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Abstract

Background: The pursuit of sleep quality has become an important aspect of people’s global quest for overall health. However,
the objective neurobiological features corresponding to subjective perceptions of sleep quality remain poorly understood. Although
previous studies have investigated the relationship between electroencephalogram (EEG) and sleep, the lack of longitudinal
follow-up studies raises doubts about the reproducibility of their findings.

Objective: Currently, there is a gap in research regarding the stable associations between EEG data and sleep quality assessed
through multiple data collection sessions, which could help identify potential neurobiological targets related to sleep quality.

Methods: In this study, we used a portable EEG device to collect resting-state prefrontal cortex EEG data over a 3-month
follow-up period from 42 participants (27 in the first month, 25 in the second month, and 40 in the third month). Each month,
participants’ sleep quality was assessed using the Pittsburgh Sleep Quality Index (PSQI) to estimate their recent sleep quality.

Results: We found that there is a significant and consistent positive correlation between low α band activity in the prefrontal
cortex and PSQI scores (r=0.45, P<.001). More importantly, this correlation remained consistent across all 3-month follow-up
recordings (P<.05), regardless of whether we considered the same cohort or expanded the sample size. Furthermore, we discovered
that the periodic component of the low α band primarily contributed to this significant association with PSQI.

Conclusions: These findings represent the first identification of a stable and reliable neurobiological target related to sleep
quality through multiple follow-up sessions. Our results provide a solid foundation for future applications of portable EEG devices
in monitoring sleep quality and screening for sleep disorders in a broad population.

(J Med Internet Res 2025;27:e67188) doi: 10.2196/67188
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Introduction

Sleep is a fundamental behavior closely related to daily life,
and sleep quality plays a crucial role in human health [1-4].
Poor sleep quality often leads to various types of physical
ailments [5-7]. Previous studies have conducted systematic
research across different species (flies [8], rodents [9-14], cats
[15,16], nonhuman primates [17], and humans [18-21]) to
characterize the neural mechanisms across multiple stages of
sleep. However, there are still many challenges in translating
findings from animal experiments to humans, and sleep remains
a complex concept. Our understanding of the relationship
between sleep quality and the brain is still incomplete.

Electroencephalogram (EEG) is widely used in human studies
to investigate sleep-related issues [22-24]. Different types of
neural oscillations typically represent different stages of sleep
[10] and are applied in various research areas. However, sleep
quality is a subjective experience, and we hypothesize that this
subjective perception stems from the brain’s (eg, prefrontal
cortex) daily neural responses. If this hypothesis holds, then
under resting-state conditions, we should be able to identify
certain neurobiological characteristics in the brain that are
significantly associated with subjective sleep quality. Neural
oscillations [25,26] are prominent biological features in EEG
[27-31], such as α oscillations (8-13 Hz). Previous studies have
explored the association between various types of neural
oscillations and sleep quality [32-37]. However, much of the
current research progress relies on single-session data collection,
and there is a lack of follow-up studies. Hence, the stability of
these associations remains unclear.

Therefore, in this study, to test the above hypothesis, we used
a portable EEG device to collect resting-state EEG data (both
open-eye and closed-eye conditions) from participants while
also assessing their sleep quality (Pittsburgh Sleep Quality Index
[PSQI]). The study involved a 3-month follow-up, with a total
of 42 participants. In the first month, 27 people participated,
followed by 25 people in the second month, and 40 people in
the third month. A total of 22 participants completed all 3
sessions. We performed spectral analysis and correlation
analysis on the data and further explored the periodic and
aperiodic components of the spectra.

Methods

Participants
A total of 42 right-handed healthy individuals (19 females and
23 males; age: 34.9, SD 8.0 years) were recruited for this study,
who were mainly from nearby communities through posters
posted on the publicity walls. The sample size was calculated
by G*Power software (Heinrich-Heine-Universität Düsseldorf),
the sample size is calculated with 28 (given effect size of 0.65,
α of 0.05, and β of 0.05 in the difference between means
[matched pairs in eyes-open and eyes-closed state]). Hence, on

average, we recruited around 30 participants each month. In the
first month, 27 people participated, followed by 25 people in
the second month, and 40 people in the third month. A total of
22 participants participated in all 3 months, 24 people
participated in months 1 and 2, 25 people participated in months
1 and 3, and 23 people participated in months 2 and 3.

