhance patient care.

Trial Registration: China Clinical Trial Registry ChiCTR2300078855; https://www.chictr.org.cn/showproj.html?proj=207133

(J Med Internet Res 2025;27:e67256) doi: 10.2196/67256
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Introduction

About one-half of patients with chronic heart failure have heart
failure with preserved ejection fraction (HFpEF), which has
received wide attention in recent years and poses a serious threat
to the management of patient health [1,2]. The pathogenesis of
HFpEF is complex, and the pathological mechanism is still
unclear, so a swift, noninvasive diagnostic strategy is still
lacking [3]. Early diagnosis of HFpEF is often difficult because
the left ventricular ejection fraction of patients with HFpEF is
within the normal range and the symptoms of heart failure are
often nonspecific. The diagnosis of HFpEF depends on clinical
symptoms, laboratory tests, echocardiography, and an invasive
hemodynamics test [4]. However, descriptions of clinical
symptoms are subjective, and different clinical symptoms cannot
be measured using a unified standard. Echocardiography and
hemodynamics tests need to be performed by experienced
clinicians in hospitals, thus limiting early identification and
timely diagnosis of HFpEF, which introduces obstacles to the
health management of individuals with HFpEF [5].

The health of the oral environment has an important impact on
cardiovascular health, and oral microenvironmental disorders
have been associated with an increased risk of HFpEF [6]. Poor
oral health may cause an inflammatory response that is strongly
associated with heart failure [7,8]. The tongue, as an important
part of the oral cavity, plays an important role in oral health,
and the dorsum of the tongue carries the largest number of
microbial species, which is an important part of oral health [9].
Inflammation and oxidative stress in the body caused by
alterations in the oral microbiome are associated with the risk
of developing heart failure [10]. Observing the oral
microenvironment of individuals with HFpEF can reflect their
lifestyle, dietary habits, and intestinal health [11]. An automated
device or system that allows doctors to perform a quick
tongue-based diagnosis would be helpful in clinical practice.

Light, which is a single color before dispersion, becomes a
pattern of colors arranged in order of wavelength after
dispersion; this is called the optical spectrum or optical band
[12]. Hyperspectral imaging (HSI) consists of narrower bands,
is a technique that captures and analyzes the details of each
band in a region, can therefore detect substances that are visually

indistinguishable to humans, and has a wide range of
applications in many fields [13]. In recent years, many studies
have explored the application of HSI technology in medicine
[14]. The emergence of handheld HSI cameras, which allow
users to quickly capture spectral images, has boosted the
application of spectral imaging in medicine [15]. HSI technology
has been used in patient information acquisition, medical image
analysis, and disease diagnosis [16,17]. HSI is expected to
promote the management of patient health. Notably, numerous
innovative heart failure prediction models have been developed
using common clinical indicators and advanced machine
learning techniques [18-23]. These studies primarily focused
on the prognosis of heart failure or enhanced existing diagnostic
modalities such as echocardiography [24-26]. There exists a
significant need for the development of noninvasive, easily
accessible diagnostic tools specifically targeting HFpEF, which
is a subtype of heart failure characterized by subtle clinical
manifestations and complex pathophysiology.

In this study, we collected HSI information of the oral
environment, and multiple algorithms were used to select the
most characteristic spectral bands of individuals with HFpEF.
The best model was selected for internal and external testing,
and we used the Shapley Additive Explanations (SHAP) model
to additively interpret the best model. The digital HSI HFpEF
diagnostic model constructed in this study can help with early
detection and management of individuals with HFpEF.

