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Abstract

Background: Measurement-based care improves patient outcomes by using standardized scales, but its widespread adoption
is hindered by the lack of accessible and structured knowledge, particularly in unstructured Chinese medical literature. Extracting
scale-related knowledge entities from these texts is challenging due to limited annotated data. While large language models
(LLMs) show promise in named entity recognition (NER), specialized prompting strategies are needed to accurately recognize
medical scale-related entities, especially in low-resource settings.

Objective: This study aims to develop and evaluate MedScaleNER, a task-oriented prompt framework designed to optimize
LLM performance in recognizing medical scale-related entities from Chinese medical literature.

Methods: MedScaleNER incorporates demonstration retrieval within in-context learning, chain-of-thought prompting, and
self-verification strategies to improve performance. The framework dynamically retrieves optimal examples using a k-nearest
neighbors approach and decomposes the NER task into two subtasks: entity type identification and entity labeling. Self-verification
ensures the reliability of the final output. A dataset of manually annotated Chinese medical journal papers was constructed,
focusing on three key entity types: scale names, measurement concepts, and measurement items. Experiments were conducted
by varying the number of examples and the proportion of training data to evaluate performance in low-resource settings.
Additionally, MedScaleNER’s performance was compared with locally fine-tuned models.

Results: The CMedS-NER (Chinese Medical Scale Corpus for Named Entity Recognition) dataset, containing 720 papers with
27,499 manually annotated scale-related knowledge entities, was used for evaluation. Initial experiments identified GLM-4-0520
as the best-performing LLM among six tested models. When applied with GLM-4-0520, MedScaleNER significantly improved
NER performance for scale-related entities, achieving a macro F1-score of 59.64% in an exact string match with the full training
dataset. The highest performance was achieved with 20-shot demonstrations. Under low-resource scenarios (eg, 1% of the training
data), MedScaleNER outperformed all tested locally fine-tuned models. Ablation studies highlighted the importance of
demonstration retrieval and self-verification in improving model reliability. Error analysis revealed four main types of mistakes:
identification errors, type errors, boundary errors, and missing entities, indicating areas for further improvement.
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Conclusions: MedScaleNER advances the application of LLMs and prompts engineering for specialized NER tasks in Chinese
medical literature. By addressing the challenges of unstructured texts and limited annotated data, MedScaleNER’s adaptability
to various biomedical contexts supports more efficient and reliable knowledge extraction, contributing to broader measurement-based
care implementation and improved clinical and research outcomes.

(J Med Internet Res 2025;27:e67033) doi: 10.2196/67033
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Introduction

Measurement-based care (MBC), which involves the systematic
use of standardized scales to assess patient conditions, track
progress, and inform clinical decisions, has been shown to
enhance patient outcomes and optimize health care processes
[1]. Despite its significant benefits, MBC remains underused
worldwide, with less than 20% of health practitioners
incorporating it into their routine practice [2]. A primary barrier
is the lack of accessible and comprehensive knowledge about
these scales [3,4]. Clinicians are often unaware of which scales
are suitable for specific conditions and lack a clear
understanding of the concepts and items within those scales [5].
Acquiring this knowledge requires considerable time and effort
in searching and reviewing various unstructured documents,
such as technical reports, academic papers, and manuals. This
not only adds to the workload of already busy medical
professionals [6] but also hinders the widespread adoption of
MBC [7]. Transforming unstructured scale-related documents
into computable and accessible knowledge systems, such as
knowledge graphs, could help alleviate the burden on
practitioners and promote MBC adoption [8].

The key to this transformation lies in accurately extracting
scale-related knowledge entities from unstructured medical
texts. However, several challenges complicate this task. The
complexity of medical language, coupled with the variety of
scale-related entities, including scale names, measurement
concepts, and measurement items, makes accurate extraction
difficult [1]. For instance, the entity “scale name” may refer
solely to the scale itself or include additional details such as its
developer, language, version, or population-specific
characteristics. Furthermore, extracting knowledge entities from
Chinese medical texts introduces additional difficulties due to
linguistic variations and the limited availability of annotated
data specific to medical scales in Chinese [9]. Traditional
information extraction methods often depend on extensive data
annotation and model fine-tuning, which are resource-intensive
and struggle to adapt to new tasks or domains.

