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Abstract

Background: Insufficient patient accrual is a major challenge in clinical trials and can result in underpowered studies, as well
as exposing study participants to toxicity and additional costs, with limited scientific benefit. Real-world data can provide external
controls, but insufficient accrual affects all arms of a study, not just controls. Studies that used generative models to simulate
more patients were limited in the accrual scenarios considered, replicability criteria, number of generative models, and number
of clinical trials evaluated.

Objective: This study aimed to perform a comprehensive evaluation on the extent generative models can be used to simulate
additional patients to compensate for insufficient accrual in clinical trials.

Methods: We performed a retrospective analysis using 10 datasets from 9 fully accrued, completed, and published cancer trials.
For each trial, we removed the latest recruited patients (from 10% to 50%), trained a generative model on the remaining patients,
and simulated additional patients to replace the removed ones using the generative model to augment the available data. We then
replicated the published analysis on this augmented dataset to determine if the findings remained the same. Four different generative
models were evaluated: sequential synthesis with decision trees, Bayesian network, generative adversarial network, and a variational
autoencoder. These generative models were compared to sampling with replacement (ie, bootstrap) as a simple alternative.
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Replication of the published analyses used 4 metrics: decision agreement, estimate agreement, standardized difference, and CI
overlap.

Results: Sequential synthesis performed well on the 4 replication metrics for the removal of up to 40% of the last recruited
patients (decision agreement: 88% to 100% across datasets, estimate agreement: 100%, cannot reject standardized difference null
hypothesis: 100%, and CI overlap: 0.8-0.92). Sampling with replacement was the next most effective approach, with decision
agreement varying from 78% to 89% across all datasets. There was no evidence of a monotonic relationship in the estimated
effect size with recruitment order across these studies. This suggests that patients recruited earlier in a trial were not systematically
different than those recruited later, at least partially explaining why generative models trained on early data can effectively
simulate patients recruited later in a trial. The fidelity of the generated data relative to the training data on the Hellinger distance
was high in all cases.

Conclusions: For an oncology study with insufficient accrual with as few as 60% of target recruitment, sequential synthesis
can enable the simulation of the full dataset had the study continued accruing patients and can be an alternative to drawing
conclusions from an underpowered study. These results provide evidence demonstrating the potential for generative models to
rescue poorly accruing clinical trials, but additional studies are needed to confirm these findings and to generalize them for other
diseases.

(J Med Internet Res 2025;27:e66821) doi: 10.2196/66821
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Introduction

Background
Recruiting a sufficient number of patients for clinical trials is
challenging [1], and the inability to recruit participants is the
cause of failure for many clinical trials [2]. Approximately, 25%
of clinical trials are discontinued before completion [3], with
insufficient recruitment being the most frequent reason in 31%
of the cases [4]. For adult cancer trials, between 20% and 50%
fail to complete or were unable to reach recruitment goals [5-9].
This has been exacerbated by the recent pandemic where many
trials experienced a considerable reduction in recruitment rates
[10-13], which has continued after the pandemic [12]. While
poor accrual is a problem in all trials, it is a greater problem in
government (ie, academic) sponsored trials [14,15].

When a study is unable to recruit a sufficient number of patients,
the study can be stopped, and the relevant analyses are
performed on the available data. However, not reaching accrual
targets results in underpowered analyses, and the smaller sample
sizes increase the risk of unstable parameter estimates.

Patients have an expectation that their trial participation will
lead to some advancement in knowledge that can be beneficial
to the community [16], but many enroll in trials that do not
answer the primary question adequately [15]. They are,
therefore, enrolled in a study and exposed to toxicity and
additional costs, with limited scientific benefit, which is
considered unethical [17]. In addition to the wasted resources,
it also means that those resources were not used for other studies
that could have produced useful results.

Data augmentation is one approach to address insufficient
accrual by either using real-world data (RWD) or by simulating
additional observations.

RWD can be used for matched controls [18] where patient data
from external sources are used instead of recruiting patients to

the trial itself. In such a case, previous similar trials, registries,
or eHealth record datasets on patients under the standard of care
are matched to the treatment arm patients, and the matched
patients’ data are used as the control arm [19,20]. Such an
approach with external controls has been used for running
single-arm oncology trials [21,22]. However, external controls
are challenging for a number of reasons [18]. First, the patients
from RWD may have different observed and unobserved
characteristics than the treatment arm patients, despite the use
of matching. Second, unaccounted for environmental factors,
such as seasonal effects, may lead to outcome differences. Third,
changes in medical practice may have occurred over time and
since the external control data were collected. Fourth, there may
be measurement differences between the treatment and external
controls resulting in the pooling of incompatible datasets, even
for objective metrics. Fifth, if there are no adequate matches in
the external data for some of the treatment arm patients, then
these treatment arm patients may need to be dropped resulting
in loss of valuable data. Sixth, the outcome variables need to
be available in the external control dataset to allow a
comparison, which can be challenging for surrogate end points
or patient-reported outcomes. Finally, and specific to our
context, insufficient accrual would occur in all arms in a study
and not only in the controls; therefore, external controls would
not address our problem.

Augmentation through simulation can be a potential solution
when there are insufficient data and is a common practice for
imaging data [23-25] and time series data [26,27]. In the case
of cross-sectional RWD, augmentation methods, such as
sampling with replacement (henceforth referred to as bootstrap),
and generative models, such as sequential synthesis using
decision trees, generative adversarial networks (GANs), and
variational autoencoders (VAEs), have been evaluated with
encouraging results [28-32]. Augmentation methods have also
been applied to small clinical trial datasets as a first step in
synthetic data generation [33,34]. One study used a VAE
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generative model to simulate additional patients as a mechanism
to design smaller clinical trials [35].

Objective
In this study, we therefore adopt augmentation through
simulation and expand on this body of work by more
comprehensively evaluating multiple types of generative models
and on a larger number of clinical trials. We make 2 hypotheses
that we evaluate in this work as follows: (1) patients recruited
early in a clinical trial are similar on the treatment effect to
patients recruited later in a clinical trial and (2) because of
hypothesis 1, we can train a generative model on early patients
to simulate the remaining patients in insufficiently accruing
trials to reach target recruitment and replicate the results of the
original study that reached target recruitment.

Specifically, generative models are used to augment breast
cancer clinical trials that do not reach target recruitment. We
start with datasets from 9 completed breast cancer clinical trials
and simulate different levels of insufficient accrual, and in each
case, use generative machine learning models to simulate
patients to compensate for the insufficient accrual. We then
replicate the analyses of the published studies using the

augmented datasets to determine if they produce similar findings
as if the target number of patients were actually recruited.