Methods

Study Populations
We included 196 patients who visited Renmin Hospital Wuhan
University from April 2023 to August 2023; they comprised
the training group and internal testing groups. We included 53
patients who visited Yichang Central People’s Hospital from
August 2024 to September 2024 as the external testing group
(Figure 1). For all participants, HSI and clinical information
were collected, and routine tests were conducted. Participants
were selected according to the inclusion and exclusion criteria.
HFpEF was diagnosed using international standards [4],
including (1) typical signs and symptoms of heart failure; (2)
left ventricular ejection fraction ≥50%, as assessed by
echocardiography performed by a proficient physician; and (3)
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brain natriuretic peptide >35 ng/L or amino-terminal pro-brain
natriuretic peptide >125 ng/L. In addition to these criteria,
participants also had to have at least left ventricular hypertrophy
or left atrial enlargement with abnormal diastolic function.
Individuals were excluded for any of the following reasons:
previous cosmetic surgery and facial aesthetics, severe hepatic
or renal organ insufficiency, mental or legal incapacity,
malignancy-related diseases, other diseases such as psychiatric
or neurological disorders, and unable to complete the study

activities. Participants were consecutively included in the
training and internal testing groups (140 of 196 participants)
before randomization using a ratio of 3:1, while participants in
the external testing group (35 of 53 participants) were also
consecutively included [19]. The manuscript was written in
strict accordance with the Guidelines for Developing and
Reporting Machine Learning Predictive Models in Biomedical
Research [20,21].

Figure 1. Study protocol. AI: artificial intelligence; HFpEF: heart failure with preserved ejection fraction; HSI: hyperspectral imaging; SHAP: Shapley
Additive Explanations.

Ethical Considerations
All participants were informed about the study and signed an
informed consent document. The study protocol was reviewed
and approved by the Ethics Committee of Renmin Hospital of
Wuhan University (number WDRM2023-K174) and Yichang
Central People’s Hospital (number 2024-216-01).

HSI Collection
We prepared a room with good light avoidance conditions and
created a dark environment using curtains, blackboards, and
other items to avoid external light interference as much as

possible to ensure that all participants were in the same light
environment for image acquisition. A halogen lamp was chosen
as the only light source. The participant’s head and face were
fixed to ensure that there were no accessories nor hair to obscure
facial features. The distance between the HSI camera and the
participants was maintained to ensure that the size of the facial
features was in the same area of each spectral image and that
all participants had the same image size and clarity. We asked
participants to expose their tongues for HSI acquisition (Figure
2A). Each participant was provided with a single hyperspectral
photomicrograph, and only 1 oral spectral image meeting the
criteria was captured.
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Figure 2. (A) Hyperspectral imaging (HSI) acquisition environment, (B) processing of a spectral image for a control participant, (C) processing of a
spectral image for a participant with heart failure with preserved ejection fraction (HFpEF), (D) processing of a texture image for a control participant,
(E) processing of a texture image for a participant with HFpEF, (F) representative HSI and echocardiogram of a control participant, and (G) representative
HSI and echocardiogram of a participant with HFpEF.

An HSI camera (MQ0220HG-IM-SM4X4-VIS; XIMEA)
captured 25 spectral bands in the 665 nm to 960 nm spectral
range. The camera has a pixel resolution of 644 × 484 (black
and white) or 640 × 480 (color), pixel size of 7.4 × 7.4 µm,
active area size of 4.8 × 3.6 mm, sensor diagonal of 5.9 mm,
and dynamic range of 60 dB. The camera has an exposure time
of 54 µs to 1 s with a step of 7.56 µs, with a capture time less
than 1 s per image (Figure 2A). We checked image quality after

image capture to ensure that all images had the same luminance,
were in sharp focus, and were of good quality.

HSI Analysis
We preprocessed the obtained images [22,23]. HSI
preprocessing methods are of great importance in HSI analysis.
Effective preprocessing methods can minimize or even eliminate
the influence of extraneous information (eg, sample background,
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electrical noise, stray light). We first checked the image quality
of all oral images, and when poor image quality was found, the
participant’s oral images were taken repeatedly in the same
environment to ensure that the images could be qualified and
used for further analysis. We preprocessed the images using the
median filtering method to reduce any noise. HSI was
preprocessed using a normalized method to reduce redundant
information from the original bands and improve the precision
of the HSI [27].

All images were edited using image analysis software (ENVI
[Environment for Visualizing Images], version 5.3; NV5
Geospatial Solutions Inc). Backgrounds and clothing were
cropped out, and the tongue images were retained. The spectral
data of the features were initially extracted from the cropped
images to obtain the mean and SD for each spectral photograph.
Each spectral image was capable of extracting information for
25 spectral bands. Subsequently, texture analysis was conducted
on the image, resulting in the generation of 8 texture features
based on the mean and SD values for each band. For each
participant, their spectral image could be obtained with 50
original band values and 400 band texture values.

