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Abstract

Background: Stroke is a globally prevalent disease that imposes a significant burden on health care systems and national
economies. Accurate and rapid stroke diagnosis can substantially increase reperfusion rates, mitigate disability, and reduce
mortality. However, there are considerable discrepancies in the diagnosis and treatment of acute stroke.

Objective: The aim of this study is to develop and validate a stroke diagnosis and prediction tool using ChatGLM-6B, which
uses free-text information from electronic health records in conjunction with noncontrast computed tomography (NCCT) reports
to enhance stroke detection and treatment.

Methods: A large language model (LLM) using ChatGLM-6B was proposed to facilitate stroke diagnosis by identifying optimal
input combinations, using external tools, and applying instruction tuning and low-rank adaptation (LoRA) techniques. A dataset
containing details of 1885 patients with and those without stroke from 2016 to 2024 was used for training and internal validation;
another 335 patients from two hospitals were used as an external test set, including 230 patients from the training hospital but
admitted at different periods, and 105 patients from another hospital.

Results: The LLM, which is based on clinical notes and NCCT, demonstrates exceptionally high accuracy in stroke diagnosis,
achieving 99% in the internal validation dataset and 95.5% and 79.1% in two external test cohorts. It effectively distinguishes
between ischemia and hemorrhage, with an accuracy of 100% in the validation dataset and 99.1% and 97.1% in the other test
cohorts. In addition, it identifies large vessel occlusions (LVO) with an accuracy of 80% in the validation dataset and 88.6% and
83.3% in the other test cohorts. Furthermore, it screens patients eligible for intravenous thrombolysis (IVT) with an accuracy of
89.4% in the validation dataset and 60% and 80% in the other test cohorts.

Conclusions: We developed an LLM that leverages clinical text and NCCT to identify strokes and guide recanalization therapy.
While our results necessitate validation through widespread deployment, they hold the potential to enhance stroke identification
and reduce reperfusion time.
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Introduction

Background
Stroke ranks among the leading causes of morbidity and
mortality worldwide. The overall burden of stroke, in terms of
the absolute number of individuals affected or left disabled by
the condition, has been increasing, particularly in China [1-3].
There are significant disparities in stroke incidence, prevalence,
acute care, rehabilitation, risk factor management, and outcomes
[4]. In recent years, substantial progress has been made in stroke
diagnosis and treatment, with effective recanalization therapies
for acute ischemic stroke established to significantly improve
clinical prognosis [5,6]. However, treatment for acute ischemic
stroke is highly time-dependent. Despite ample evidence
supporting intravenous thrombolysis (IVT) and endovascular
therapy for acute ischemic stroke, the number of patients who
arrive at hospitals and are eligible for IVT remains limited, only
10% in the United States and 6% in China, with the global rate
for IVT being lower than 5%. In addition, fewer than 100,000
thrombectomies are performed annually, despite the high
incidence of ischemic strokes caused by large vessel occlusion
(LVO). Access to recanalization therapies also varies across
different regions [7,8]. Furthermore, the limited number of
stroke neurologists is insufficient to meet the growing number
of new stroke cases each year. Consequently, many patients in
underdeveloped areas do not receive adequate care in the event
of a sudden stroke. Inequities in stroke care are prevalent, and
the costs also vary significantly [4,9-11].

The emergence of artificial intelligence (AI) and its application
in health care has shown great promise in bridging existing gaps
in medical practice [12,13]. Several studies have demonstrated
the potential of large language models (LLMs) in managing
various diseases [14,15]. In addition, LLMs have proven their
effectiveness in medical diagnostics. For example, the
Med-PaLM model illustrates the capabilities of LLMs in
enhancing medical decision-making, achieving performance
levels comparable to those required for US medical licensing
examinations [16]. Furthermore, LLMs are used to extract
summaries from electronic health records, making medical data
more accessible and manageable for health care providers [17].
The integration of AI in clinical decision-making could reduce
interrater variability in routine practice and facilitate the
extraction of critical information, thereby improving the
identification of patients with stroke, predicting treatment
responses, and enhancing patient outcomes [14].

Objective
The objective of this study was to develop an acute stroke
diagnosis tool that guides key therapies based on ChatGLM-6B
and to verify its accuracy in diagnosing and predicting strokes.
The application of this model in primary care could enhance
the standard workflow for stroke diagnosis, identify patients
who could benefit from recanalization, and facilitate risk
prediction.