Methods

Overview
Data augmentation methods using generative models were
applied on 9 breast cancer clinical trial datasets. Insufficient
accrual was simulated and augmentation then applied to
compensate for that. The question was whether this can produce
similar findings to the published analyses with the full data.

Datasets
The clinical trials that were included are summarized in Table
1, with further details described in Table S1 in Multimedia
Appendix 1 [36-38]. The Rethinking Clinical Trials (REaCT)
were supported by the REaCT program at the Ottawa Hospital
[39]. The remaining datasets included a larger number of
patients and multiple sites.

Table 2 shows the countries that the patients were recruited
from. The studies spanned multiple jurisdictions in North
America, Europe, Australia, and South Africa.
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Table 1. Key features of the clinical trial datasets used in this study.

Enrollment
period

Patients in
the treat-
ment arm,
n (%)

Treatment arms
considered

Patients
in the
control
arm, n
(%)

Control armStrata
info?

Variables

in dataseta,
n

Participants, NNCT identifierDataset

December
2016 to June
2019

113 (52)Active olanzap-
ine

105 (48)PlaceboTrue8218NCT02861859RE-

aCTb-ILI-
AD

August 3,
2016, to June
5, 2018

112 (49)12 weekly BTA118 (51)4 weekly BTATrue8230NCT02721433REaCT-

BTAc

June 2, 2003,
to July 31,
2008

3789 (50)Exemestane3787 (50)AnastrozoleTrue257576NCT00066573CCTGd

MA27

January 22,
2001, to
March 31,
2004

1654 (50)Clodronate1656 (50)PlaceboTrue493310NCT00009945NSABPe

B34

May 2015 to
September
2018

153 (38)5 d of granulo-
cyte colony
stimulating fac-
tor

248 (62)7 or 10 d of
granulocyte
colony stimu-
lating factor

True10401NCT02428114
and
NCT02816164

REaCT-
G/G2

March 2016 to
March 2018

24 (48)PORT; totally
implanted vascu-
lar access de-
vice

26 (52)Peripherally
inserted cen-
tral catheter

True4750NCT02632435REaCT-

HER2+f

1999 to 2006903 (50)Anastrozoleh900 (50)TamoxifenhFalse351803NCT00295646ABC-

SGg-12

November 1,
2018, to April
2, 2020

————jFalse11211NCT03664687REaCT-

ZOLi

January 2006
to February
2010

2262 (38)Zoledronic acid2268 (38)ClodronateFalse236018NCT00127205SWOGk

0307l

aThis is the total number of variables that were included in the generative models or bootstrap.
bREaCT: Rethinking Clinical Trials.
cBTA: bone-targeted agents.
dCCTG: Canadian Cancer Trials Group.
eNSABP: National Surgical Adjuvant Breast and Bowel Project.
fHER2+: human epidermal growth factor receptor-2 positive.
gABCSG: Austrian Breast and Colorectal Cancer Study Group.
hTamoxifen represents the arms of Nolvadex/control and Nolvadex/zoledronate in the clinical trial while anastrozole represents the arms of Arimidex/control
and Arimidex/zoledronate.
iZOL: zoledronate.
jNot applicable.
kSWOG: Southwest Oncology Group.
lInitially, the trial included 3 arms; however, only the indicated 2 arms had patients assigned to them throughout the duration of the study. Moreover,
the available data for our study did not include any randomization codes, and as such, the original primary analysis comparing the outcomes between
the 2 arms could not be replicated. Instead, we compared the 5-year survival probabilities between those with negative and positive or equivocal HER2
status. The estimate of the difference of survival probabilities and SE were produced.
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Table 2. Countries of recruitment for the clinical trials used in this study.

Countries of recruitmentDataset

CanadaREaCTa-ILIAD

CanadaREaCT-BTAb

Australia, Canada, Hungary, Italy, Puerto Rico, South Africa, Switzerland,
and the United States

CCTGc MA27

United StatesNSABPd B34

CanadaREaCT-G/G2

CanadaREaCT-HER2+e

Austria and GermanyABCSGf-12

CanadaREaCT-ZOLg

Canada and the United StatesSWOGh0307

aREaCT: Rethinking Clinical Trials.
bBTA: bone-targeted agents.
cCCTG: Canadian Cancer Trials Group.
dNSABP: National Surgical Adjuvant Breast and Bowel Project.
eHER2+: human epidermal growth factor receptor-2 positive.
fABCSG: Austrian Breast and Colorectal Cancer Study Group.
gZOL: zoledronate.
hSWOG: Southwest Oncology Group.

Ethical Considerations
This study was a secondary analysis of datasets from already
completed clinical trials. The secondary analysis was approved
by the Children’s Hospital of Eastern Ontario Research Ethics
Board (protocol: 23/47X) and the Ontario Cancer Research
Ethics Board (project ID: 3749).

Nonmonotonic Treatment Effect Size Hypothesis
We will use the terms “early participants” to indicate participants
who were recruited in the earlier stages of a study and “late
participants” to indicate those who were recruited in later stages
of a study. For early participants to be good candidates for
training a generative model that can be used to simulate late
participants, there should not be a systematic difference in the
estimated effect size between these 2 groups.

Estimated effect sizes tend to vary as patients are recruited and
converge to the true value as more information is collected [40].
Instability of estimates at small sample sizes is a contributing
factor. This means that training a generative model on earlier
patients may enable the simulation of realistic patients that are
representative of those that would be recruited later in the trial
if the effect over time is not systematic.

However, existing sites gain experience with conducting a trial
and this may result in process adjustments along that learning
curve that may have an impact on the outcome. This can also
happen, for example, when there is treatment effect
heterogeneity whereby some patient characteristic (eg, disease
severity or age) interacts with the intervention and more patients
at one end of the severity or age scale are recruited earlier in
the study [41]. One simulation demonstrated a monotonic change

in effect size as more patients are recruited [42]. In that example,
earlier patients had a meaningfully different estimated effect
size compared to later patients with a trend over time. In such
a case, training a generative model on earlier patients may not
produce simulated patients that are representative of the later
patients.

Therefore, it is an empirical question whether such a monotonic
effect can be observed in practice.

As can be seen in Table 1, our 9 studies were conducted over
an extended period. If the studies were very short, then there is
a higher likelihood that early and late participants would be
similar. However, the extended enrollment periods suggest that
there was ample opportunity for the characteristics of the
participants to change over time, as well as adjustments to the
trial processes to occur as study staff gain more experience with
time.