Machine Learning Methods
In order to find the most suitable algorithm for the model, we
used as many of the currently known machine learning
algorithms as possible, resulting in a total of 28 machine learning
algorithms. The single algorithms included linear models, such
as linear regression, logistic regression, least absolute shrinkage
and selection operator (LASSO) regression, ridge regression,
and ElasticNet regression. Other types of single algorithms were
also used such as decision tree algorithms, neural network
algorithms, and support vector machine (SVM) algorithms. The
ensemble models included both a boosting algorithm and
bagging algorithm; the boosting algorithms included XGBoost
algorithms, and the bagging models included random forest
algorithms. For probabilistic models, we used Bayesian
algorithms, Bernoulli naïve Bayes algorithms, and Gaussian
naïve Bayes algorithms.

We performed 5-fold cross-validation in the training group,
which was randomly divided into 5 subsets, each with the same
sample size. The model was constructed using 4 subsets, and
the model performance was assessed using the remaining data.
Next, the model was constructed with another combination of
the 4 subsets, and the model performance was assessed using
the remaining data. The 5 cycles were performed in sequence,
and the results obtained for the model performances were
summarized. After constructing the model in the training group,
model performance was evaluated in the testing group. We
evaluated the importance of features using a random forest
variable importance ranking method, where the importance of
a feature is typically measured by calculating how often the
feature is used in a decision tree: the more often a feature is
used in the decision tree or the more it contributes to dividing
the data, the higher its importance score. The results of all the
decision trees’ assessments of feature importance were
summarized to obtain an importance score for each feature in
the entire random forest model. Each machine learning model
was constructed by incorporating these rankings until the

performance of the model could not be improved; the
incorporation of features was then stopped, enabling the
construction of the model [28].

Evaluation of Model Performance
Based on the previously mentioned diagnostic criteria for
HFpEF, we categorized all participants using a bivariate
category. During the model construction process, we evaluated
the ability of each model to be able to distinguish between
participants with HFpEF and control participants. We evaluated
the performance of each model by comparing the ability of the
model to accurately identify participants with HFpEF. We
assessed the performance of all algorithms; the accuracy,
sensitivity, specificity, F1-score, positive predictive value (PPV),
and negative predictive value (NPV) of each algorithm were
calculated separately. The results are presented in a table.
Receiver operating characteristic (ROC) curves of the 5 best
performing models for the internal testing and external testing
groups were drawn, and the area under the ROC curve (AUC)
was calculated. Decision curve analysis (DCA) of the 5 best
performing models was implemented to assess the clinical
usefulness of the models. Calibration curves of the 5 best
performing models were plotted to assess the calibration.

SHAP Model Interpretation
We used the SHAP model to explain the best machine learning
algorithm [29]. SHAP is a method of interpreting the output of
a machine learning model and assigns weights to the optimal
indexes using the Shapley values derived from the analysis; we
used it to quantify the contribution of different features to the
predicted values [30]. The SHAP value allows visual
identification of the impact of different features on the model
prediction results. In addition, the SHAP value explains the
prediction results for each individual in the training group,
helping to understand why the model made a particular
prediction. It is also possible to perform an aggregated global
interpretation of Shapley values for multiple data points in order
to provide a total interpretation of the model and to demonstrate
the interconnections between different features. SHAP analysis
was implemented using Python software, and the results are
presented using visualization methods. We first demonstrated
the contribution of the bands selected by the best model and
ranking by the contribution of different features. We then ranked
the contribution of each individual in the study to the model
and showed the SHAP analysis results for 1 participant with
HFpEF and 1 control participant using intuitive visualization
methods to reveal the contribution of different features.