Methods

Study Design
We used a retrospective cohort for model training and internal
validation while using a prospective cohort from various
hospitals for external validation.

Ethical Considerations
The study was conducted in accordance with the Declaration
of Helsinki, and the protocol was approved by the Beijing
Tsinghua Changgung Hospital Ethics Committee (23641-0-01).
Written informed consent was waived due to the analysis of
electronic health records, and all research data used in this study
are anonymous.

Data Acquisition
Training data were obtained from Beijing Tsinghua Changgung
Hospital, a comprehensive stroke center and teaching hospital.
Subjects admitted to the emergency room (ER) between January
2016 and January 2024 were screened continuously. Of the
341,026 patients admitted to the study hospital’s ER during this
period, 33,762 presented with focal neurological symptoms and
were referred to the neurology ER. Among these, 12,600 were
diagnosed with cerebrovascular disease (ICD-10 [International
Statistical Classification of Diseases and Related Health
Problems 10th Revision]), and 991 were diagnosed with stroke
and exhibited symptoms within 24 hours. The control group
was randomly selected from patients admitted to the neurology
ER who were diagnosed with noncerebrovascular diseases,
ensuring a match for age, sex, admission time, and attending
physicians after removing duplicate admissions. A focal
neurologic deficit refers to a dysfunction in the nerves, spinal
cord, or brain that affects a specific area of the body, such as
the left side of the face, the right arm, or even a localized region
like the tongue. In addition, issues related to speech, vision, and
cognitive function are also classified as focal neurological
deficits; the number of cases in each symptom category was
shown in Multimedia Appendix 1. A total of 1885 cases
satisfying the criteria above were included to form the training
set. An additional group of patients from the same hospital
(n=230) and another hospital (n=105) over the course of another
month was used for the external test.

Demographic characteristics, emergency clinical notes,
radiological images and reports, as well as other relevant
examination records, were obtained from the hospital
information system. The subjects were categorized into stroke
and nonstroke groups based on the discharge diagnosis. Among
the patients with stroke, further classification was adopted to
divide them into ischemic and hemorrhagic strokes. Patients
with ischemic stroke who received IVT or had LVO, confirmed
by computed tomography angiography or magnetic resonance
angiography, were also identified, regardless of whether they
underwent endovascular therapy. In this study, large vessel
occlusion is defined as ischemia resulting from the obstruction
of a corresponding large vessel, which includes the anterior
cerebral artery, middle cerebral artery, posterior cerebral artery,
basilar artery, and vertebral artery. A detailed description of the
subject screening process is provided in Figure 1. All stroke
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diagnoses and workflows adhered to the recommendations
outlined in the acute ischemic stroke management guidelines

[18].

Figure 1. Flowchart of training dataset inclusion. BTCH: Bingjing Tsinghua Changgung Hospital; ER: emergency room; IVT: intravenous thrombolysis;
LVO: large vessel occlusion.

Data Preprocessing
Each record included demographic details such as age, sex,
mode of arrival to the hospital (via emergency medical dispatch
system or otherwise), main complaints, present medical history
related to the current event, previous medical history,
neurological examination, auxiliary examinations (including
blood tests, electrocardiogram, and brain computed tomography
as radiology reports), allergy history, marital and reproductive
history, personal history, and family history. Notably, some
records contained missing items for specific clinical parameters.
We addressed these gaps by indicating “information not
provided.”

It was observed that some records included details such as past
medical history and allergy history within the section on the
history of the current illness. These details were extracted using
methods such as regular expressions. In addition, information
related to COVID-19 epidemiological investigations was
present; however, since it was irrelevant to the diagnosis of the
patient’s condition, it was removed. All cases were randomly
divided into training and internal validation datasets in a 9:1
ratio.

Foundation Model: ChatGLM-6B
To address the aforementioned challenges, we used
ChatGLM-6B as the foundational model, which serves as the
core of our acute stroke diagnosis tool, enabling high-precision
analysis of clinical data. The ChatGLM-6B model was chosen
due to its relatively low deployment requirements for hospital
environments and its outstanding performance capabilities.

Prompt
The following prompt was used:

“As a neurology physician, please review the clinical notes and
provide a final diagnosis based on the information provided.
Kindly address the following questions: (1) Is the patient
experiencing a stroke? (2) If so, is it ischemic or hemorrhagic?
(3) If it is an ischemic stroke, does the patient require IVT? (4)
If it is an ischemic stroke, is it caused by large vessel
occlusion?” (see Figure 2 and Figure 3).