To test the hypothesis that early and late participants are similar
on the estimated effect size, the monotonic relationship of the
effect size and order of participant recruitment was examined
with a regression model of treatment and recruitment order main
effects and their interaction. Point estimates and 95% CIs of
the interaction term were obtained, indicating statistical
significance at P<.05 if they do not include 0. This investigation
was not conducted for the trials where the main analysis did not
use a statistical model with treatment as predictor (ie,
REaCT-zoledronate [ZOL], Southwest Oncology Group 0307,
and REaCT–human epidermal growth factor receptor-2 positive
[HER2+]). If the effect size was not monotonic, then the
interaction term would not be statistically significant.
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Generative Modeling Methods

Overview
We used 4 common machine learning–based generative
modeling methods for structured tabular data to synthesize the
analysis datasets from the clinical trials under investigation.
These methods include sequential synthesis using decision trees,
Bayesian networks, GAN, and VAE. The last 3 methods were
implemented as an adaptation of an open-sourced Python
package Synthcity [43]. Our implementation, which is publicly
available (Data Availability section), provides further
preprocessing and postprocessing on top of Synthcity. No further
hyperparameter tuning was performed beyond what was
available in the Synthcity implementation. For each generative
model, the number of variables indicated in Table 1 were
synthesized.

In addition, we used the “bootstrap” technique for comparison
as a baseline. Bootstrap is simply sampling with replacement
from the training data to add the missing patients.

Sequential Decision Trees
Similar to using a chaining method for multilabel classification
problems, sequential decision trees generate synthetic data using
conditional trees in a sequential fashion [44-46]. It has been
commonly used in the health care and social-science domains
for data synthesis [28,47-54]. The details of the implementation
procedures are described elsewhere [44].

Bayesian Networks
Bayesian networks are models based on directed acyclic graphs
that consist of nodes representing the random variables and arcs
representing the dependencies among these variables. To
construct the Bayesian networks model, the first step is to find
the optimal network topology and then to estimate the optimal
parameters [55]. Starting with a random initial network structure,
the Hill Climb heuristic search is used to find the optimal
structure. Then, the conditional probability distributions are
estimated using the maximum a posteriori estimator [56]. Once
the network structure and the parameters are estimated, we can
initialize the nodes with no incoming arcs by sampling from
their marginal distributions and predict the rest of the connected
variables using the estimated parameters.

Conditional GAN
A basic GAN consists of 2 artificial neural networks, a generator
and a discriminator [57]. The generator and the discriminator
play a min-max game. The input to the generator is noise, while
its output is synthetic data. The discriminator has 2 inputs: the
real training data and the synthetic data generated by the
generator. The output of the discriminator indicates whether its
input is real or synthetic. The generator is trained to “trick” the
discriminator by generating samples that look real. In contrast,
the discriminator is trained to maximize its discriminatory
capability.

Among all the variations of GAN architectures, the conditional
tabular GAN (CTGAN) is often used in tabular data synthesis

[58]. CTGAN builds on conditional GANs by addressing the
multimodal distributions of continuous variables and the highly
imbalanced categorical variables [59]. CTGAN solves the first
problem by proposing a per-mode normalization technique. For
the second problem, each category of a categorical variable
serves as the condition passed to the GAN.

Variational Autoencoder
VAEs use artificial neural networks and involve 2 steps (ie,
encoding and decoding) to generate new samples [60]. First, an
encoder is generated to compress input data into a
lower-dimensional latent space, in which the data points are
represented by distributions. The second step is a decoding
process, in which new data samples are reconstructed as output
from the latent space. The neural network is optimized by
minimizing the reconstruction loss between the output and the
input. VAEs are known to generate complex data of various
types due to their ability to learn more complex distributions
and relationships [61]. Many variants have been proposed as
an extension of VAE, such as triplet-based VAE [62],
conditional VAE [63], and Gaussian VAE [64]. In particular,
the tabular VAE was proposed as an adaptation of standard
VAE to model and generate mixed-type tabular data with a
modified loss function [59].

Augmentation
The augmentation procedure ensured that the augmented data
had the same number of patients as the original clinical trial.
Therefore, there is no difference in size between the published
study and the augmented datasets used in our analyses.

Figure 1 illustrates the main steps of generating the augmented
datasets for the trials given in Table 1. A trial’s original dataset,
with N number of patients, was first reduced by r. The variable
r signifies the fraction of the last patients who were deliberately
removed from the input dataset. This results in a reduced dataset
with “(1-r) N” patients. In practice, the reduced dataset
represents a poorly accruing clinical trial that needs to be
rescued. The shaded area outlines the typical steps taken by a
practitioner during the implementation process.

In our study, the r value was varied incrementally from 0.1 to
0.5 in steps of 0.1. For instance, a 0.2 r value indicates that the
last 20% of patients were deliberately removed from the original
trial dataset. The reduced dataset was then used to train a
generative model. In case of bootstrapping, the reduced dataset
was used for sampling with replacement. After training, the
necessary samples for augmentation were generated from the
trained model and concatenated onto the reduced dataset. To
account for stochasticity, and as depicted by the dotted lines in
the Figure 1, ten versions of the synthetic data were generated
leading to multiple versions of the augmented datasets.
Subsequently, each of the augmented datasets were analyzed
in the same way as the published analysis. The 10 analyses
results were then combined to obtain a single augmented dataset
result, and that was compared with the results obtained from
the original dataset (as described in the subsequent section).
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Figure 1. Augmentation of clinical trial datasets using the generative model.

Some of the trials had implemented stratified randomization,
and in those cases, we modified the basic process to
accommodate stratification, for example, consider that as per
the predefined protocol, the original dataset is stratified by 2
variables, the “Cancer Type” and the “Site Number.” Rejection
sampling was used to draw from the generated datasets to
achieve the desired strata proportions along these 2 dimensions,
in addition to the appropriate numbers of patients in each arm
of the study.

Combining Rules
The original proposal for synthetic data generation treated it as
a form of multiple imputation [65]. Under the multiple
imputation model, multiple datasets, say m, are synthesized and
analyzed. The combining rules are used to compute the
parameter estimates and variances across the analysis results
from the m synthetic datasets [66-68]. Such corrections for the
parameter estimates and variances ensured that variability
introduced by the generative process are accounted for when
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estimating parameters and making population inferences from
synthetic datasets.

Once the generative model was trained on the underlying
distribution of the input data, it was used to create m synthetic
datasets of size r × N, and then each was added to that training
dataset to augment it. This resulted in m versions of augmented
datasets, each containing N records.

The m augmented datasets were analyzed using the same
methodology applied to the original data in the relevant
publications. This analysis yielded estimated parameters for
each of the augmented versions. Subsequently, these estimated
parameters were combined in accordance with the following
partial synthesis rules.