Addressing these challenges requires innovative solutions that
can handle the complexity and variability of medical scale
information, particularly in Chinese, with limited resources.
Large language models (LLMs) such as GPT [10], GLM [11],
LLaMA [12], and Qwen [13] have recently demonstrated
impressive capabilities in natural language understanding and
in-context learning (ICL) [14], enabling them to perform
complex language tasks with minimal fine-tuning and limited

annotated data [15,16]. By leveraging prompt engineering, these
models can generate targeted outputs from well-crafted inputs,
reducing the need for extensive datasets and making them
particularly valuable in low-resource scenarios [17-19].
Moreover, LLMs have shown the ability to perform tasks in
zero-shot and few-shot settings [20,21], allowing them to
generalize from minimal demonstrations (examples) [22].
However, their effectiveness in information extraction tasks is
highly dependent on the quality of the prompt design, including
the task instructions, example selection, and output formats
[23]. In few-shot settings, selecting the most appropriate
examples is crucial for guiding the LLM toward accurate
information extraction [24]. This selection process is particularly
challenging in specialized domains, where the examples should
not only be relevant but also representative of the task’s
complexity.

To improve the performance of LLMs in information extraction
tasks, researchers have explored techniques such as
demonstration retrieval within the ICL paradigm [25]. In this
approach, relevant examples are dynamically selected from a
pool of annotated data based on their similarity to the input text,
addressing the issue of sample representativeness [26].
Moreover, techniques such as chain-of-thought (CoT) prompting
[27] and self-verification [25] have been used to enhance the
accuracy and robustness of domain-specific tasks. CoT
prompting involves breaking down complex tasks into subtasks,
and guiding the LLM step-by-step through multiturn dialogue
[27], while self-verification allows the model to review and
refine its outputs [28]. Despite these promising strategies, most
existing research focuses on extracting common medical entities
such as diseases, symptoms, drugs, and procedures [29], with
limited attention to the extraction of scale-related entities.

Given the importance of task-oriented prompt design and the
linguistic complexities of Chinese medical literature, there is
an urgent need to develop a specialized framework for medical
scale–related knowledge extraction. In this study, we propose
MedScaleNER, a task-oriented prompt framework tailored for
named entity recognition (NER) of medical scales in Chinese
medical literature. MedScaleNER incorporates demonstration
retrieval, CoT prompting, and self-verification strategies to
tackle the specific challenges associated with extracting
scale-related knowledge entities in Chinese. By dynamically
selecting representative examples, the framework enhances the
generalization capabilities of LLMs and improves extraction
performance in few-shot scenarios. CoT prompting decomposes
the scale-related NER task into manageable subtasks, easing
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the cognitive load on LLMs, while self-verification ensures
output reliability.

This study emphasizes the significance of prompt design in
LLM-based information extraction, particularly in specialized
domains with limited annotated data. By combining
demonstration retrieval with advanced prompt strategies, we
aim to overcome the challenges posed by data scarcity and the
linguistic variations of Chinese medical literature. To facilitate
evaluation, we constructed a manually annotated corpus of
Chinese medical scales, covering three key entity types of scale
names, measurement concepts, and measurement items. We
conducted an in-depth assessment of MedScaleNER’s
effectiveness on this self-built dataset, examining the impact of
the number of demonstrations, the contributions of CoT and
self-verification, and the annotated data size required for optimal
performance. Our approach contributes to building
comprehensive scale knowledge systems, supporting clinicians

and researchers in clinical and research efforts, promoting MBC
adoption, and ultimately improving patient care.

Methods

Overview
The workflow of the proposed MedScaleNER prompt
framework is illustrated in Figure 1 and consists of three main
stages: dataset preparation and annotation, design and
implementation of the MedScaleNER framework, and in-depth
evaluation and comparison. The process begins with the
collection of high-quality Chinese journal papers focused on
medical scales. These papers are preprocessed and manually
annotated to extract three key types of scale-related entities:
scale names, measurement concepts, and measurement items.
This manually annotated corpus fills the gap caused by the
limited availability of annotated data in this area, while also
reflecting the complexities unique to Chinese medical literature.