Statistical Analysis
The data in this study were analyzed using SPSS 23.0 (IBM
Corp). Model construction and graphic drawing were completed
using R version 3.6.1 (R Foundation for Statistical Computing).
We used the Shapiro-Wilk normality test to check the
distribution of the data. A 1-way ANOVA was used to compare
continuous variables that had a normal distribution, and the
results are shown as mean (SD). The Kruskal-Wallis H test was
used to compare continuous variables with nonnormal
distributions, and the results are shown as median (IQR). The
Fisher exact test was used to compare categorical data, and the
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results are reported as counts and percentages. P<.05 was
considered statistically significant.

Results

Study Population
Individuals who visited Renmin Hospital of Wuhan University
from April 2023 to July 2023 were enrolled. A total of 196
participants were included in this study after excluding
individuals who did not meet the inclusion criteria, had
incomplete baseline data, did not cooperate with spectral
acquisition, or had poor image quality. Data were collected for
a total of 140 participants in the training and testing groups

(Figure 1). Individuals who visited Yichang Central People’s
Hospital from August 2024 to September 2024 were also
enrolled. A total of 53 participants were included in this study
after excluding individuals who did not meet the inclusion
criteria, had incomplete baseline data, did not cooperate with
spectral acquisition, or had poor image quality. Data were
collected for a total of 35 patients in the external testing groups
(Figure 1). The participants were divided into training (n=105),
internal testing (n=35), and external testing (n=35) groups. The
baseline information, which included basic information, previous
medical history, and basic examination and test results, for the
training and testing groups was compared (Table 1). There were
no significant differences in the baseline data between the
training, internal testing, and external testing groups.
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Table 1. Participants’ baseline characteristics.

P valueExternal testing group (n=35)Internal testing group (n=35)Training group (n=105)Characteristic

.2059 (15)64 (11)62 (11)Age (years), mean (SD)

.11Sex, n (%)

24 (68.6)28 (80)64 (61)Male

11 (31.4)7 (20)41 (39.1)Female

.32Current smoker, n (%)

15 (42.9)18 (51.4)39 (37.1)No

20 (57.1)17 (48.6)66 (62.9)Yes

.94Current drinker, n (%)

9 (25.7)8 (22.9)24 (22.9)No

26 (74.3)27 (77.1)81 (77.1)Yes

.35Hypertension

14 (40)20 (57.1)53 (50.5)No

21 (60)15 (42.9)52 (49.5)Yes

.61Diabetes

6 (17.1)9 (25.7)26 (24.8)No

29 (82.9)26 (74.3)79 (75.2)Yes

.221.75 (1.33-2.49)1.62 (0.75-2.34)1.34 (0.59-2.49)CK-MBa (ng/mL), median (IQR)

.182.05 (0.31-2.76)1.92 (0.78-4.08)1.45 (0.06-2.90)Cardiac troponin I (ng/mL), median
(IQR)

.141.68 (1.29-2.20)1.57 (1.23-2.01)1.43 (1.10-1.87)TGb (mmol/L), median (IQR)

.853.57 (1.04)3.59 (1.17)3.68 (1.17)TCc (mmol/L), mean (SD)

.081.67 (1.25-2.10)1.20 (0.92-1.66)1.30 (1.06-2.00)HDL-Cd (mmol/L), median (IQR)

.0522.58 (1.80-3.27)2.11 (1.53-2.34)2.21 (1.46-2.70)LDL-Ce (mmol/L), median (IQR)

.341.77 (1.20-2.46)1.78 (1.09-2.71)1.97 (1.32-3.02)TSHf (μIU/mL), median (IQR)

.623.30 (3.09-3.54)3.17 (2.72-3.58)3.25 (2.96-3.58)FT3g (pg/mL), median (IQR)

.481.19 (1.08-1.29)1.23 (1.07-1.37)1.19 (1.04-1.34)FT4h (ng/dL), median (IQR)

.4724.7 (22.1-26.8)25.4 (23.7-27.5)24.6 (22.6-26.7)BMI (kg/m2), median (IQR)

.2386 (52-114)153 (74-271)95 (60-375)NT-proBNPi (pg/mL), median
(IQR)

.69HFpEFj, n (%)

27 (77.1)24 (68.6)74 (70.5)No

8 (22.9)11 (31.4)31 (29.5)Yes

.3836.0 (33.0-39.0)36.0 (31.5-39.0)37.0 (34.0-41.0)LADk (mm), median (IQR)