For a particular model parameter qi with variance vi using
synthetic dataset i where i=1...m. The adjustment for the model
parameters and variances is as follows [52,68,69]. The combined

model parameter . is the mean across the m model parameters

from the synthetic datasets , and is the mean
variance across the m model parameters from the synthetic

datasets where . The between imputation variance is

given by , the adjusted variance is computed as

, and the adjusted large sample 95% CI of the model

parameter is computed as . For this study, we set
m=10, which is consistent with current practice for the analysis
of synthetic data [52,68-70] and has been recommended based
on a recent simulation [71].

Augmentation Fidelity
For the generated datasets, we evaluated the fidelity relative to
the training dataset. Fidelity indicates the extent to which the

distributions of generated data deviate from the training data.
For example, if r=0.1, then 90% of the dataset is used for
training the generative model, and 10% is generated. We
assessed the fidelity using the Hellinger distance [72], which
has the advantage of being interpretable as it varies from 0 to
1. The Hellinger distance is averaged across the 10 generated
datasets.

Evaluation of Study Replicability
We evaluated the replicability of the analysis results using the
augmented datasets. Replicability is the reliability of findings
when an existing study is repeated using the same analytical
methods but different data [73]. We assessed it by comparing
the published analysis results using the real datasets for these
clinical trials with the results of the same analysis performed
on the partially synthetic (ie, augmented) data. The details of
the published analyses that were replicated are summarized in
Multimedia Appendix 1.

For each clinical trial, a model was fitted to obtain a parameter
estimate and its SE. For instance, if generalized estimating
equations [36] were used for modeling the real data, an estimate
would be the coefficient associated with the selected predictor
as per the published study. We obtained a value for the estimate
and its 95% CI. The same was applied to each of the m versions
of the augmented data. We combined the results from all the
augmented versions using the combining rules discussed above.
Subsequently, the estimates and CIs of the original and
augmented data were compared in terms of the estimate
agreement, the decision agreement, standardized difference,
and the CI overlap. These criteria have been used in the
literature to assess the replicability of analyses using synthetic
data [71,74]. The criteria are defined in Textbox 1.

Textbox 1. Criteria to assess the replicability of analyses using synthetic data.

• Estimate agreement: It is a Boolean indicator of whether the estimate produced by the augmented data is within the 95% CI produced by the real
data. This requires that an augmented data effect estimate be within the range of plausible values for the true effect based on evidence from the
real data. Under the assumption that the parameter variances are equal between the real and augmented datasets, estimate agreement is expected
83% of the time under no bias [75].

• Decision agreement: It is a Boolean indicator of whether the same conclusion is drawn from the real and augmented data estimates. This means
that the augmented data estimates have the same direction and statistical significance as the real data. The decision agreement does not apply if
the analysis is descriptive. We would expect decision agreement to occur at a rate equal to power, which would be at least 80% of the time (ie,
assuming the 9 trials are powered by design for at least 80%) [75].

• Standardized difference: It is a Boolean indicator of whether the difference in the parameter estimate between real and augmented data is consistent
with the null hypothesis of no difference [75]. The Z value is computed and compared with the standard normal (|Z|≤1.96).

• CI overlap: It is a proportion of the real and augmented data parameter CIs overlap [76], which is a commonly used synthetic data utility metric.
We would want this to be as close to 100% as possible but set 80% as a minimal value.

The 2 agreement metrics are consistent with previous measures
of replicability [77-79], have been used to compare RWD
analysis results against a clinical trial reference [75,80-83], and
have been used to assess the replicability of psychological
studies [77].

Results

The first set of results are shown in Table 3 where the monotonic
relationship of the effect size over time is investigated. In none
of the trials used for the study was the interaction term (ie,
recruitment order by treatment) found to be statistically
significant, indicating lack of evidence of monotonically varying
treatment effect with respect to the order of participant
recruitment.
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Table 3. Evaluation of monotonic relationships over recruitment order in the estimated effect size.

Interaction effect (95% CI)Main effect (95% CI)Trial

−0.00000371 (−0.0000116 to

4.16×10–6)

0.52 (0.023 to 1.01)REaCTa-ILIAD

0.011 (−0.032 to 0.0542)−1.85 (−4.75 to 1.04)REaCT-BTAb

−0.0000135 (−0.0000854 to

5.84×10–5)

0.033 (−0.117 to 0.18)CCTGc MA27

8.28×10–5 (−0.000072 to 0.00024)−0.036 (−0.18 to 0.11)NSABPd B34

6.6×10–6 (−0.000005 to 1.85×10–5)0.015 (−0.0019 to 0.032)REaCT-G/G2

7.36×10–5 (−0.0004 to 0.00054)0.11 (−0.13 to 0.35)ABCSGe-12 (tamoxifen vs anastrozole)

6.69×10–5 (−0.00041 to 0.00054)−0.24 (0.48 to 0.002)ABCSG-12 (zoledronic acid vs no zoledronic acid)

aREaCT: Rethinking Clinical Trials.
bBTA: bone-targeted agents.
cCCTG: Canadian Cancer Trials Group.
dNSABP: National Surgical Adjuvant Breast and Bowel Project.
eABCSG: Austrian Breast and Colorectal Cancer Study Group.

The results on the data with insufficient accrual (ie, the
“reduced” datasets with no augmentation) for 2 values of r at
0.2 and 0.5 are shown in Table 4.

We can make 4 observations from Table 4:

1. For the REaCT-HER2+ study, which had the smallest
sample size, there is no decision agreement as r increases.
This is not surprising as the low sample sizes would mean
unstable parameter estimates and larger CIs. The small
sample size also explains the lack of difference in the
standardized difference comparison.

2. The REaCT-ILIAD study had a statistically significant
result with the full data. Decision agreement is no longer
attained as r increases due to the smaller sample sizes, lower
power, and hence, wider CIs.

3. The Austrian Breast and Colorectal Cancer Study Group
(ABCSG)-ZOL analysis had a marginal nonsignificant
outcome in the full trial. At small r values, small changes
can have an impact on the statistical significance of the
results, but that becomes less of an issue for large r values
as the results will no longer be marginal with wider CIs.
Although, one would expect that if the original results were
marginally statistically significant, there would not be
decision agreement even for larger values of r.

4. For the remaining trial analyses, the results were not
significant in the original data. Therefore, the decision
agreement would not be affected with the lower power as
r increases, and the parameter estimates retained the same
direction as the full trial. The standardized difference
comparison indicates that the parameters were not different
even as r increases, which is consistent with the inability
to detect a monotonic effect with recruitment order
presented above, and detecting a difference becomes more
difficult as the sample size decreases.