For clarity, when responding to the second, third, and fourth
questions, we extracted specific subsets from the original
dataset, ensuring that each question presented only two options.
For example, when addressing the second question, we
exclusively extracted records of stroke cases from the training,
validation, and test sets.
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Figure 2. Acute ischemic stroke management workflow and key issues. BMT: best medical treatment; CTP: computed tomography perfusion; ER:
emergency room; EVT: endovascular thrombectomy; IVT: intravenous thrombolysis; LVO: large vessel occlusion; MRP: magnetic resonance perfusion.

Figure 3. An example of instruction fine-tuning format.

Features of the Medical Records
The electronic medical records contain a wealth of information,
including primary complaints, medical history related to the
current event, previous medical history, and more. Based on

the completeness of various entries, certain combinations of
entries are manually configured to select the optimal
combination for different tasks, as illustrated in the textbox
below (Textbox 1).

Textbox 1. Different electronic health record entry combinations.

Electronic health record entry combinations

• （ALL) Age, sex, mode of arrival, main complaints, medical history for this event, previous medical history, neurological examination, auxiliary
examination, allergy history, marital and reproductive history, personal history, and family history.

• Age, sex, mode of arrival, main complaints, medical history for this event, previous medical history, neurological examination, auxiliary
examination, allergy history, marital and reproductive history.

• Age, sex, mode of arrival, main complaints, medical history for this event, previous medical history, neurological examination, and auxiliary
examination.

• Age, sex, mode of arrival, main complaints, medical history for this event, neurological examination, and auxiliary examination.

• Age, sex, mode of arrival, medical history for this event, previous medical history, neurological examination, auxiliary examination.

• Age, sex, mode of arrival, medical history for this event, neurological examination, auxiliary examination.

• Age, sex, medical history for this event, previous medical history, neurological examination, and auxiliary examination.

• Age, sex, medical history for this event, neurological examination, and auxiliary examination.
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In-Context Learning
In-context learning is a key ability of LLMs that allows them
to handle new tasks with just a few examples. Few-shot learning
is considered one of the most effective methods for in-context
learning [19]. By using prompting techniques, foundational
models can quickly adapt to a specific domain and learn to
follow the task format with just a few demonstrations. This
approach uses a mechanism to identify examples based on their
similarity to the current case [20].

To identify representative few-shot examples, we followed this
procedure: for each test example, we selected k training
examples that are semantically similar using k-nearest neighbors
clustering within the embedding space. Specifically, we used
ChatGLM-6B to embed both training and test questions into
vector representations. Then, for each test question (x), we
retrieved its k-nearest neighbors from the training set. Unlike
fine-tuning, dynamic few-shot learning uses the training data
without requiring extensive updates to the model parameters.

Instruction Fine-Tuning and LoRA
In this study, we used instruction tuning and low-rank adaptation
(LoRA) techniques to enhance the performance of LLMs on
specific medical record tasks [21,22]. Instruction tuning is a
training method that provides explicit task instructions to the
model during the training process, enabling it to better
understand and execute these instructions, thereby improving
its performance on targeted tasks. Conversely, LoRA technology
adapts the model’s weight matrices through low-rank
modifications, allowing for fine-tuning of model behaviors
without the need to retrain the entire model. This approach
improves both training and inference efficiency while preserving
the model’s complexity.

Specifically, we first developed distinct task instructions based
on the four identified issues, which represent critical questions
in the stroke diagnosis and treatment workflow (Figure 2). These
instructions formed the instruction component of the directive.
The primary entries from the medical records were concatenated
to create the medical record text, which served as the Input
component of the instruction. Finally, the labels corresponding
to the questions were designated as the Output component of
the instruction. To select the primary features from the medical
records, combinations of features were manually chosen based
on the completeness of various characteristics within the records
(Textbox 1). The best-performing features under a zero-shot

scenario, without fine-tuning, were then selected for use during
the fine-tuning process. An example is provided below.

Tool Chaining with LLMs
Tool chaining with LLMs involves the integration of various
pretrained tools, such as vision models, to enhance the
capabilities of LLMs. This process does not necessitate
additional model training. For instance, in implementations like
Visual ChatGPT and X-GPT, an LLM can assign specific tasks
to the appropriate tools to manage subtasks that exceed its
inherent capabilities [23,24].