Figure 1. Workflow of the MedScaleNER prompt framework. LLM: large language model.
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To address the task of medical scale–related NER, we introduce
the MedScaleNER framework, which incorporates
demonstration retrieval within the ICL paradigm, CoT
prompting, and self-verification techniques. The framework
selects relevant examples dynamically, breaks down complex
NER tasks into manageable subtasks, and improves the
reliability of outputs through self-verification. We evaluate
MedScaleNER comprehensively, including comparisons of
performance with varying numbers of retrieved demonstrations,
ablation studies to determine the impact of CoT and
self-verification, and assessments of its effectiveness in
low-resource scenarios with different training data sizes.
Additionally, we benchmark its performance against traditional
fine-tuned LLMs in local.

Formally, the task is defined as follows. Given a collection of
Chinese academic documents related to medical scales, denoted
as D, where each document Di consists of a sequence of
sentences S = {s1, s2, ..., sn}, and a set of entity types T = {scale,
concept, item}, the goal of MedScaleNER is to identify all
entities ei within D and assign the appropriate type ti ∈ T to
each identified entity.

Ethical Considerations
This study used only publicly available published papers from
the China National Knowledge Infrastructure, which consist of
academic literature and do not contain real patient information.
Since the data is publicly accessible and does not involve human
participants or private data, ethical approval was not required.

Dataset Preparation and Annotation
Due to the lack of annotated datasets for knowledge entity
recognition in Chinese medical scales, we constructed a
manually annotated corpus from full-text medical journal papers.
The annotation focused on three key types of knowledge entities
within medical scales: scale name, measurement concept, and
measurement item. The scale name refers to the official or
widely recognized title of the medical scale used in MBC, such
as “The M. D. Anderson Symptom Inventory.” The
measurement concept is defined as the broader theoretical or
clinical construct that the scale is designed to assess, such as
anxiety or cognitive function. The measurement item, on the
other hand, refers to the individual questions within the scale
that evaluate specific aspects of the measurement concept.

We began by retrieving abstracts of Chinese core medical
journal papers from the China National Knowledge
Infrastructure [30], which is a Chinese academic journal full-text
database, targeting scale development research. The search was
conducted using the “Abstract” and “Chinese Library
Classification” criteria. From the retrieved papers, we selected
the top three subfields within the Chinese Library Classification
R code (Medicine and Health) based on literature frequency.
Each abstract was manually reviewed to ensure the inclusion

of original research papers, and the corresponding full texts
were obtained in XML format. A detailed analysis of these full
texts revealed that the Methods, Results, and Discussion sections
contained a higher density of mentions related to scale names,
measurement concepts, and items. Compared to scale names,
mentions of concepts and items were less frequent, with items
being particularly sparse.

To improve the balance and density of these entities, we
extracted paragraphs specifically from the Methods, Results,
and Discussion sections based on their XML structure. We then
used key clue words such as “dimension,” “domain,” “variable,”
“concept,” “factor,” “item,” and “entry” to identify paragraphs
likely to contain the targeted entities. Paragraphs containing
these terms were retained for annotation, while others were
excluded.

For data annotation, we used the Label Studio tool [31]. Prior
to formal annotation, a preannotation phase was conducted to
train annotators. During this phase, annotators were introduced
to the annotation scheme, guidelines (summarized in Multimedia
Appendix 1), and tools. Feedback from this stage was used to
refine both the scheme and guidelines through discussions. In
the formal annotation phase, each paper was independently
annotated by two annotators. A third annotator then checked
for consistency, corrected discrepancies based on either
annotator’s results, addressed missed annotations, and
documented uncertain cases, which were later resolved through
group discussions. Cohen κ coefficient was calculated to assess
annotation consistency, yielding an overall score of 0.95,
indicating a high level of reliability for the constructed dataset
[32]. Specifically, the type-specific Cohen κ values were 0.961
for scale entities, 0.950 for concepts, and 0.970 for items.

Design and Implementation of the MedScaleNER
Framework

Overview
We developed the MedScaleNER prompt framework to identify
scale-related entities in medical texts using LLMs. The
framework is designed to optimize entity recognition by
incorporating three key stages: zero-shot entity type recognition,
few-shot entity labeling, and self-verification. To enhance LLM
performance, MedScaleNER integrates CoT prompting, which
helps guide the model step by step through complex tasks,
reducing the cognitive load. This is achieved by first identifying
entity types in a zero-shot setting and then labeling the entities
with a few examples. To further improve contextual
understanding, the framework dynamically retrieves relevant
examples using k-nearest neighbors (KNN) and uses
self-verification to minimize hallucinations and overprediction,
which are common issues in NER tasks [33]. Figure 2 outlines
the MedScaleNER prompt framework, which consists of four
main components: demonstration retrieval, entity type
recognition, entity labeling, and self-verification.
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Figure 2. Design of the MedScaleNER prompt framework. KNN: k-nearest neighbors.