These results indicate that drawing conclusions from reduced
datasets can be misleading and can produce incorrect findings
relative to those that would be obtained if target recruitment
was achieved. In addition, the nature of any error would not be
known a priori.

The fidelity results for the augmented datasets are shown in
Figure 2. At low values of r, the generated datasets were small,
making fidelity comparisons unstable. For the smaller datasets,
such as REaCT-HER2+, REaCT–bone-targeted agents (BTA),
REaCT-ZOL, and REaCT-ILIAD, the Hellinger distance values
were highest but still relatively low on an absolute scale. For
the other datasets, the Hellinger values were quite small with
variation in a very narrow range, demonstrating high fidelity.
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Table 4. The baseline primary results for the original datasets, and for the reduced datasets at 2 different values of r (ie, 0.2 and 0.5)

r=0.5r=0.2Full datasetTrial
short
name

Trial
name

CI
over-
lap

Stan-
dard-
ized
dif-
fer-
ence

Deci-
sion
agree-
ment

Esti-
mate
agree-
ment

Effect
size
(SE)

Sam-
ple
size,
N

CI
over-
lap

Stan-
dard-
ized dif-
ference

Deci-
sion
agree-
ment

Esti-
mate
agree-
ment

Effect
size
(SE)

Sam-
ple
size,
N

Analy-
sis
method

Vari-
ables
used
in the
analy-
sis

Effect
size
(SE)

0.851010.39
(0.36)

1090.881110.64
(0.28)

174GEEb80.52
(0.25)

ILIAD
[84]

RE-

aCTa-ILI-
AD

0.79111−3.46
(2.03)

1150.89111−2.54
(1.63)

184LMd8−1.85
(1.48)

BTA
[85]

REaCT-

BTAc

0.87111−0.006
(0.102)

37880.961110.045
(0.084)

6060Coxf60.033
(0.076)

CCTG
[86]

CCTGe

MA27

0.78111−0.124
(0.108)

16550.95111−0.034
(0.085)

2648Cox6−0.036
(0.076)

NS-
ABP
[87]

NSABPg

B34

0.761110.0005
(0.016)

2000.911110.012
(0.010)

320GEE100.015
(0.009)

G/G2
[88]

REaCT-
G/G2

0.621010.017
(0.009)

250.931110.0075
(0.006)

40GLMi30.0058
(0.0062)

HER2+
[89]

REaCT-

HER2+h

0.871110.07
(0.17)

9010.961110.13
(0.14)

1442Cox30.11
(0.12)

ABC-
SG
[90]

ABC-

SGj-12
(tamox-
ifen vs
anastro-
zole)

0.87111−0.26
(0.17)

9010.95101−0.27
(0.14)

1442Cox3−0.24
(0.1237)

ABC-
SG-
ZOL
[90]

ABCSG-

12 (ZOLk

vs no
ZOL)

0.811—158.20
(1.10)

1050.721—158.07
(0.89)

168t test258.98l

(0.76)

ZOL
[91]

REaCT-
ZOL

0.86111−0.0096
(0.02)

30090.861114.03×10–5

(0.016)

4814Survn3−0.0087
(0.0145)

SWOG
[92]

SWOGm

0307

aREaCT: Rethinking Clinical Trials.
bGEE: general estimating equations.
cBTA: bone-targeted agents.
dLM: linear model.
eCCTG: Canadian Cancer Trials Group.
fCox: Cox regression
gNSABP: National Surgical Adjuvant Breast and Bowel Project.
hHER2+: human epidermal growth factor receptor-2 positive
iGLM; general linear model.
jABCSG: Austrian Breast and Colorectal Cancer Study Group.
kZOL: zoledronate.
lNo effect was estimated for REaCT-ZOL—the figures shown correspond to descriptive analysis.
mSWOG: Southwest Oncology Group.
nSurv: difference in survival probabilities.
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Figure 2. Hellinger distance results by comparing the training dataset with the generated dataset. The values were averaged across all generated 10
datasets. A value of 0 means that the 2 datasets are the same and of 1 indicates maximum difference. Note that the y-axis scales are not the same across
all plots to provide better readability. ABCSG: Austrian Breast and Colorectal Cancer Study Group; BTA: bone-targeted agents; CCTG: Canadian
Cancer Trials Group; CTGAN: conditional tabular generative adversarial network; HER2+: human epidermal growth factor receptor-2 positive; NSABP:
National Surgical Adjuvant Breast and Bowel Project; REaCT: Rethinking Clinical Trials; SWOG: Southwest Oncology Group; TVAE: tabular variational
auto encoder; ZOL: zoledronate.

Another representation of fidelity is shown in Figure 3, where
we compared the training dataset with a generated dataset of
the same size. Here, we can see high fidelity values for all
datasets as these results were less affected by small dataset sizes.
As the training dataset size decreased with higher r, the fidelity
decreased, but the changes in fidelity were modest.

All the detailed replicability results for all values of r are
provided in Table S2 in Multimedia Appendix 1.

The first general observation is that the bootstrap and sequential
synthesis tend to perform best among all the generative models.
Therefore, in Figure 4 we only show their results across all
datasets that were examined for the 4 measures of replicability.
Both types of generative models achieved high estimate and
decision agreement and maintained a CI overlap above 80%
even as r values approached 0.5.
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Figure 3. Hellinger distance results by comparing the training dataset with a generated dataset of the same size. The values were averaged across all
generated 10 datasets. A value of 0 means that the 2 datasets are the same and of 1 indicates maximum difference. Note that the y-axis scales are not
the same across all plots to provide better readability. ABCSG: Austrian Breast and Colorectal Cancer Study Group; BTA: bone-targeted agents; CCTG:
Canadian Cancer Trials Group; CTGAN: conditional tabular generative adversarial network; HER2+: human epidermal growth factor receptor-2 positive;
NSABP: National Surgical Adjuvant Breast and Bowel Project; REaCT: Rethinking Clinical Trials; SWOG: Southwest Oncology Group; TVAE: tabular
variational auto encoder; ZOL: zoledronate.

It should be noted that sequential synthesis fails for the smallest
clinical trial and that was not included in the denominator for
Figure 4. This failure was a design decision in the
implementation that we used to not train a model with less than
50 observations. Also note that in the plots model failures are
not counted in the denominator.

