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Abstract

Background: Artificial intelligence (AI) presents a promising approach to balancing high image quality with reduced radiation
exposure in computed tomography (CT) imaging.

Objective: This meta-analysis evaluates the effectiveness of AI in enhancing CT image quality and lowering radiation doses.

Methods: A thorough literature search was performed across several databases, including PubMed, Embase, Web of Science,
Science Direct, and Cochrane Library, with the final update in 2024. We included studies that compared AI-based interventions
to conventional CT techniques. The quality of these studies was assessed using the Newcastle-Ottawa Scale. Random effect
models were used to pool results, and heterogeneity was measured using the I² statistic. Primary outcomes included image quality,
CT dose index, and diagnostic accuracy.

Results: This meta-analysis incorporated 5 clinical validation studies published between 2022 and 2024, totaling 929 participants.
Results indicated that AI-based interventions significantly improved image quality (mean difference 0.70, 95% CI 0.43-0.96;
P<.001) and showed a positive trend in reducing the CT dose index, though not statistically significant (mean difference 0.47,
95% CI –0.21 to 1.15; P=.18). AI also enhanced image analysis efficiency (odds ratio 1.57, 95% CI 1.08-2.27; P=.02) and
demonstrated high accuracy and sensitivity in detecting intracranial aneurysms, with low-dose CT using AI reconstruction showing
noninferiority for liver lesion detection.

Conclusions: The findings suggest that AI-based interventions can significantly enhance CT imaging practices by improving
image quality and potentially reducing radiation doses, which may lead to better diagnostic accuracy and patient safety. However,
these results should be interpreted with caution due to the limited number of studies and the variability in AI algorithms. Further
research is needed to clarify AI’s impact on radiation reduction and to establish clinical standards.

(J Med Internet Res 2025;27:e66622) doi: 10.2196/66622
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Introduction

Computed tomography (CT) has revolutionized medical imaging
since its introduction, providing high-resolution, 3D
visualizations of anatomical structures. Its widespread adoption
has significantly enhanced diagnostic capabilities across various
medical specialties [1-3]. However, the increasing use of CT
scans has raised concerns about radiation exposure and its
potential long-term health effects on patients [4,5].

Simultaneously, maintaining optimal image quality is crucial
for accurate diagnosis and treatment planning. This creates a
challenging balance between minimizing radiation dose and
preserving diagnostic image quality [6-8]. In recent years,
artificial intelligence (AI) has emerged as a promising solution
to address the balance between maintaining high image quality
and minimizing radiation dose in CT imaging [9-11].

AI, particularly deep learning algorithms, has shown potential
in various aspects of CT imaging, including image
reconstruction, noise reduction, and automated image analysis
[12]. These AI-driven approaches aim to enhance image quality
while allowing for lower radiation doses, potentially improving
both diagnostic accuracy and patient safety [13].

Several studies have investigated the application of AI in CT
imaging, focusing on different anatomical regions and clinical
scenarios. For instance, Hu et al [14] explored the use of deep
learning models for intracranial aneurysm detection on CT
angiography images. Zhang et al [15] investigated AI
reconstruction algorithms in CT imaging of sports injuries.
Other researchers have examined AI’s role in breast cancer
radiotherapy planning [16] and liver CT imaging [17].

Despite the growing body of research, the overall effectiveness
of AI in improving CT image quality and reducing radiation
dose remains unclear [14,17]. The variability in study designs,
AI algorithms, and outcome measures makes it challenging to
draw definitive conclusions about the broader impact of AI on
CT imaging practices [18]. This meta-analysis aims to synthesize
the available evidence on the role of AI in CT image quality
control and radiation protection, providing a comprehensive
evaluation of AI’s role across various clinical scenarios and
anatomical regions. Our study contributes to the literature by
offering a systematic overview of the current state of AI in CT
imaging, which can inform future research directions and clinical
applications.

Methods

Search Strategy and Study Selection
A comprehensive literature search was conducted across
multiple electronic databases, including PubMed, Embase, Web
of Science, Science Direct, and Cochrane Library. The search
strategy used a combination of Medical Subject Headings terms
and keywords related to AI, deep learning, and CT imaging.
The specific search string used was as follows: (Intelligence,
Artificial [Title/Abstract]) OR (Computer Reasoning
[Title/Abstract]) OR (Reasoning, Computer [Title/Abstract])
OR (AI (Artificial Intelligence [Title/Abstract]) OR (Machine

Intelligence [Title/Abstract])) and so on (Multimedia Appendix
1).

The selected databases are renowned for their extensive coverage
of medical and scientific literature, ensuring a thorough retrieval
of studies pertinent to our research question. The choice of these
databases was also influenced by their indexing of a wide array
of medical journals and conference proceedings, which are
critical for capturing the latest advancements in the field of AI
and CT imaging.

The search was conducted without language restrictions and
conducted from the inception of the databases until the search
date in 2024, to ensure inclusion of the most current and relevant
studies.