Ethical Considerations
Informed consent was obtained from all participants. All
procedures were performed according to the National Institutes
of Health Guidelines, and the research protocol was approved
by the Shenzhen Institute of Advanced Science and Technology,
Chinese Academy of Science (SIAT-IRB-240915-H0913). The
study data are anonymous. The participant compensation is
calculated based on the duration of the experiment (US $14.1
per hour) each month. The timer starts when the participant
begins preparation for the experiment and stops when the
experiment ends (after EEG data collection and completion of
the PSQI questionnaire). The total duration of each experiment
is typically 15-20 minutes.

Neurophysiological Recording
Each month, resting-state EEG in both open-eye and closed-eye
states (counterbalanced order) was recorded (3 minutes each)
using a 2-electrode (FP1 and FP2) setup (Brain Pro, Shenzhen
Shuimu AI Technology Co Ltd, China). During the recording,
the reference electrode was set at the earlobe, and real-time
filtering was implemented with a bandpass filter with cutoff
frequencies of 0.5 and 30 Hz. EEG data are wirelessly
transmitted to a computer via Bluetooth. Each participant
collected data in the morning, usually 2-3 hours after waking
up. The sampling rate was 512 Hz and the scalp impedance was
maintained below 10 kΩ for the electrode. Eye-blink artifacts
were removed with unsupervised machine-learning algorithms
[38].

Estimation of Sleep Quality
The PSQI [39] was used to evaluate the participants’ sleep
quality after monthly EEG recordings. The evaluation included
several indicators: sleep quality, time to fall asleep, sleep
duration, sleep disorders, daytime dysfunction, and total sleep
score. Each factor is scored in 4 levels based on a score of 0-3.
The cumulative score for each factor was summed to yield the
PSQI total score (0-21 points), with a higher total score
indicating poorer sleep quality.

Power Spectrum Analysis
The power spectrum of the EEG response was estimated using
the multitaper method [40,41] (time-bandwidth product, 3;
tapers, 5; Chronux toolbox, which was implemented using
custom software written in MATLAB. Similar methods have
been used in several studies in the field of biomedical science
(eg, biological science [42-45], medical science [28,30], and
public health [46-50]). Relative power can be defined as
Equation 1 (Figure 1C).
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Figure 1. Three-month follow-up electroencephalogram recording using portable device. (A) Averaged power spectrum in FP1 during months 1, 2,
and 3 under both open-eye and closed-eye states. (B) Pairwise comparison of relative α power in FP1 between open-eye and closed-eye states in months
1, 2, and 3, with *** indicating P<.001. (C) Comparison of relative α power in FP1 between months 1, 2, and 3 in open-eye and closed-eye states,
respectively. (D) Averaged power spectrum in FP2 during months 1, 2, and 3 under both open-eye and closed-eye states. (E) Pairwise comparison of
relative α power in FP2 between open-eye and closed-eye states in months 1, 2, and 3, with *** indicating P<.001. (F) Comparison of relative α power
in FP2 between months 1, 2, and 3 in open-eye and closed-eye states, respectively.

(1)

Descriptive Model for Dissecting Aperiodic and
Periodic Activity
The power spectrum was considered as the sum of 2
components: aperiodic and periodic components. Aperiodic
activity in the power spectrum refers to the frequency
components of brain activity that do not follow a regular
periodic or oscillatory pattern. It does not have a clear, repeating
waveform or regular frequency. This activity is typically more
broadband and can be described by a continuous distribution
of power across a range of frequencies. Periodic activity in the
power spectrum refers to frequency components of brain signals

that exhibit a regular, repetitive oscillatory pattern over time.
These oscillations have specific, identifiable peaks in the power
spectrum at distinct frequencies. The aperiodic component of
the power spectrum was extracted using a 1/f-like function
(Equation 2), where a, b, c, and d represent the model parameters
to be estimated. The periodic component was defined as the
residual obtained by subtracting the aperiodic component from
the raw power spectrum. This method has been used in the
characterization of γ-band and α-band activities [51-53].