For the results by dataset, we focus on 4 trials that exemplify
all the scenarios in our dataset across all 4 generative models,
and are shown in Figure 5 for estimate agreement, Figure 6 for
decision agreement, Figure 7 for the standardized difference,
and Figure 8 for the CI overlap. The values were consistently
high for estimate agreement, standardized difference, and CI
overlap across all the scenarios, even at values of r approaching
0.5. The results for decision agreement in Figure 6 were more
varied and can be characterized as follows:

1. For studies where there was a statistically significant result,
for example, REaCT-ILIAD, the ability to maintain decision
agreement deteriorates with higher values of r. The best
performing generative model was sequential synthesis in
that decision agreement was maintained for r as high as
0.4. Next was the bootstrap, which had a decision agreement
for r up to 0.3.

2. For studies where the results were not statistically
significant (eg, Canadian Cancer Trials Group MA27) or
a marginal nonsignificant result (eg, ABCSG–ZOL), the
value of r had no impact on the replicability of the results
in that all the results were successfully replicated.

3. For smaller studies (eg, REaCT-ZOL), some generative
models were able to maintain decision agreement for r as
high as 0.3, although most models failed for r greater than
that.
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Figure 4. All 4 metrics calculated across all the datasets for the bootstrap and sequential generators. For estimate agreement, decision agreement, and
standardized difference, the y-axis is the proportion across all datasets. For CI overlap, the y-axis is the average across all data sets. Modeling failures
are not considered.
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Figure 5. Estimate agreement for selected datasets—proportion across all generators. ABCSG: Austrian Breast and Colorectal Cancer Study Group;
CCTG: Canadian Cancer Trials Group; HER2+: human epidermal growth factor receptor-2 positive; REaCT: Rethinking Clinical Trials; ZOL: zoledronate.

Figure 6. Decision agreement for selected datasets—proportion across all generators. ABCSG: Austrian Breast and Colorectal Cancer Study Group;
CCTG: Canadian Cancer Trials Group; HER2+: human epidermal growth factor receptor-2 positive; REaCT: Rethinking Clinical Trials; ZOL: zoledronate.
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Figure 7. Standardized difference indicator for selected datasets—proportion across all generators. ABCSG: Austrian Breast and Colorectal Cancer
Study Group; CCTG: Canadian Cancer Trials Group; HER2+: human epidermal growth factor receptor-2 positive; REaCT: Rethinking Clinical Trials;
ZOL: zoledronate.

Figure 8. CI overlap for selected datasets—average across all generators. ABCSG: Austrian Breast and Colorectal Cancer Study Group; CCTG:
Canadian Cancer Trials Group; HER2+: human epidermal growth factor receptor-2 positive; REaCT: Rethinking Clinical Trials; ZOL: zoledronate.

Discussion

Summary
Many clinical trials face accrual problems, resulting in an
inability to reach target recruitment and resulting in analysts
drawing conclusions from potentially underpowered studies.
This exposes patients to toxicity and additional costs, with

potentially no scientific benefit. Accrual problems may be due
to genuine difficulty with recruitment of patients or with
execution quality challenges during the trial itself.

When a study is unable to recruit more patients, the study can
be stopped, and the relevant analyses is performed on the
available data. For small trials, analyzing the data with
insufficient accrual results in even smaller sample sizes, which
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can produce unstable parameter estimates and direction. For
larger trials, when the complete trial results are statistically
significant, an analysis with insufficient accrual can be
underpowered and result in nonsignificant findings. For marginal
results with the full data, insufficient accrual can reverse their
statistical significance. When the full study results are not
significant, then insufficient accrual would have less of an
impact. A priori, it would not be known which one of these
situations pertains to a particular study, making it difficult to
interpret the results when analysis is performed with unplanned
accrual deficiencies.

The objective of this study was to determine whether generative
models can be a useful tool to rescue clinical studies that have
insufficient accrual, through augmentation. Generative models
have been applied to simulate participants [93-96] and
counterfactuals [95,96] in the context of in silico clinical trials.
While there have been concerns about generative models
overfitting for the small datasets typically encountered in clinical
trials [96,97], recent studies have been able to generate synthetic
variants of full clinical trial datasets with high utility
[74,95,97-102].

To test the ability of generative models to augment clinical trial
datasets, we evaluated 4 different types of commonly used
generative models (ie, sequential synthesis using decision trees,
Bayesian network, GAN, and VAE) on 9 different breast cancer
clinical trials and 10 different analyses. The study simulated
different degrees of insufficient accrual and the generative
models simulated replacement patients to compensate. The last
fraction of recruited patients were replaced with simulated ones
ranging from r=0.1 to r=0.5. In addition to generative models,
we evaluated a bootstrap approach. These augmented datasets
were then used to replicate the published analyses (ie, using the
complete datasets) on these 9 trials.

An important assumption for these augmentation methods to
work was that participants recruited early were not
systematically different than late participants in their estimated
effect size. It has been argued that estimated effect sizes tend
to vary as patients are recruited and converge to the true value
with more information [40,42]. In contrast, as sites gain
experience and adjust their processes, there could be a
monotonic treatment effect over recruitment time. Also,
consider, for example, if there was treatment effect heterogeneity
on disease severity (ie, the impact of the treatment on the
outcome depends on disease severity), with high severity
patients having a bigger response to the intervention, and fewer
high severity patients were recruited early in the study compared
with late in the study. This would manifest itself as a monotonic
relationship between the estimated effect size and patients
recruited over time.

We tested that monotonic relationship hypothesis by examining
the interaction effect between recruitment order and treatment
on the outcome. We did not find evidence across the trials that
this relationship was monotonic (ie, all interaction effects were
small and not statistically significant), meaning that we could
not detect an increasing or decreasing effect size as more
patients were recruited. This is despite these trials having long
enrollment periods, in some cases lasting years. Therefore, if

the early and late participants were, on average, similar in the
estimated effect size, then generative models and a simple
bootstrap would also be expected to work well.

These results are supportive of hypothesis 1, which stated that
patients recruited early in a trial are similar to those recruited
later in the trial.

Furthermore, the fidelity of the generated datasets was quite
high relative to the training datasets from the different generative
models. In all cases, the patterns in datasets that were
synthesized had a high similarity on the Hellinger distance to
the datasets of the participants already recruited.

Several observations can be made from our results:

1. A bootstrap would be attractive due to its simplicity and
low computational burden. However, this method tended
to lack consistent decision agreement when a trial result
was statistically significant and when the trial was small,
while in other scenarios, sampling with replacement
performed well. However, the former are nontrivial failure
modes.

2. All approaches struggled with marginal results (eg,
marginally nonsignificant results) when the r value was
low. This indicates a general sensitivity to that particular
scenario.