Inclusion and Exclusion Criteria
Studies were eligible for inclusion if they met the following
criteria: (1) clinical validation studies comparing AI-based
interventions with conventional CT imaging techniques; (2)
reported outcomes related to image quality, radiation dose, or
diagnostic performance; and (3) provided sufficient data for
quantitative analysis. Exclusion criteria included (1) nonclinical
studies or (2) those without a control group, (3) studies focusing
solely on AI development without clinical validation, (4) review
articles, (5) case reports, (6) conference abstracts, and (7) studies
with insufficient data for meta-analysis.

Data Extraction and Quality Assessment
Two independent reviewers extracted data from the included
studies using a standardized form. The extracted information
included study characteristics (author, year, and study design),
sample size and patient demographics, AI intervention details,
and outcome measures (image quality metrics, radiation dose
indicators, and diagnostic performance).

The quality of the included studies was assessed using the
Newcastle-Ottawa Scale for nonrandomized studies. This scale
evaluates studies based on selection, comparability, and outcome
domains, with a maximum score of 9 indicating the highest
quality. The risk of bias for each included study was assessed
using the Cochrane risk of bias tool, which provides a
standardized evaluation of study quality.

Statistical Analysis
Meta-analyses were performed using Review Manager (version
5.4; The Cochrane Collaboration). For continuous outcomes
(eg, image quality scores and CT dose index), mean differences
with 95% CIs were calculated. For binary outcomes (eg,
diagnostic accuracy), odds ratios with 95% CIs were computed.

Random effect models were used to account for potential
heterogeneity among studies. Heterogeneity was assessed using
the I² statistic, with values of 25%, 50%, and 75% considered
as low, moderate, and high heterogeneity, respectively.

Publication bias was assessed visually using funnel plots.
Sensitivity analyses were conducted by sequentially removing
each study to evaluate its impact on the overall effect size.

Results were considered statistically significant at P<.05. Forest
plots were generated to visually represent the meta-analysis
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results, displaying individual study effects and the pooled effect
size.

Ethical Considerations
An ethical statement is not applicable because this study is based
exclusively on published literature.

Results

Study Selection and Characteristics
The initial database search yielded 835 records (PubMed: n=38,
Embase: n=191, Web of Science: n=3, Science Direct: n=283,
and Cochrane Library: n=320). After removing duplicates, 371
unique records remained. Following title and abstract screening,
11 full-text articles were assessed for eligibility. Ultimately, 5

studies met the inclusion criteria and were included in the
meta-analysis (Figure 1).

The 5 included studies were all clinical validation studies
published between 2022 and 2024. They encompassed a total
of 929 participants (464 in the experimental AI group and 465
in the control group). The studies focused on various anatomical
regions and clinical applications, including intracranial aneurysm
detection [14], knee anterior cruciate ligament injury [15], breast
cancer radiotherapy planning [16], head CT angiography [9],
and liver CT imaging [17].

All included studies used deep learning–based AI algorithms
for image reconstruction or analysis. The sample sizes ranged
from 60 to 14,715 participants. The Newcastle-Ottawa Scale
scores for the included studies ranged from 7 to 8, indicating
good methodological quality (Table 1).

Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow diagram for study selection, detailing the process
from initial records to final inclusion across various databases and time frames.
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Table 1. Basic characteristics of included literature.

NOSa

score

Exposure factorsExternal valida-
tion dataset, n

Internal valida-
tion dataset, n

Training
dataset, n

Type of studyType of inven-
tion group

Author (year)

7Accuracy, sensitivity, positive
predictive value, and negative
predictive value

1198170012,817Clinical valida-
tion study

AIbHu et al [14]
(2024)

8Image quality, CTDIc volume,
and dose length generation

(DLPd)

303030Clinical valida-
tion study

AIZhang et al
[15] (2022)

8Image quality22280230Clinical valida-
tion study

AIMa et al [16]
(2023)

7CTDI, CMe dose, and image
quality

253863Clinical valida-
tion study

AIHuang et al
[9] (2023)

8CT image noise level and di-
agnostic performance

90246296Clinical valida-
tion study

AILee et al [17]
(2024)

aNOS: Newcastle-Ottawa Scale.
bAI: artificial intelligence.
cCTDI: computed tomography dose index.
dDLP: dose length product.
eCM: contrast medium.

Risk-of-Bias Assessment

Overview
The risk of bias for each included study was assessed using the
Cochrane risk of bias tool. Figure 2 presents the risk of bias
graph, showing the distribution of judgments across all included
studies for each domain. Random sequence generation (selection
bias) was assessed as having a low risk in 40% (2/5) of studies
and unclear risk in 60% (3/5). Allocation concealment was
judged as low risk in 80% (4/5) of studies and unclear in 20%
(1/5). The blinding of participants and personnel (performance
bias) was unanimously assessed as an unclear risk across all
studies. Blinding outcome assessment (detection bias) was
determined to be low risk in 80% (4/5) of studies and unclear
in 20% (1/5). Incomplete outcome data (attrition bias) were
consistently judged as low risk across all studies. Selective
reporting (reporting bias) was assessed as low risk in 40% (2/5)
of studies and unclear in 60% (3/5). Other bias was unanimously
judged as unclear across all studies.