Step 1: Zero-Shot Entity Type Recognition
In the first step, we design a prompt that includes four essential
components: task description, entity definitions, output format,
and input text [25]. Previous research in medical entity
recognition using LLMs emphasizes the critical importance of
prompt design, especially in specialized tasks [34]. Therefore,
in this step, the model is framed as a “sophisticated linguist and
named entity annotation expert” and tasked with identifying
and listing entity types present in the input text without
examples. This is the zero-shot stage, where the LLM uses only
the provided definitions to perform entity-type recognition
without any prior labeled examples.

To improve the model’s understanding of domain-specific
terminology, we provide clear definitions and possible forms
for each entity type. This enables the LLM to comprehend and
distinguish between different medical scale–related entities.
The output is structured as a list of identified entity types, with
explicit instructions to avoid unnecessary information, limit
responses to the provided entity list, and return “{null}” if no
entities are found. The output is structured as a list of identified
entity types present in the input text, without repeating types
for multiple occurrences. For instance, if the entity type “scale”
appears multiple times in the input, it is represented only once
in the output to indicate its presence. Step 1 is instructed to limit

responses to the provided entity type list and return “{null}” if
no entities are found. By guiding the model through these
structured prompts, we leverage CoT prompting to break down
the task into manageable steps for better performance (detailed
in Multimedia Appendix 2).

Step 2: Few-Shot Entity Labeling
The second step builds upon the output of step 1 by introducing
few-shot entity labeling. The prompt in this stage includes the
task description, entity definitions, examples (demonstrations),
output format, and the input sentence. The role of the LLM
remains that of a named entity annotation expert. Now, the task
is to label the entities that match the entity types identified in
step 1 within the input text.

Here, we use few-shot prompting because providing a small
number of high-quality examples typically boosts performance,
especially in specialized tasks like medical NER [35]. Few-shot
prompting often achieves results comparable to those of
fine-tuned models trained on hundreds of samples. However,
it is sensitive to the representativeness of the examples, as well
as the length of the input. To mitigate these challenges, we use
KNN retrieval to dynamically select the most relevant examples
from the training corpus. These examples, which are
semantically similar to the input text, serve as demonstrations
for the LLM to follow, guiding it in accurately labeling entities
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within the text. Moreover, we incorporate CoT prompting by
breaking the task into incremental steps: first identifying entity
types (step 1), followed by entity labeling (step 2). Step 1
involves identifying the entity types present in the input text,
which informs the candidate pool for KNN retrieval in step 2.
For instance, if step 1 determines that the entity types are {scale,

concept}, step 2 specifically retrieves examples containing both
scale and concept entities. The LLM surrounds the identified
entities with appropriate markers in the text [36], as illustrated
in Figure 3, with detailed prompts provided in Multimedia
Appendix 3.

Figure 3. Output format of entity labeling.

KNN Demonstration Retrieval
For demonstration retrieval, we use KNN, a widely used method
in ICL [37]. The KNN algorithm retrieves semantically similar
examples from the annotated dataset to provide the LLM with
contextually relevant demonstrations. We begin by generating
sentence-level embeddings for both the input texts and candidate
examples using the SimCSE [38] method implemented in the
acge_text_embedding model [39]. The cosine similarity between
the input text and each candidate example is then computed,
and the top k examples with the highest similarity scores are
selected.

To enable efficient retrieval from large-scale, high-dimensional
embedding spaces, we use the FAISS library [40]. FAISS
provides specialized data structures and algorithms for fast
indexing and searching of embeddings. After indexing the
training embeddings, retrieving demonstrations for a given test
sentence simply involves extracting its embedding and
performing a semantic similarity search against the indexed
embeddings. This approach significantly reduces computational
overhead by eliminating exhaustive pairwise comparisons.

To determine the optimal value of k, we conducted experiments
with a range of different k values. We selected the value that
maximized model performance by balancing the need for enough
examples to help the LLM generalize while avoiding
performance degradation caused by irrelevant or excessive

examples. These examples are fed to the LLM to improve
generalization and entity labeling.