.2435.0 (33.5-38.0)34.0 (31.5-36.5)35.0 (33.0-38.0)RADl (mm), median (IQR)

.0756.0 (51.0-58.0)58.0 (52.0-60.0)55.0 (51.3-60.0)LVEFm (%), median (IQR)

.2549.0 (45.0-51.5)48.0 (45.5-50.0)49.0 (46.0-52.0)LVDDn (mm), median (IQR)

.2610.2 (7.9-14.2)11.6 (9.5-16.3)10.7 (8.3-15.3)E/e′ ratio, median (IQR)

aCK-MB: creatine kinase-MB.
bTG: triglyceride.
cTC: total cholesterol.
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dHDL-c: high-density lipoprotein cholesterol.
eLDL-c: low density lipoprotein cholesterol.
fTSH: thyroid-stimulating hormone.
gFT3: free triiodothyronine.
hFT4: free thyroxine.
iNT-proBNP: amino-terminal pro-brain natriuretic peptide.
jHFpEF: heart failure with preserved ejection fraction.
kLAD: left atrium diameter.
lRAD: right atrium diameter.
mLVEF: left ventricular ejection fraction.
nLVDD: left ventricular end diastolic diameter.

Image Processing and Machine Learning Algorithm
Comparison
HSI data were collected for the training, internal testing, and
external testing groups. Poor image quality for 4 participants
in the training group, 1 participant in the internal testing group,
and 2 participants in the external testing group made analysis
difficult. Therefore, we acquired oral HSI in the same
environmental conditions for those participants again and used
those images for the next analysis after ensuring that the image
quality met the standards. After preprocessing the images,
spectral values and texture values of the images were extracted.
We present the characteristic tongue HSI and echocardiography
images of control participants and participants with HFpEF in
Figures 2B-2G. We used 28 algorithms to filter the characteristic
spectral bands of images from participants with HFpEF. We

used 5-fold cross-validation in the training group, and the model
performance was evaluated in the testing group. The accuracy,
F1-score, PPV, NPV, sensitivity, specificity, and AUC of the
different algorithms were calculated separately, and the results
for the 28 algorithms are listed in Table S1 in Multimedia
Appendix 1. Among all the models constructed, the Tweedie,
SVM, partial least squares, Huber, and random forest algorithms
were the top 5 in terms of performance, showing good ability
to identify participants with HFpEF. The ROC curves (Figure
3A), calibration curves (Figure 3B), and DCA (Figure 3C) of
the top 5 algorithms were plotted, and the AUCs were calculated
(Table S1 in Multimedia Appendix 1). The AUCs in the internal
testing group were 0.884 (95% CI 0.769-1.000) for random
forest, 0.795 (95% CI 0.633-0.958) for Tweedie, 0.814 (95%
CI 0.657-0.972) for SVM, 0.803 (95% CI 0.659-0.947) for
Huber, and 0.799 (95% CI 0.640-0.959) for partial least squares.

Figure 3. (A) Receiver operating characteristic (ROC) curve, (B) calibration curve, and (C) decision curve analysis (DCA) for the internal testing group
and (D) ROC curve, (E) calibration curve, and (F) DCA for the external testing group.
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External Validation of the Top 5 Algorithms
The HSI collected in the external testing group were
preprocessed in the same way, and the spectral values and
texture values were extracted and analyzed. We used the top 5
best performance models in the internal testing group to analyze
the external testing data. The accuracy, F1-score, PPV, NPV,
sensitivity, specificity, and AUC of the different algorithms
were also calculated separately, and the results for the 5
algorithms are listed in Table S2 in Multimedia Appendix 1.
The random forest algorithm still had the best model
performance among the 5 algorithms. The ROC curves (Figure
3D), calibration curves (Figure 3E), and DCA (Figure 3F) of
the 5 algorithms were plotted, and the AUCs were calculated
(Table S2 in Multimedia Appendix 1). The AUCs in the external
testing group were 0.812 (95% CI 0.633-0.992) for random
forest, 0.676 (95% CI 0.438-0.914) for Tweedie, 0.792 (95%
CI 0.632-0.951) for SVM, 0.634 (95% CI 0.428-0.841) for
Huber, and 0.671 (95% CI 0.428-0.915) for partial least squares.
We extracted the features selected by random forest for further
interpretation.