In this study, we provided noncontrast computed tomography
scans along with the corresponding radiology reports. By using
a toolchain approach, we integrated these examination results
into the medical records text and input them collectively into
the large model, thereby eliminating the need for any additional
tools. Furthermore, we compared the model’s performance with
and without tool chaining, selecting the more effective option
for various tasks.

Parameter
The parameter settings for LoRA fine-tuning are as follows:
LoRA_rank is set to 8, batch size to 6, gradient accumulation
steps to 1, max steps to 2000, fp16 is enabled, and the learning
rate is set at 5e-5.

Results

Overview
A total of 1885 cases were included in the training set,
comprising 991 stroke cases and 894 nonstroke cases. Among
the stroke cases, there were 935 instances of ischemic stroke;
of these, 621 patients received IVT, and 230 presented with
large vessel occlusion, which was confirmed by magnetic
resonance angiography or computed tomography angiography.

Performance on the Validation Set
We use the performance of the LLM in zero-shot and few-shot
(3-shot) settings as the baseline, while the results obtained from
fine-tuning serve as the final outcomes.

For zero-shot and few-shot scenarios, we experimented with
various combinations of entries and the use of tools, ultimately
selecting the most effective approach. For fine-tuning, we
adopted the best method identified in the zero-shot scenario for
adjustments and evaluated it under this framework. The primary
results are presented in Table 1.
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Table 1. Performance of large language models on stroke diagnosis on internal validation set using different methods.

SpecificitySensitivityAccuracyApproachQuestion and method

Whether it is a patient with stroke or not?

0.7220.7020.713No.1a+ToolbZero-shot

0.7220.8370.784No.2+ToolFew-shot (3)

0.97810.99No.1+ToolFine-tune

If yes, is it ischemia or hemorrhage?

10.5640.606No.1+ToolZero-shot

10.8830.894No.8Few-shot (3)

111No.1+ToolFine-tune

If ischemic stroke, do they need intravenous thrombosis or not?

0.2220.7760.617No.8+ToolZero-shot

0.3330.7760.649No.3Few-shot (3)

0.6670.9850.894No.8+ToolFine-tune

Is ischemic stroke caused by LVO or not?

0.5710.6250.585No.8Zero-shot

0.8140.4170.713No.4+ToolFew-shot (3)

0.90.50.8No.8Fine-tune

aNo.x: the xth entry combination shown in Textbox 1.
bTool: using the tool chaining, ie, adding imaging examination results.

It can be observed that after few-shot learning, the model’s
performance significantly improved on questions 1, 2, and 4,
with some improvement also noted for question 3. Following
the application of LoRA, there was a substantial enhancement
in performance across all questions.

Overall Performance Across Different Datasets
Using the fine-tuned weights, the same tests were conducted
on the test set. Specifically, because the electronic medical
records provided by other hospitals lacked information on the
mode of arrival, marital status, and reproductive history, as well
as imaging examination results, these components were excluded
from the input. Instead, the “nervous system” data, which was
available in this dataset but not originally included, was
incorporated. The main results are presented in Table 2. For the
key procedures in the stroke diagnosis workflow, the model

demonstrates relatively satisfactory performance in stroke
diagnosis, classification, and prediction.

The model demonstrates exceptionally high accuracy in stroke
diagnosis, achieving 99% in the internal validation cohort.
Further validation across different cohorts and other stroke
centers indicates that the accuracy remains at 95.5% within the
same hospital and 79.1% in other hospitals. This model exhibits
excellent performance in identifying both ischemic and
hemorrhagic strokes, with accuracy reaching as high as 100%
in internal validation and 99.1% and 97.1% in external
validation. Regarding IVT for ischemic stroke, the model’s
accuracy ranges from 60% to 89.4%. In addition, the model is
capable of identifying large vessel occlusions, with prediction
accuracy reaching up to 80% across different cohorts. However,
it is important to note that while the model demonstrates high
specificity, it has limited sensitivity (see Table 2 and Figure 4).
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Figure 4. Confusion matrix of large language models on stroke diagnosis workflow key issues. IVT: intravenous thrombolysis; LVO: large vessel
occlusions.
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Table 2. Performance of large language models on stroke diagnosis based on low-rank adaptation on both internal validation and external test set.