3. For r values as high as 0.4, sequential synthesis performed
well across all datasets. This means that both decision
agreement and estimate agreement were achieved, CI
overlap was at or above 0.8, and it was either equivalent to
or better than the other methods evaluated.

4. Bayesian networks and the GAN had the next best
performance after sequential synthesis; however, the
Bayesian network had slightly better CI overlap overall up
to an r=0.4.

To ensure reasonable performance across multiple scenarios,
the results suggest that sequential synthesis can be used to
address insufficient accrual up to r=0.4 (ie, only 60% of the
target is recruited).

These results are supportive of hypothesis 2, which stated that
generative models can simulate the remaining patients in a
clinical trial with insufficient recruitment, and the augmented
dataset would replicate the results if the trial did reach target
recruitment.

It should be noted that using generative models to simulate
additional patients as described in this study would not be
preplanned, as opposed to a planned interim analysis.
Insufficient accrual becomes a problem when there are no
budgeted resources available to continue recruiting patients, for
example, by adding sites, extending recruitment time, or
changing the inclusion and exclusion criteria. Although, if the
results from the augmentation show positive findings, the case
may be made to allocate more resources to continue recruitment.
Additionally, if the results from augmentation show negative
findings, then that would provide a stronger case for terminating
the study.

The countries of recruitment for the clinical trials used in this
study cover multiple regions around the world as shown in Table
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2. Our results were consistent across the different jurisdictions.
Therefore, it would be reasonable to have confidence that the
findings are generalizable across multiple jurisdictions and not
specific to a particular region.

Comparison With Prior Work
Previous studies have demonstrated that sequential synthesis
performs well (ie, in terms of replicability of published studies)
on oncology clinical trial datasets [74,98], and therefore, our
findings are consistent with that evidence. More generally,
sequential synthesis has been found to have superior utility
across different types of datasets relative to other types of
generative models [103-105]. Also, it should be noted that most
of the published analyses that were replicated across all clinical
trials used datasets that were low dimensional, which imposes
lower sample size requirements for the generative models.

An earlier study found that a VAE generative model trained on
early patients could augment a clinical trial with simulated
patients [35]. In that study, the authors argued that generative
models can also enable the design of smaller studies to start off
with. This means that studies would be designed to be smaller,
with augmentation used to reach target recruitment for the final
analysis. However, that analysis only considered a single
simulated clinical trial (ie, not real data).

The argument for using augmentation to prospectively design
smaller studies is appealing. The largest factor driving up the
cost of trials is the number of participants required to achieve
sufficient statistical power [106,107]. The median cost per
participant in drug trials (ie, in general) was estimated to be US
$41,413 [107], the median cost per participant specifically in
oncology drug trials was US $100,271 [107], and an earlier
study found the 1-year cost to be US $17,003 per patient in the
treatment arm and US $15,516 per control participant [108].
Designing studies that require fewer patients to be recruited can
improve the cost-effectiveness of studies.

Our current analysis generalizes this work to other types of
generative models, including a VAE, but we did find that a VAE
did not perform well on our criteria. Plus, we performed the
evaluation on 9 real clinical trial datasets of different sizes and
durations and compared the generative models to a simple
bootstrap. Furthermore, an important difference is that rescuing
a study due to insufficient accrual using augmentation is not
planned, whereas designing a small study is planned.

Nevertheless, using augmentation to design smaller studies
deserves further investigation, and it remains a necessity that
researchers aim to recruit the target sample size wherever
possible.

Clinical trials are known to underrepresent certain groups, and
hence, there is the potential for introducing bias in the results.
For instance, a recent study in Canada found that the
underrepresentation of Black patients in cancer research remains
a significant concern, with 15 out of the 20 most common types
of cancer not being studied in Black communities [109,110];
studies on underrepresented populations in clinical trials show
racial and ethnic disparities worldwide [111-118]; and there is
a consistent underrepresentation of various other groups, such
as older adults [111,112,119-122], women

[111,113,119,120,123], and individuals of lower socioeconomic
status and educational level [111,112,124]. Furthermore,
synthetic data generation has been shown to introduce bias in
the generated data relative to the training data [125], and these
biases are propagated across multiple generations of generative
models, where the output of one is used as training for the next
one [126].

Our analysis did not explicitly evaluate representation bias as
we were replicating the published analyses rather than
identifying and correcting any weaknesses and did not explicitly
attempt to mitigate such underrepresentation to the extent that
it existed in the original datasets. Nevertheless, analysts can
also apply augmentation methods to compensate for any biases
that may exist in the training datasets [127-129].

Another risk of bias is if there is a relationship between a
particular characteristic and the order of recruitment. For
example, if the first 60% of patients recruited were aged mostly
>70 years and the last 40% were aged mostly <70 years, then
the trained generative model and their simulated patients would
not include sufficient younger patients. However, such an age
bias would only impact the randomized study outcomes if there
was an interaction between recruitment order, or factors
correlated to it, such as age in this example, and the treatment.
We explicitly tested for such an interaction effect, and as seen
in the results, there were none detected.

Generative models can simulate a larger number of patients
than what is needed to reach target recruitment (ie, data
amplification). On the surface, this may seem to be a mechanism
to amplify the statistical power of the study and solve the
problem of drawing conclusions from small studies. However,
with the necessary adjustments using the combining rules
described in our methodology, it has been shown that
amplification does not increase statistical power for fully
synthetic data as the adjusted SEs of parameter estimates are
also increased [71]. The same study shows that population
inferences and replicability diminish markedly without using
the combining rules during the analysis of synthetic data. Further
examination is needed to determine whether the same
conclusions would hold for hybrid data that is only part
synthetic.

The incorporation of generative models and simulated patients
in industry-sponsored clinical trials would necessitate
collaboration with sponsors to apply and evaluate these methods
in their studies across multiple therapeutic areas to determine
consistency in performance. However, recent surveys indicate
that sponsors see uncertainty about regulators’ expectations and
requirements for evidence as a critical barrier for the adoption
of computer modeling and simulation methods in clinical trials
[130]. Some efforts have identified high level principles that
can be applied for the quality assurance evaluation of in silico
trials [131], as well as a general good practice guidance for the
application of simulations [132]. Regulators have noted the
potential of simulated patients in clinical trials [133] and have
further suggested adopting the Government Accountability
Office accountability framework [134] for the application of
machine learning models to in silico trials, which includes
addressing challenges related to governance, accountability,
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and transparency; data considerations; and model development,
performance, and validation [135]. Furthermore, synthetic data,
because of their privacy-protective properties, can serve as a
more readily available proxy for RWD when used in regulatory
submissions [136], which can solve the data access challenge
and accelerate the generation of real-world evidence. Some
experts at regulatory agencies have expressed cautious optimism
that synthetic data can be used by manufacturers [137], with
replicability of results on real data and the need for further
experimental exemplars being emphasized specifically for
synthetic data generation [94]. Our study contributes to that
evidence base.