Statistical Analysis
In Figures 1B and 1E, a pairwise t test was examined to test the
differences in relative α power between open-eye and closed-eye
states in 3 months respectively. Similarly, in Figure 2C, a
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pairwise t test was used to test the differences in relative α
power associated with aperiodic activity between these states
over the same time period. In Figure 2D, a pairwise t test was
used to evaluate the differences in relative α power related to
periodic activity between open-eye and closed-eye states in 3
months respectively. In Figures 1C and 1F, a t test with
Bonferroni correction was used to compare the differences in
relative α power among 3 months for both open-eye and
closed-eye states. Additionally, in Figures 3A and 3B and

Figures 4A and 4B, Pearson correlation analysis was conducted
to measure the relationship between relative power at each
frequency and the PSQI. Figures 3C-E and 4C-E display Pearson
correlations between PSQI and relative power in low α (LA,
7-8.5 Hz), medium α (MA, 9-10.5 Hz), and high α (HA, 11-13
Hz) bands, respectively. Figures 5 and 6 illustrate the Pearson
correlation between PSQI and relative power in aperiodic and
periodic activity across the LA, MA, and HA bands,
respectively.

Figure 2. Dissection of aperiodic and periodic activity. (A) Averaged raw power spectrum showing aperiodic activities in both open-eye and closed-eye
states over a 3-month period. (B) Averaged periodic activities in both open-eye and closed-eye states over a 3-month period. (C) Pairwise comparisons
of relative α power in aperiodic activity between open-eye and closed-eye states in months 1, 2, and 3. (D) Pairwise comparisons of relative α power
in periodic activity between open-eye and closed-eye states in months 1, 2, and 3, with *** indicating P<.001.
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Figure 3. Relationship between PSQI and strength of sub-α oscillations for all participants. (A) Correlation between PSQI and relative power in
difference frequencies under open-eye and closed-eye states over 3 months for all participants. The dot indicates significance at P<.05. (B) Averaged
3-month correlation between PSQI and relative power in difference frequencies under open-eye and closed-eye states. The dot indicates significance
at P<.05. (C) Scatter plot showing the relationship between low α power in both open-eye and closed-eye states and PSQI for all participants in months
1, 2, and 3. (D) Scatter plot showing the relationship between medium α power in both open-eye and closed-eye states and PSQI for all participants in
months 1, 2, and 3. (E) Scatter plot showing the relationship between high α power in both open-eye and closed-eye states and PSQI for all participants
in months 1, 2, and 3. PSQI: Pittsburgh Sleep Quality Index.
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Figure 4. Relationship between PSQI and strength of sub-α oscillations for participants who participated in the all 3-time experiment. (A) Correlation
between PSQI and relative power in difference frequencies in open-eye and closed-eye states in 3 months for participants who participated in the all
3-time experiment. The dot indicates significance at P<.05. (B) Averaged 3-month correlation between PSQI and relative power in difference frequencies
in open-eye and closed-eye states. The dot indicates significance at P<.05. (C) Scatter plot showing the relationship between low α power in both
open-eye and closed-eye states and PSQI for participants who participated in all 3-time experiments in months 1, 2, and 3. (D) Scatter plot showing the
relationship between medium α power in both open-eye and closed-eye states and PSQI for participants who participated in all 3-time experiments in
months 1, 2, and 3. (E) Scatter plot showing the relationship between high α power in both open-eye and closed-eye states and PSQI for participants
who participated in all 3-time experiments in months 1, 2, and 3. PSQI: Pittsburgh Sleep Quality Index.
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Figure 5. Relationship between PSQI and strength of sub-α power in aperiodic and periodic activity for all participants. (A) Scatter plot showing the
relationship between low α power of aperiodic and periodic activity in the open-eye state and PSQI for all participants in months 1, 2, and 3. (B) Scatter
plot showing the relationship between low α power of aperiodic and periodic activity in the closed-eye state and PSQI for all participants in months 1,
2, and 3. (C) Scatter plot showing the relationship between medium α power of aperiodic and periodic activity in open-eye and closed-eye states and
PSQI for all participants in months 1, 2, and 3. (D) Scatter plot showing the relationship between high α power of aperiodic and periodic activity in
open-eye and closed-eye states and PSQI for all participants in months 1, 2, and 3. PSQI: Pittsburgh Sleep Quality Index.
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Figure 6. Relationship between PSQI and strength of sub-α power in aperiodic and periodic activity for participants who participated in the all 3-time
experiment. (A) Scatter plot showing the relationship between low α power of aperiodic and periodic activity in the open-eye state and PSQI for
participants who participated in all 3-time experiments in months 1, 2, and 3. (B) Scatter plot showing the relationship between low α power of aperiodic
and periodic activity in closed-eye states and PSQI for participants who participated in all 3-time experiments in months 1, 2, and 3. (C) Scatter plot
showing the relationship between medium α power of aperiodic and periodic activity in open-eye and closed-eye states and PSQI for participants who
participated in all 3-time experiments in months 1, 2, and 3. (D) Scatter plot showing the relationship between high α power of aperiodic and periodic
activity in open-eye and closed-eye states and PSQI for participants who participated in all 3-time experiments in months 1, 2, and 3. PSQI: Pittsburgh
Sleep Quality Index.
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Results