Step 3: Few-Shot Self-Verification
The final step incorporates a self-verification mechanism to
improve the accuracy and reliability of the labeled entities. After
completing the entity labeling, the LLM undergoes a
self-verification process through few-shot prompting, where it
reviews its own output for correctness. In this step, the model’s
task in this step is to verify whether the labeled entities are
accurate by responding with either “Yes” or “No” for each
entity. If the answer is “No,” the entity is removed from the
output.

The input for this step includes both the labeled entities and
their surrounding context, allowing the LLM to validate its
previous output holistically. This self-verification step improves
the reliability of the final results, ensuring that the identified
and labeled entities meet the expected standards of accuracy
(detailed prompts are provided in Multimedia Appendix 4).

In-Depth Evaluation and Comparison
To comprehensively assess the performance of MedScaleNER,
we conducted an in-depth analysis. Before the formal
experiments, we first identified the best-performing LLM for
use in MedScaleNER by comparing various LLMs accessed
via the application programming interface (API). Following
this, we compared MedScaleNER’s performance with that of
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locally fine-tuned LLMs on the NER task. Additionally, we
carried out ablation studies focusing on the two key components
of MedScaleNER: CoT prompting in step 1 (zero-shot entity
type recognition) and self-verification in step 3. By isolating
these components, we examined their individual contributions
to the overall framework, specifically their impact on entity
recognition accuracy and output robustness. These studies
provided valuable insights into the importance of each step in
enhancing model reliability and precision.

Furthermore, we evaluated MedScaleNER in low-resource
settings by varying the amount of training data and the number
of demonstrations in the few-shot setting (steps 2 and 3). This
analysis was essential for understanding how the framework
performs under limited data conditions and testing its scalability
and effectiveness when annotation resources are scarce. By
experimenting with different proportions of available data and
examples, we gained insights into the adaptability of
MedScaleNER in resource-constrained scenarios.

For evaluation, we used precision, recall, and macro F1-score.
Precision represents the proportion of correctly predicted entities
out of all entities predicted by the model. Recall is the proportion
of correctly predicted entities out of all actual entities present
in the dataset. Macro F1-score is the harmonic mean of precision

and recall, averaged across all entity classes to account for
imbalanced class distributions. We determined the correctness
of entity recognition using exact string matching, meaning only
perfect matches between the model’s predictions and the ground
truth were considered correct. This strict evaluation method
ensured a high standard for assessing model performance across
all comparisons, providing a clear and objective measure of
MedScaleNER’s effectiveness.

Results

Summary Statistics of CMedS-NER
We constructed the CMedS-NER (Chinese Medical Scale
Corpus for Named Entity Recognition) dataset specifically for
the NER task in the context of Chinese medical scales. The
dataset consists of 720 full-text Chinese academic papers
focused on medical scales, which include 5582 paragraphs and
22,743 sentences. After conducting a concordance test and
making necessary emendations, CMedS-NER contained a total
of 27,499 entity mentions. These consisted of 12,340 mentions
of scales, 11,968 mentions of concepts, and 3191 mentions of
items. For evaluation purposes, the dataset was randomly split
at the document level into 90% for training and 10% for testing.
Detailed characteristic statistics of the training and test data are
presented in Table 1.

Table 1. Statistics of training and test data.

Total, n (%)Test set, n (%)Training set, n (%)Data type

720 (100)72 (10)648 (90)Papers

5582 (100)527 (9.44)5055 (90.56)Paragraphs

22,743 (100)2289 (10.06)20,454 (89.94)Sentences

Entities

12,340 (100)1234 (10)11,106 (90)Scale

11,968 (100)1132 (9.46)10,836 (90.54)Concept

3191 (100)244 (7.65)2947 (92.35)Item

27,499 (100)2610 (9.49)24,889 (90.51)All

LLM Selection and Experimental Setup
To determine the best-performing LLM for the MedScaleNER
framework, we conducted preliminary experiments with six
generative LLMs: GPT-3.5-turbo, GLM-4-0520,
ERNIE-Bot-turbo, Moonshot-v1-8k, AGI Sky-Chat-3.0, and
Qwen-turbo-0624. These models were accessed via APIs and
evaluated on randomly selected sentences from the CMedS-NER
test set, which included ten scale entities. Among the tested
models, GLM-4-0520 performed the best, accurately recognizing
nine out of ten scale entities, Qwen-turbo-0624 followed,
identifying eight entities (complete results are provided in
Multimedia Appendix 5). Based on this superior performance,
GLM-4-0520 was selected for subsequent experiments. For the
GLM-4-0520 setup, we used temperature sampling, setting the
temperature parameter to 0.02 and the max_tokens parameter
to 2048, while leaving all other hyperparameters at their default
values.