SHAP Interpretation of the Best Algorithms
We used the SHAP model for additive interpretation. The
Shapley value was calculated to assign the benefit each
characteristic brings to the overall model, showing the
contribution of each characteristic to the model’s predicted
results. We present the characteristics of the top 5 best

performing models in order of their contribution to the overall
models in Table S3 in Multimedia Appendix 1. The summary
plot (Figure 4A) shows the feature importance ranking and
distribution via the Shapley value of each spectral band, where
the blue bar indicates that the eigenvalue positively affected the
model and the red bar indicates that the eigenvalue negatively
affected the model. The Shapley value represents the magnitude
of each feature’s impact on the predicted results, with the point
farthest from the centerline indicating a greater influence on the
model output. The SHAP feature importance map ranks each
characteristic by their contribution (Figure 4B), with features
at the top having a greater impact on the model output and those
near the bottom having a lesser total impact. SHAP waterfall
plots and SHAP bar charts (Figure 4C-4F) were used to visualize
the Shapley values of individual samples and their individual
results. We visualized the model’s ability to recognize HFpEF
using a waterfall plot (Figure 4C) and bar chart (Figure 4E) for
a control participant and a waterfall plot (Figure 4D) and bar
chart (Figure 4F) for a participant with HFpEF. In the waterfall
plot, the contribution of each feature is represented by a bar.
The length of the bar indicates the magnitude of the feature’s
influence on the predicted value. A blue bar indicates that the
feature increased the predicted value, and a red bar indicates
that the feature decreased the predicted value. There was an
intuitive difference between the SHAP results for control
participants and those for participants with HFpEF. The HFpEF
diagnostic model constructed in this study was able to
distinguish control participants from participants with HFpEF.
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Figure 4. Shapley Additive Explanations (SHAP) of the best algorithm: (A) summary plot, (B) feature importance map, (C) waterfall plot for a control
participant, (D) waterfall plot for a participant with heart failure with preserved ejection fraction (HFpEF), (E) bar chart for a control participant, (F)
bar chart for a participant with HFpEF.

Discussion

Principal Findings
In this study, we innovatively used HSI to acquire oral images
of control participants and participants with HFpEF, extracted
the spectral and textural information of the HSI, and
characterized the HSI using a variety of machine learning
algorithms. The optimal algorithm was selected for the
construction of the HFpEF diagnostic model, the model
performance was validated in the internal and external testing

groups, and the SHAP model was used for additive
interpretation.

Digital health care is the future of medicine, introducing
considerable convenience to the management of people’s health
[31]. As artificial intelligence and machine learning continue
to advance, enabling automated interpretation and classification
of HSI will allow researchers to focus more on deep analysis
and decision-making [32]. A large amount of data redundancy
is present for HSI data, and traditional image data processing
methods struggle to meet processing and analyzing needs;
therefore, we generated a series of feature extraction and
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classification methods for spectral information. The use of
multiple artificial intelligence algorithms helps to identify the
characteristic bands and textures in large amounts of HSI
information [33]. The use of artificial intelligence and machine
learning can increase the interpretability of HSI data [34]. To
select the most suitable machine learning algorithms for oral
spectral images of individuals with HFpEF, we incorporated as
many of the current mainstream machine learning models as
possible [22]. We analyzed the obtained HSI using 28 machine
learning algorithms and filtered the top 5 algorithms for external
testing. The random forest algorithm showed good prediction
performance in both the internal and external testing groups, so
we used the spectral features screened by the random forest
algorithm for further analysis. We also performed subgroup
analysis based on age and gender in both internal and external
testing groups, and the random forest algorithm showed good
performance (Figure S1 in Multimedia Appendix 1). Although
studies have investigated the use of artificial intelligence for
HFpEF diagnosis [19,35,36], these studies primarily focused
on constructing echocardiography-based diagnostic models for
HFpEF. However, the reliance on specialty physicians to
interpret echocardiography exams hinders the early identification
of individuals with HFpEF [37]. Moreover, considering the
existing diagnostic challenges and limited availability of imaging
data during the initial stages of HFpEF, attention should be
directed toward noninvasive imaging techniques for diagnosis
and management. Therefore, it is imperative to integrate
machine learning approaches to develop predictive models for
early screening. In our study, we identified spectral bands and
textural features that exhibit a close association with the
pathophysiological changes observed in HFpEF. This condition
is characterized by microvascular dysfunction, inflammation,
and oxidative stress leading to alterations in optical properties
of oral tissues [3]. HSI effectively captures these subtle changes
by detecting variations in light absorption and scattering at
different wavelengths. Our model significantly contributes to
identifying HFpEF at an early stage, enabling clinicians to
promptly initiate appropriate therapies while potentially slowing
down disease progression and improving patient health care.