Overview
In this study, we aimed to explore the relationship between
different frequency components of portable EEG and sleep
quality, and whether a stable neurobiological feature strongly
associated with sleep quality can be found through portable
EEG. First, we collected a batch of portable EEG data from
participants in the first month and identified some features as
potential targets that are significantly correlated with sleep
quality. However, it cannot be determined whether this result
can be repeated and stable. Therefore, we collected 2 additional
batches of data in the second and third months, with 22
participants from the 2 follow-up periods also participating in
the first data collection. Through this, we verified that the
significant relationship between the target feature and sleep
quality can be repeated and stable. During these 3 months of
data collection, other participants also participated in the data
collection.

Stable Neural Recording Using Portable EEG Device
in 3 Months
Our data collection lasted for 3 months, with EEG data collected
once each month and the PSQI scale used to assess sleep quality.
Before conducting the correlation analysis, we needed to verify
the signal quality of the portable EEG device, which had 2
recording electrodes in the prefrontal region (FP1 and FP2).
We performed frequency analysis on the EEG data collected
each month (in both open-eye and closed-eye conditions), and
after averaging at the group level, we observed an obvious peak
around 10 Hz (FP1, Figure 1A; FP2, Figure 1D), representing
α oscillations. The spectral shapes were similar, and the α
oscillation intensity in the closed-eye condition was significantly
stronger than in the open-eye condition across all 3 months
(P<.001; FP1, Figure 1B; FP2, Figure 1E), which is consistent
with previous research [54-57]. The relative power in the α
band (8-13 Hz) showed no significant differences (P>.05)
between open-eye and closed-eye conditions over the 3 months
(FP1, Figure 1C; FP2, Figure 1F). Therefore, in subsequent
analyses, we will average the spectra of the 2 prefrontal
electrodes to represent the neural oscillatory activity in the
prefrontal region.

Low α-Band Activity Significant Correlated With Sleep
Quality
After ensuring the stability of the portable EEG signal
recordings, we first performed a correlation analysis between
relative power across different frequency bands (5-30 Hz) and
PSQI (Figure 3A, with the first month represented in blue, the
second in orange, and the third in yellow). Although significant
correlations appeared in multiple frequency bands each month
(as indicated by the solid-colored dots), one band consistently
showed a significant positive correlation across all 3 months,
specifically the LA band (around 7-8.5 Hz), both in open-eye
(Figure 3A left) and closed-eye (Figure 3A right) conditions.
When we averaged the correlation coefficients across the 3
months, this phenomenon became even more pronounced
(Figure 3B).

Based on previous studies [54,58,59], the traditional α band
(8-13 Hz) may contain several suboscillations, such as LA, MA,
and HA. In the subsequent analysis, we fixed 3 frequency bands
to correspond to LA (Figure 3C), MA (Figure 3D), and HA
(Figure 3E) to explore the relationship between the relative
energy of these α subbands and sleep quality. We found a
significant positive correlation between the relative power in
the LA band and PSQI, a result that did not appear in the MA
and HA bands. This significance was stronger in the closed-eye
condition (r=0.45, P<.001) than in the open-eye condition
(r=0.26, P=.01).

Since the number of participants varied each month, Figure 4
presents a generalized group-level result across a broad
population. However, 22 participants in our data set completed
all 3 experiments, allowing us to examine whether this LA
biomarker remains consistent within the same group. The results
from this consistent group (Figure 4) were also aligned with
those of the broader population. Our findings suggest that the
increase in the relative power within the LA band is significantly
correlated with a decline in sleep quality, a result that remained
consistent across multiple follow-ups in a broad population.