In addition to evaluating the API-accessed LLM, we
implemented local fine-tuning for four models: GLM-4-9B-Chat
[41], Qwen2-7B [42], BiLSTM-CRF [43]
(Chinese-BERT-wwm), and W2NER [44] (MacBERT).
Fine-tuning was performed using Pytorch 1.12.1+cu11.6 on
NVIDIA RTX A6000 graphics processing units. For these
locally fine-tuned models, hyperparameters were optimized
using empirical tuning methods to achieve the best performance
on the CMedS-NER dataset. Detailed hyperparameter settings
for each model are provided in Multimedia Appendix 6.

Performance Comparisons

Optimal k-Shot Demonstration Selection
To determine the optimal number of demonstrations (k) for
few-shot learning, we tested various k-shot settings (0, 5, 10,
15, 20, and 25) on a randomly selected set of 100 sentences
from the test set. As shown in Table 2, overall performance
improved as the number of demonstrations increased, with the
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highest F1-score of 81.23% achieved at 20-shot. However,
different entity types peaked at different k values. For instance,
the F1-score for concepts peaked at 10-shot (85.07%), while

the F1-score for scales and items reached their highest
performance at 20-shot, with scores of 77.27% and 84.21%,
respectively.

Table 2. Entity extraction performance with different k-shot values.

Item, F1-score (%)Concept, F1-score (%)Scale, F1-score (%)All, F1-score (%)k-shot

028.0723.2617.110

7074.3461.8768.745

5085.07 a67.6967.5910

8083.7871.8878.5515

84.2182.1977.2781.2320

59.2678.7375.1971.0625

aThe best performance is italicized.

Low-Resource Comparison
To evaluate MedScaleNER’s performance in low-resource
scenarios, we trained the model using different proportions of
the training data (1%, 5%, 10%, 50%, and 100%) and assessed
its performance on the test set. As presented in Figure 4A, the
overall F1-score increased as more training data was used.
Notably, significant performance gains were observed when
increasing the training data from 1% (205 sentences) to 5%
(1023 sentences), with the overall F1-score rising from 48.22%
to 58.29%, precision improving from 52.33% to 57.40%, and

recall jumping from 45.35% to 60.06%. Beyond this point,
improvements plateaued, with only a 1.35% increase in the
F1-score between 5% and 100% of the training data (from
58.29% to 59.64%). A similar trend was observed for precision
and recall, although precision dropped slightly at 10% of the
training data. When examining scale and concept entities (Figure
4B and C), the same pattern emerged: a significant improvement
from 1% to 5% of the training data, followed by minimal gains
from 5% to 100%. However, for item entities (Figure 4D),
precision, recall, and F1-scores slightly declined as the training
data increased from 5% to 100%.
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Figure 4. Low-resource performance of MedScaleNER: precision (P), recall (R), and macro F1-scores (F1) across different proportions of training
data for (A) all entities, (B) scales, (C) concepts, and (D) items.

Ablation Studies
To evaluate the contributions of different components within
the MedScaleNER framework, we conducted ablation studies
to examine the impact of CoT prompting and self-verification
under various low-resource settings. We tested the
GLM-4-0520’s performance with and without these components
using different proportions of the training data (1%, 5%, 10%,
50%, and 100%). The baseline model involved directly
prompting the task description and labeling entities in the input
using 20 examples.

As shown in Table 3, incorporating self-verification consistently
improved F1-scores across all training data sizes. With 100%

of the training data, self-verification led to a 0.89% increase in
the F1-score, while breaking down the task into subtasks using
CoT resulted in a 2.11% increase. However, in extremely
low-resource scenarios (eg, 1% of the training data), adding
CoT without self-verification did not enhance performance and
slightly decreased the F1-score. The combination of both CoT
and self-verification yielded the best performance across all
training data sizes. In low-resource settings, self-verification
had a significant impact. It increased the F1-score of
MedScaleNER by 7.92% with 1% of the training data and by
3.27% with 5% of the training data, compared to configurations
without it (ie, baseline + CoT).
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Table 3. Ablation study results: Pa, Rb, and F1
c scores for different components of MedScaleNER across different proportions of training data.