To effectively integrate our diagnostic model into existing health
care management for HFpEF, we used an additive interpretation
of this digital diagnostic model using the SHAP model. This
allowed us to evaluate the contribution of each feature to the
prediction, quantify the capability of these features to contribute
to the overall model, and demonstrate their impact on the final
predictive and diagnostic performance [28]. The SHAP model
allows each parameter to be analyzed individually, which can
be useful in understanding the decisions made by the model and
to improve and rationalize the results of the model [38]. In the
macrointerpretation of the SHAP model, the ranking of the
contribution of the 25 features screened by random forest to the
overall model and the ability of each feature to explain the
overall model performance can be clearly seen. In the
microinterpretation of the SHAP model, we show the SHAP
values for each feature during model evaluation separately for
control participants and participants with HFpEF. In the random
forest HFpEF diagnostic model, there was a relatively
straightforward difference between control participants and
participants with HFpEF. The SHAP model demonstrates more
intuitively the discriminatory power of the random forest
algorithm for participants with HFpEF. Hence, through the
provision of intelligent diagnoses, our model effectively bridges
the gap between health care professionals and patients, thereby
addressing the prevalent issue of frequent misdiagnosis or
underdiagnosis and ultimately enhancing the overall quality of
care. Furthermore, users can independently access data about
oral characteristics at home and transmit the data to health care
professionals for expert evaluation through a smartphone app,
facilitating continuous monitoring of cardiac health [39]. In
addition, in underserved remote areas with limited medical
resources, this portable device can be used by mobile medical
teams to offer diagnostic screening services to local residents
[40], thereby enhancing public health in these regions. Precision
medicine and personalized health care represent the future of
medical development [41], and our research can also contribute
to formulating individualized treatment plans whereby the
medical team can gain comprehensive insights into the patient’s
condition through remotely collected digital data (Figure 5).

J Med Internet Res 2025 | vol. 27 | e67256 | p. 11https://www.jmir.org/2025/1/e67256
(page number not for citation purposes)

Yang et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 5. Future application scenarios. HFpEF: heart failure with preserved ejection fraction; HSI: hyperspectral imaging.

Limitations
First, in this study, model construction and internal testing were
conducted in only 1 center, and external testing was conducted
in 1 center. Further improvement of the model for the diagnosis
of HFpEF should be conducted in multiple centers. Second, this
study used multiple algorithms to select the characteristic
hyperspectral bands; however, we did not identify images using
deep learning algorithms, which could be used for direct image
analysis for HFpEF diagnosis. Third, although we used some
means to reduce data redundancy and overfitting, these may
still exist. Fourth, different demographic information may affect
the results. In future model optimization studies, the applicability
of the model in different subgroups and including easily
accessible clinical information should be considered. The

promotion of HSI technology in HFpEF diagnosis has
prospective, broader clinical applications that need to be further
explored and developed.

Conclusion
This study demonstrates the innovative use of HSI technology
to capture oral images and machine learning algorithms to
construct a digital model to diagnose HFpEF. This technology
was validated to have excellent performance in both internal
and external testing groups. This study offers novel insights
into the development of portable devices for rapid identification
of HFpEF, thereby facilitating the advancement of digital
diagnosis and treatment approaches for HFpEF and ultimately
leading to improved patient outcomes and reduced health care
costs.
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