SpecificitySensitivityAccuracyQuestion and dataset

Whether it is a patient with stroke or not?

0.97810.99Validation

Test

0.9640.9090.955Changgung (n=230)

0.750.8120.791Other (n=105)

If yes, is it ischemia or hemorrhage?

111Validation

Test

0.90.9960.991Changgung (n=230)

0.8890.9830.971Other (n=105)

If ischemic stroke, do they need intravenous thrombosis or not?

0.6670.9850.894Validation

Test

0.5930.6670.6Changgung (n=230)

0.880.50.817Other (n=105)

If ischemic stroke, is it caused by LVO or not?

0.90.50.8Validation

Test

0.9360.250.886Changgung (n=230)

10.3330.833Other (n=105)

We also conducted zero-shot and few-shot tests on the test set,
using the optimal combinations selected from the validation set
for both scenarios. The results were compared with those
obtained from LoRA, as shown in Table S3 in Multimedia
Appendix 2 and Table S4 in Multimedia Appendix 3.

Verify the Effectiveness of Selecting the Optimal Entry
Combinations
Since fine-tuning with various entry combinations is
time-consuming, we focus on fine-tuning based on the best
combination identified from the zero-shot results. The optimal
combinations for questions 1 and 2 consist of all entries
combined with medical imaging examination results. We then

compare the best combinations for questions 3 and 4 against
the all-inclusive combination of entries and medical imaging
examination results on the validation set. This comparison aims
to demonstrate the effectiveness of selecting specific
combinations rather than simply opting for the maximum
number of entries (see Table 3). For question 3, the optimal
combination yielded significantly better performance than using
all available information. In question 4, while the accuracy of
the optimal combination was slightly lower than that of the
all-inclusive approach, it exhibited a more balanced performance
in terms of sensitivity and specificity; the P values for the
comparison between best and all among questions 3 and 4 were
<0.001 and 0.017, respectively.
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Table 3. Comparison between selecting the optimal combination and selecting all information on the validation set.

SpecificitySensitivityAccuracyQuestion and methoda

If ischemic stroke, do they need intravenous thrombosis or not?

0.66670.98510.8936Besta

0.51850.97010.8404Allb

If ischemic stroke, is it caused by LVOc or not?

0.90.50.8Best

0.97140.33330.8085All

aBest: the best entry combinations for questions.
bAll: all entries and medical imaging examination results.
cLVO: large vessel occlusions.

Discussion

Principal Findings
To the best of our knowledge, this is the first LLM developed
for stroke diagnosis. Domain-specific models are typically more
efficient than general-purpose models. Our model has
demonstrated excellent performance in stroke diagnosis and
classification. Compared to other LLMs, ChatGLM-6B has an
affordable advantage in health care purposes, which is critically
important in the medical domain. The easy deployment of our
model could undoubtedly facilitate the wide-scale application
in primary care.

A Review of Previous Stroke Diagnosis Tool and Their
Limitations
Addressing inequities in acute stroke care necessitates a
thorough examination of each component of regional workflow,
particularly the collaboration among various stroke centers [19].
In addition to raising awareness of stroke symptoms among
high-risk populations, the most critical step is to identify patients
with stroke as early as possible at primary stroke centers.
Although several scales existed for stroke diagnosis, they often
exhibited limited sensitivity and specificity. The Cincinnati
Prehospital Stroke Scale (CPSS) is a clinical evaluation tool for
stroke diagnosis, comprising three items: facial droop, upper
limb weakness, and speech difficulties. If a patient presents
with one of these three symptoms, there is a 72% likelihood
that they are experiencing a stroke; if all three symptoms are
present, the probability increases to 85% [20,21]. The 3-Item
Stroke Scale (3-ISS) is used to identify proximal vessel
occlusion (specifically T-segment or M1-segment occlusion of
the middle cerebral artery), with an overall accuracy of 86%,
sensitivity of 67%, and specificity of 92% [22]. However, these
evaluations are primarily based on clinical symptoms, which
can lead to an underestimation of stroke diagnoses in atypical
patients and an overestimation in individuals with other
neurological conditions. In addition, there are several large
vessel occlusion scales based on imaging techniques, such as
the Alberta Stroke Program Early CT Score (ASPECTS) and
multimodal perfusion imaging. Computed tomography perfusion
is the most widely used multimodal imaging method in
comprehensive stroke centers, and numerous automated
postprocessing workstations, such as Rapid AI and Viz.AI,

assist in LVO and penumbra calculations. These technologies
can enhance LVO workflow to some extent and reduce
door-to-groin time [12,23]. However, there are limitations to
this assessment. First, computed tomography perfusion may not
be available in some primary care settings. Second, automated
postprocessing workstations are not universally implemented
across all hospitals. Third, the varying algorithms used by
different products can also impact the final diagnosis [24].