MedScaleNERBaseline+ CoTdBaseline + self-verificationBaseline

Proportion of
training data
(n of sen-
tences)

F1 (%)R (%)P (%)F1 (%)R (%)P (%)F1 (%)R (%)P (%)F1 (%)R (%)P (%)

48.2245.3552.3340.3045.4636.5248.1445.5951.4246.6345.7048.211% (205)

58.2960.0657.4055.0260.2051.1055.0766.7147.6152.3566.4144.215% (1023)

58.1160.8456.2255.1360.9550.8455.0365.5447.9954.3766.1145.8810% (2045)

59.2361.8357.4156.6962.1652.4956.7668.4148.8654.3268.0845.1250% (10,227)

59.6461.5958.3656.8961.7353.1155.6769.3147.7954.7869.5045.21100%
(20,454)

aP: precision.
bR: recall.
cF1: macro F1-score.
dCoT: chain-of-thought.

Comparison With Local Fine-Tuned Models
We compared MedScaleNER with several locally fine-tuned
models on the CMedS-NER dataset, including GLM-4-9B-Chat,
Qwen2-7B, BiLSTM-CRF (Chinese-BERT-wwm), and W2NER
(MacBERT). Both GLM-4-9B-Chat and Qwen2-7B were
fine-tuned using the low-rank adaptation method with a
parameter-efficient fine-tuning strategy with identical
fine-tuning parameters, ensuring a fair comparison. After
fine-tuning, we prompted the fine-tuned GLM-4-9B-Chat and
Qwen2-7B for the NER task using a similar prompt structure
as our Baseline, but without KNN retrieval.

As shown in Figure 5, MedScaleNER achieved an overall
F1-score of 59.64%, which is lower than the fine-tuned
Qwen2-7B (79.91%), GLM-4-9B-Chat (80.34%), BiLSTM-CRF
(80.99%), and W2NER (81.38%). Notably, under low-resource
scenarios (eg, using only 1% of the training data),
MedScaleNER significantly outperformed the other fine-tuned
models. At 5% of the training data, while MedScaleNER’s
F1-score was lower than W2NER and BiLSTM-CRF, it
remained substantially higher than Qwen2-7B and stayed
competitive with GLM-4-9B-Chat.
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Figure 5. F1-score comparison of MedScaleNER and locally fine-tuned models across different proportions of training data.

Error Analysis
We conducted an error analysis by manually reviewing 300
randomly selected sentences from the model outputs to identify
common types of mistakes and areas for improvement. The
errors were classified into four main types: (1) identification
errors, where nonentity terms were incorrectly identified as
entities; (2) type errors, where entities were correctly identified
but assigned the wrong entity type; (3) boundary errors, which
involved incorrect determination of the start and end positions
of entities; and (4) missing entities, where entities present in
the text were not identified by the model.

Figure 6 provides examples of each error type, illustrating the
nature of these mistakes. Identification errors were the most

common and often resulted from ambiguous entity definitions.
For example, generic terms like “item” or “scale” were
sometimes misinterpreted as specific entities due to their
inclusion in prompt definitions. Type errors occurred when
entities were recognized but misclassified. For instance, “overall
evaluation of the quality of nursing services” was mistakenly
labeled as a concept rather than an item. Boundary errors
included incorrect inclusion or exclusion of surrounding text
or punctuation, such as parentheses or modifiers that should not
be part of the entity span. Finally, missing entities were
frequently associated with English names or abbreviations of
scales and items, especially in cases involving long or complex
strings.

J Med Internet Res 2025 | vol. 27 | e67033 | p. 11https://www.jmir.org/2025/1/e67033
(page number not for citation purposes)

Hao et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 6. Examples of the four main error types identified in MedScaleNER: identification errors, type errors, boundary errors, and missing entities.

Discussion

Principal Findings
This study is among the first to explore the use of LLMs and
prompt engineering for NER tasks related to Chinese medical
scales. We proposed a novel prompt framework, MedScaleNER,
which enhances the adaptive learning capabilities of LLMs by
dynamically retrieving optimal examples through KNN retrieval.
By using a CoT strategy, the framework decomposes the
complex task of entity recognition into two sequential steps:
first, identifying entity types and then labeling entities. This
approach strengthens the logical reasoning ability of LLMs.
Additionally, incorporating self-verification mechanisms ensures
the accuracy of the final recognition results, improving the
reliability of the model’s outputs.