Periodic Activity in LA Band Contributes to the
Relationship Between
Furthermore, to more precisely characterize the different
components in the spectrum, we used a classic descriptive
mathematical model to decompose each participant’s spectral
data for each recording into periodic activity (Figure 2A) and
aperiodic activity (Figure 2B). After decomposition, we found
no significant differences in aperiodic activity between open-eye
and closed-eye conditions (Figure 2C); the differences were
primarily observed in the periodic activity (Figure 2D). These
comparisons remained consistent across the 3 months of
recordings (Figure 2A-D).

The next question we addressed was whether the significant
correlation between sleep quality and LA intensity shown in
the previous results was mainly contributed by the periodic or
aperiodic components (Figure 5). After the decomposition, we
plotted scatterplots to show the correlations between PSQI and
both periodic and aperiodic activities in the LA, MA, and HA
bands. We found that, in the LA band, periodic activity was
significantly correlated with PSQI (P<.01) in both open-eye
and closed-eye conditions, while aperiodic activity was not. In
the MA and HA bands, neither periodic nor aperiodic activities
were significantly correlated with PSQI (P>.05).

Additionally, the results from the consistent group of participants
(Figure 6) were aligned with those from the broader population
(Figure 5). Our findings suggest that the increase in periodic
activity in the LA band is significantly associated with a decline
in sleep quality, a result that remained consistent across multiple
follow-ups in a broad population.

Discussion

Principal Results
Rapid screening for cognitive functions, such as sleep quality,
requires identifying stable and reliable neurobiological targets.
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Additionally, for convenience, portable EEG devices are
essential for quick data collection. In this study, we explored
the relationship between the neurobiological characteristics of
portable EEG and sleep quality through multiple follow-ups for
the first time. We found that, at the group level, the relative
power in the LA band of the prefrontal region was significantly
positively correlated with recent sleep quality. More importantly,
this correlation remained consistent after several months of
continuous follow-up, regardless of whether we considered the
same population or an expanded cohort. Furthermore, through
detailed decomposition of the spectrum, we discovered that the
periodic components of the LA band primarily contributed to
this significant correlation. Our research lays a solid foundation
for using portable EEG for rapid screening of sleep-related
issues, bringing this technology into households everywhere in
the future.

Comparison With Prior Work
Sleep is a classic issue in the field of neuroscience [60-64].
During sleep, the EEG signals show specific patterns in different
stages. In the beginning, high-frequency (β, γ, and α),
low-voltage waves will gradually switch to higher voltage,
slower waves (θ and δ), which are the feature patterns of
nonrapid eye movement (NREM) sleep [18,20,65]. During
NREM sleep, stages 1, 2, and 3 are classified depending on the
EEG frequency and specific pattern. Spindles or bursting firing
of neurons were found shortly after falling asleep. During rapid
eye movement sleep, the EEG patterns were similar to those
during awake [18]. In rodent studies, compared with humans,
rats exhibit a more fragmented sleep pattern, with most research
primarily focusing on rapid eye movement and NREM sleep
stages [9,24]. During deep sleep, δ band activity often
predominates, while during light sleep, θ oscillations are more
prevalent. α activity typically appears in the resting state with
eyes closed before sleep or during drowsiness with eyes open
[66,67], which suggests that α oscillations themselves are a
prelude to the sleep phase. If there is an abnormal α oscillation
in the brain, it is likely to affect sleep [68,69], particularly during
the process of falling asleep. However, it remains unclear how
different sub-α oscillations are related to sleep quality, and this
is the basis of our research. Therefore, our study does not focus
on changes in neural oscillations during sleep but instead
examines whether resting-state EEG has oscillatory
characteristics that are significantly and consistently associated
with subjective sleep quality. One possible intervention for
improving sleep is yoga or meditation training, which has been
shown in previous studies to significantly enhance sleep quality
[70,71] and is also closely related to α oscillations [72]. Our
research further refines this relationship by finding that, among
various sub-α oscillations, LA band activity is significantly
negatively correlated with sleep quality at the group level, while
no such correlation was found with medium or HA band activity.
This result could also be applied to the field of neuromodulation
in the future. Improving sleep quality is a concern for many
people, and previous studies have found that techniques like
TACS can enhance sleep quality [65,73-75]. However, a
fundamental question is how to select the appropriate frequency
band for stimulation. Our research will provide important
insights in this regard.