Clinical Implications
Our results demonstrated the significant potential of LLMs in
stroke diagnosis and management, particularly in differentiating
stroke mimics. The relatively low accuracy of stroke diagnosis
in external validation may be attributed to discrepancies in the
clinical notes template and deficiencies in radiology reports
from other hospitals. Our model, which is based on initial visit
records and brain computed tomography scans, achieved an
accuracy of nearly 80% in identifying LVO and recommending
IVT. This level of accuracy is comparable to that of an
experienced stroke neurologist and surpasses the performance
of the Alberta Stroke Program Early CT Score [25]. Previous
studies also support the notion that multimodal LLMs, when
used to evaluate the prognosis of hemorrhagic stroke, can
significantly enhance predictive performance compared to single
modalities, such as clinical notes or imaging [26]. In contrast
to other disease-specific language representation models, such
as stroke-BERT [27], ChatGLM-6B is a general-purpose
language model with extensive capabilities in language
understanding and generation. This allows it to capture semantic
and contextual information more comprehensively when
processing diverse medical records. In addition, the GLM
framework supports multimodal data input and can integrate
information from images, which is particularly crucial in the
diagnosis of cerebrovascular diseases. When compared to
traditional machine learning and deep learning models, LLMs
often demonstrate superior performance across a range of
language-based tasks. For instance, LLMs have been
successfully applied in diagnosing medical conditions, assisting
in medical education, and even generating medical
documentation, where they can outperform more traditional
models that require extensive feature engineering and fine-tuning
for each specific task [17]. This is the first LLM tool in stroke
diagnosis; the model can give some guidance on stroke
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diagnosis, classification, and management recommendations
based on the primary information. As we know, there exist great
discrepancies in stroke care across different hospitals. Stroke
centers were more likely to receive thrombolytic therapy and
had lower 30-day mortality rates [28]. Thus, the deployment of
this model in primary care, especially where stroke neurologists
are in high demand, could not only improve the ability of stroke
diagnosis early and accurately, but also improve reperfusion
therapy for patients who are very likely to have LVO, and they
can be transferred to advanced stroke center as soon as possible,
saving both time and economic costs. A previous study indicated
that the use of artificial intelligence decision support in a
hyperacute stroke pathway facilitates decision-making and can
improve the rate and time of reperfusion therapies in a
hub-and-spoke system of care [29]. There are also data supports
that transfer-in patients had similar in-hospital mortality rates
compared with front-door patients [30].

Limitations and Future Work
This study has several limitations. First, it only included data
from two centers in the real world for external validation, and
the data were exclusively from the Chinese population, which
could introduce some data bias. We still need more data from
different stroke centers to validate the accuracy of our model.
Second, electronic health records may be fragmented and the
clinical notes could also be subjective and depend on different
physicians, which could possibly have an effect on the test

results. However, the advanced language comprehension
capabilities of LLMs enable them to extract crucial information
from diverse and complex clinical notes, even when the
documentation varies in style and contains incomplete data.
This capacity significantly enhances the quality and efficiency
of medical diagnostics. Finally, despite the satisfactory
performance of this model in stroke diagnosis, as an LLM, the
hallucination is unavoidable. We strive to minimize the
possibility by adjusting the temperature, paying more attention
to the prompt project, and verifying the results in an external
dataset. As an auxiliary diagnostic tool, we must interpret its
suggestions with caution.

Conclusion
In this study, we developed an LLM for stroke diagnosis with
quite good performance in in-context understanding and
reasoning skills by selecting optimal entry combinations, using
tools, and fine-tuning with LoRA, proving its effectiveness.
Our model also performs well in handling missing values,
whether individual data points lack information on certain
entries or the dataset itself lacks corresponding entries. In
general, AI holds promise as a tool to ease the stroke
neurologist’s shortage, improve daily workflow, and supply
unique diagnostic insights by analyzing data simultaneously
from several sources, including neurological history and
examination, blood tests, and images.
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