Our evaluation of the self-constructed CMedS-NER dataset
demonstrated that MedScaleNER effectively recognizes medical
scale–related entities. The dataset, comprising 720 full-text
Chinese academic papers with 27,499 annotated entities, is a
high-quality resource for training and evaluating NER models
in this specialized domain. Notably, in low-resource settings
with as few as 205 sentences, MedScaleNER outperformed
locally fine-tuned models such as BiLSTM-CRF
(Chinese-BERT-wwm), W2NER (MacBERT), GLM-4-9B-Chat,
and Qwen2-7B. When more annotated data became available
(eg, 1023 sentences), MedScaleNER remained competitive.
This low-resource performance is particularly significant in

biomedical and clinical contexts, where domain-specific
annotations are often expensive and time-consuming to produce.

Ablation studies further highlighted that KNN retrieval
significantly improved performance in low-resource settings,
aligning with previous findings [37] on the benefits of such
strategies in ICL. Integrating CoT prompting and
self-verification with KNN retrieval boosted the F1-score by
approximately 6% when using 5% of the training data. This
suggests that while retrieving representative examples is crucial,
the structured CoT and self-verification steps are also important,
contributing to more accurate and robust entity annotation than
retrieval-based demonstration alone.

Although using high-quality demonstrations improved the
LLM’s ability to recognize scale-related entities [25,45],
performance declined when the number of examples exceeded
an optimal threshold. Context length limitations, example
ordering [46], and entity-type specific sensitivities influenced
this trade-off. For instance, concept entities benefited from fewer
examples compared to scale and item entities. It suggests that
tailoring demonstration strategies by entity type could maximize
performance.

Compared to traditional and fine-tuned NER methods designed
for similar biomedical contexts, MedScaleNER offers several
advantages. Conventional approaches often require extensive
domain adaptation, large annotated corpora, or multiple rounds
of fine-tuning to achieve competitive results [47,48]. In contrast,
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MedScaleNER excels under low-resource settings by leveraging
KNN retrieval, CoT, and self-verification. Its flexible,
task-oriented design allows simple modification of entity
definitions to adapt to new domains, other languages, or even
other LLM backbones. This adaptability supports broader
generalizability, enabling MedScaleNER to scale beyond
Chinese medical scales to other medical domains and even
entirely different biomedical NER tasks.

Moreover, moving toward a human-centered medical scale NER
workflow is crucial [23,49]. Allowing domain experts to provide
feedback, customize prompt components, control retrieval
parameters, and determine when to use self-verification can
improve transparency, trust, and overall user satisfaction [50,51].
Such a human-in-the-loop approach ensures that MedScaleNER
remains aligned with real-world clinical and research priorities,
particularly important in dynamic health care environments.

Limitations
Despite these strengths, there are limitations to this study. First,
we primarily focused on the GLM-4 model, and future work
should evaluate additional LLMs [52] such as LLaMA, Mistral,
GPT, and PaLM, to validate generalizability. Second, our
example retrieval strategy relied on KNN based on sentence
similarity. Alternative retrieval strategies [53] and more
advanced similarity models may further enhance performance.

While we focused on three main scale-related entity types: scale
names, measurement concepts, and measurement items, future
research could extend this framework to other entities, such as
functions, targets, and validity measures. Finally, integrating
LLMs with traditional NER models could leverage the
complementary strengths of both approaches, potentially
resulting in more robust and accurate entity recognition systems.

Conclusions
In this study, we introduced MedScaleNER, a task-oriented
prompt framework that integrates demonstration retrieval, CoT
prompting, and self-verification strategies to enhance the
recognition of medical scale-related entities in Chinese medical
literature. Evaluated on our self-constructed CMedS-NER
dataset, MedScaleNER demonstrates robust performance even
with limited annotated data. By allowing simple adjustments
to prompt definitions, MedScaleNER readily adapts to diverse
biomedical domains, languages, and entity types, making it a
resource-efficient solution for broader information extraction
challenges. This adaptability supports more efficient and reliable
knowledge extraction, ultimately contributing to better clinical
and research outcomes in MBC. By continuing to refine and
expand MedScaleNER, we aim to advance automated
knowledge extraction systems and promote the widespread
adoption of MBC in health care.
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