Recruitment is a challenging issue not only in clinical trials but
in other clinical studies as well [138,139]. These challenges are
exacerbated with studies on rare diseases [140] and pediatric
studies. Pediatric datasets are typically small due to a scarcity
of potential study participants: there are fewer children in the
population with severe disease [141]. Additional challenges
include the complex ethical issues surrounding research
involving children and an extra layer of consent required for
pediatric participants (ie, parental consent is required in addition
to patients’ assent) [142]. Many trials recruited a very small
number of children [143], and studies with placebo arms are
also at a disadvantage as patients are less likely to participate
in case they do not get randomized to the treatment arm [144].
Therefore, the results from our study would have broader
applicability beyond oncology trials in adults.

On a methodological point, this study was possible because of
the ability to obtain access to the original datasets across 9
different clinical trials. While there has been strong interest in
making more clinical trial data available for secondary analysis
by journals, funders, the pharmaceutical industry, and regulators
[145-153], data access for secondary analysis remains a
challenge [154], sometimes taking many months to get data
[155,156]; for example, an analysis of the success of getting
individual-level data for meta-analysis projects from authors
found that the percentage of the time these efforts were
successful ranged from 0% to 58% [156-161]. Specifically,
recent reports highlight the difficulties in accessing data for
health research and machine learning analytics [162-164]. In
our case, the process of getting access to all the datasets used
in this study took approximately 2 years, including executing
the necessary data sharing agreements and establishing
collaborations with the original investigators.

One of the reasons that access to individual-level clinical trial
data faces friction is concern over patient privacy by the patients
and regulators [165,166]. However, the general assumption has
been that synthetic data produced through generative models
have low identity disclosure vulnerability because there is no
unique or one-to-one mapping between the records in the
synthetic data with the records in the original (ie, real) data
[167-174]. While there are other types of disclosure
vulnerabilities that are also relevant [175,176], some authors
have argued that synthetic data can be considered nonpersonal
information under statuary definitions in North America and
Europe [177-179]. This would arguably be the case if disclosure
vulnerability measurements demonstrate vulnerability values
that are below acceptable thresholds. To that end, it is

encouraging that recently study authors have been making
synthetic variants of data used in their research papers publicly
available to enable open science [180-183]. However, given
that generating fully synthetic variants of the clinical trial
datasets used in this study were not part of the original protocol,
readers interested in data access can make a request to the
individual data custodians, with the necessary contacts in the
Data Availability section.

Limitations
Although our datasets covered single site as well as multisite
studies, and trials performed across multiple regions of the world
with a wide range of sizes and durations, our results were
obtained only from oncology trials (mostly breast cancer). There
is no a priori reason for these methods not to work for other
diseases and conditions, and different populations. To generalize
the findings, it is necessary to replicate the findings in this work
for other diseases, particularly those that impose high societal
costs and where the acceleration of clinical trial evidence can
be most impactful.

It is not known whether there would be evidence of a monotonic
effect size over the enrollment period in other types of clinical
trials and with different populations. For example, one can argue
that surgery trials may exhibit a monotonic effect because
surgeons become more experienced with new procedures over
time. None of our studies were surgery trials. Therefore, this
monotonicity relationship would need to be investigated further
in these other contexts before drawing broader conclusions.

This study did not consider safety data, which tend to have
fewer observations in a clinical trial. Because of the relatively
smaller number of adverse events, it is more challenging to train
a generative model on that kind of information. Therefore,
studies comparing existing interventions or new indications
would be more suited for the application of augmentation
methods.

Furthermore, our retrospective analysis was limited to 9 clinical
trials that were actually completed. Studies that do not reach
accrual targets may have different characteristics, which could
lead to different results. While our results are encouraging based
on a retrospective analysis, future work should evaluate this
approach through a prospective design.

When the r value increases, the available dataset size to train a
generative model decreases. For the smallest clinical trials, in
some rare instances, this resulted in generative model failure.
The generative models that did not fail under those conditions
had a high risk of overfitting to the training data, although they
still performed better than a simple bootstrap on decision
agreement. For most of our small studies (REaCT-ILIAD,
REaCT–BTA, and REaCT-ZOL), the number of variables that
were used for training was also quite small (8, 8, and 11,
respectively; Table 1). To the extent that low dimensionality
has a diluting impact on the rate of overfitting for a fixed sample
size, the small number of variables would reduce that risk.
Furthermore, most of the variables in some of the small trials
were categorical with very few categories (ie, mostly binary),
suggesting quite simple datasets were being modeled (eg,
REaCT-HER2+).
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We did not find that the deep learning generative models
performed as well as the other approaches that were considered.
One possible explanation is that additional hyperparameter
tuning for these models was not performed and the default
implementation model size and characteristics were used. The
tuning could have improved the performance of these models.
Although the default hyperparameters were suitable for low
dimensional data, which was the case for the analysis datasets
in many of these clinical trials.

In drawing our conclusions, we used a 0.8 value as a threshold
of acceptability on CI overlap. Should one apply a more
stringent threshold, then the values of r where the results would
be acceptable would decrease further.

Future Work
Further research is needed to provide evidence-based parameters
for the number of variables that can be simulated with different
types of generative models and the appropriate number of
patients in a trial for training these models. This will further
ensure that augmentation is not applied in inappropriate contexts.

Studies on rare diseases would have few observations, making
it more challenging to train a generative model using the

methods described here. Evaluations using pretrained generative
models to simulate clinical trial patients should be investigated
as these may be more applicable to rare disease trials.

Given that our focus was to address the insufficient accrual
problem, the augmentation that was performed covered all arms
of the study. However, the methods described here can be
applied to individual arms as well. For example, it is possible
to augment only the control arm of a trial if there were
challenges accruing patients in the control arm or it could be
by design to only recruit a subset of control patients and simulate
the rest. Future work can evaluate such alternative augmentation
strategies.

An alternative approach for augmentation to address insufficient
accrual is to use pretrained generative models. For example,
these models can be trained on historical clinical trial datasets,
and then the pretrained models are used to simulate additional
patients. This is different from the approach presented in this
paper, whereby already collected data from the trial are used to
train the generative models. It would be informative to compare
both approaches to determine which would work better in
practice, and to understand the types of historical datasets that
give the best results for training these generative models.
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