Mechanisms of Suboscillations in α Band Activity
Our study focused primarily on the α frequency band, as it is
widely recognized in EEG research as a prominent biomarker
with strong underlying neurobiological mechanisms [76-79].
However, our analysis also included other frequency bands,
such as θ and β (Figures 3A and 4A). These bands, however,
did not show stable and consistent significant correlations with
sleep quality. Although the 8-13 Hz α oscillation band is narrow,
it includes various suboscillations. Some studies suggest that
these α suboscillations may have different origins [58,59] and
are associated with different cognitive functions [80,81], but
the finer neural mechanisms underlying these suboscillations
remain unclear. From a dynamical systems perspective [82],
the generation of different α suboscillations could be related to
the differing time constants of excitatory and inhibitory neurons
within the system, directly leading to frequency changes. This
implies that different α suboscillations may have hierarchical
relationships. It may also explain the discrepancies in previous
studies regarding the mechanisms of α oscillations. For instance,
some believe they originate subcortically (such as the pulvinar
thalamus [83-86]), while others argue for a cortical origin (such
as layer 5 of the cortex [87,88]). Our study used electrodes to
record from the prefrontal cortex, but due to the relatively low
spatial resolution of EEG, we cannot guarantee that the signal
originates solely from the prefrontal cortex. It could also come
from other brain regions or nuclei. Future studies will need to
design more experiments to verify the relationship between
different α suboscillations and various brain regions.

Potential Applications on Large-Scale Screening of
Sleep Disorders in the Population
Currently, compared with other methods for capturing brain
neural responses (functional magnetic resonance imaging,
functional near-infrared spectroscopy, magnetoencephalography,
and various invasive recording methods), functional magnetic
resonance imaging and magnetoencephalography are expensive
and have strict use conditions, while functional near-infrared
spectroscopy lacks good spatial and temporal resolution. The
most likely method to be widely applied in human communities
is portable EEG. Although it does not have good spatial
resolution, its temporal resolution and ability to reliably capture
electrical signals make it particularly effective. This is especially
true for the precise detection of α oscillations, which can be
correlated with cellular-level or local circuit level of α
oscillation mechanisms observed in animal experiments [89,90].
Just as we hoped for a rapid screening method to detect
COVID-19 infections during the pandemic [48,91], today, we
also desire a rapid screening tool for detecting cognitive function
abnormalities in large populations. The results from current
portable EEG research happen to meet this need, and our study
provides strong support for this approach. In the future, we will
design more experiments related to cognitive functions to fully
leverage the advantages of portable EEG.

Limitations
One limitation of this study is that it only explored the
relationship between the prefrontal region and sleep quality.
However, other brain regions may also be associated with sleep
quality. Due to the limited number of electrodes in the portable
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EEG system, we were unable to address this question in this
study. Therefore, in future experiments, we plan to develop
portable EEG systems with more electrodes to further investigate
this issue. Another issue is that there are various types of
artifacts in EEG data. Since we are using a portable EEG device,
efforts have been made to make it as portable as possible, which
resulted in a reduction in the number of electrodes used. The
device only has 2 electrodes, and therefore, the EEG data from
this device is not suitable for traditional artifact removal
methods, such as principal component analysis or independent
component analysis [92,93]. We acknowledge that there may
be potential muscle artifacts in the FP1 and FP2 channels, but
these artifacts primarily affect the β or γ frequency bands. Our
study, however, specifically avoids these controversial frequency
bands and focuses solely on the α band, which is safe and
uncontroversial. One more issue is that the source of EEG
signals has always been a topic of debate [94,95]. While we
observed this phenomenon in the prefrontal cortex, we cannot
currently determine whether it originates solely from the

prefrontal region without the involvement of other brain areas,
this question could potentially be addressed by combining
intracranial EEG with surface EEG for source localization. Last,
this study does not argue that abbreviated analyses should
replace more detailed methods universally, but rather that they
offer a viable alternative for certain types of studies, especially
those that prioritize efficiency. A deeper, more comprehensive
analysis of EEG data can yield valuable insights as well, the
trade-offs study between abbreviated and more comprehensive
EEG analysis methods should be further compared in the future.

Conclusions
These findings mark the first identification of a stable and
reliable neurobiological target—relative power in the LA band
during the closed-eye state—associated with sleep quality across
multiple follow-up sessions. Our results lay a robust foundation
for future applications of portable EEG devices in monitoring
sleep quality and screening for sleep disorders across diverse
populations.
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MA:  medium α
NREM: nonrapid eye movement
PSQI: Pittsburgh Sleep Quality Index
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