Figure 3 [9,14-17] presents a comprehensive risk-of-bias
summary for each study included in the analysis. Several key
observations can be made from this summary. Notably, all 5
studies demonstrated a low risk for incomplete outcome data,
indicating robust data collection and reporting practices.
However, the blinding of participants and personnel was unclear
across all studies, which is a common limitation in imaging
studies where complete blinding can be challenging to achieve.
Random sequence generation was assessed as low risk in 3
(60%) out of the 5 studies, suggesting generally sound
randomization practices were used. Interestingly, the “other
bias” category was consistently rated as unclear for all studies,
pointing to potential unidentified sources of bias that may
warrant further investigation. Finally, there was considerable
variability in the assessment of selective reporting and blinding
of outcome assessment across the studies, highlighting areas
where methodological consistency could be improved in future
research.
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Figure 2. Risk-of-bias graph: review authors’ judgments about each risk-of-bias item presented as percentages across all included studies. This graph
provides a visual representation of the risk of bias across different domains, indicating the methodological quality of the studies included in the
meta-analysis.

Figure 3. Risk-of-bias summary: review authors’ judgments about each risk-of-bias item for each included study. This summary offers a comprehensive
overview of the risk of bias for each study, highlighting areas of strength and potential concerns within the meta-analysis.

Image Quality
All 5 studies reported on image quality outcomes. The
meta-analysis showed a significant improvement in image
quality with AI-based interventions compared to conventional
methods (mean difference 0.70, 95% CI 0.43-0.96; P<.001;
Figure 4 [9,14-17]). There was moderate heterogeneity among

the studies (I²=39%), suggesting some variability in the effect
of AI on image quality across different clinical contexts.

The largest effects were observed in the studies by Hu et al [14]
and Lee et al [17], which focused on intracranial aneurysm
detection and liver CT imaging, respectively. These studies
carried the highest weights in the analysis (27.6% and 33.8%,
respectively).
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Figure 4. Forest plot comparing image quality scores between AI-based interventions and conventional CT imaging techniques across 5 clinical
validation studies conducted from 2022 to 2024, focusing on various anatomical regions and clinical applications. This plot visually represents the mean
differences in image quality, with confidence intervals, favoring either the experimental or control groups. AI: artificial intelligence; CT: computed
tomography; IV: inverse variance.

CT Dose Index
Three studies [9,15,17] reported data on the CT dose index. The
meta-analysis showed a trend toward reduction in CT dose index
with AI-based interventions, but the result was not statistically
significant (mean difference 0.47, 95% CI –0.21 to 1.15; P=.18;

Figure 5 [9,14-17]). There was high heterogeneity among these
studies (I²=87%), indicating substantial variability in the effect
of AI on radiation dose across different applications.

The study by Zhang et al [15] showed the largest effect size in
favor of AI, while Lee et al [17] reported almost no difference
between the AI and conventional groups.

Figure 5. Forest plots of changes in CT dose index. This figure displays the impact of AI-based interventions on the CT dose index, with mean differences
and CIs, across 3 studies that reported this outcome. AI: artificial intelligence; CT: computer tomography; IV: inverse variance.

Efficiency in Image Analysis
All 5 studies provided data on the efficiency of AI in image
analysis. The meta-analysis demonstrated a significant
improvement in efficiency with AI-based methods compared
to conventional approaches (odds ratio 1.57, 95% CI 1.08-2.27;

P=.02; Figure 6 [9,14-17]). There was no significant
heterogeneity among the studies for this outcome (I²=0%).

The study by Lee et al [17] had the largest weight (39.7%) in
this analysis, likely due to its larger sample size. All studies
showed an odds ratio favoring the AI group, although the
precision of the estimates varied, with wider confidence intervals
observed in smaller studies.

Figure 6. Forest plots of efficiency in image analysis. This forest plot demonstrates the comparison of image analysis efficiency between AI-based
methods and conventional approaches, showing a significant improvement with AI across all 5 studies. AI: artificial intelligence; M-H: Mantel-Haenszel
analysis.

Diagnostic Performance
While not all studies reported on diagnostic performance
metrics, those that did showed promising results. Hu et al [14]
reported high accuracy (0.951), sensitivity (0.974), and

specificity (0.928) for their AI model in detecting intracranial
aneurysms. Lee et al [17] found that the diagnostic performance
of low-dose CT with AI reconstruction was noninferior to
standard-dose CT for liver lesion detection.
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Publication Bias
Visual inspection of the funnel plot (Figure 7 [9,14-17]) did not

reveal substantial asymmetry, suggesting a low risk of
publication bias. However, the small number of included studies
limits the reliability of this assessment.

Figure 7. Funnel plot of efficiency in image analysis by AI. The funnel plot is used to assess publication bias, with the distribution of effect sizes
visually represented against their precision. AI: artificial intelligence; OR: odds ratio.

Discussion

Principal Findings
This meta-analysis synthesized evidence from 5 clinical
validation studies to evaluate the role of AI in CT image quality
control and radiation protection. The findings suggest that
AI-based interventions can significantly improve CT image
quality and efficiency in image analysis, with a potential trend
toward radiation dose reduction.

The significant improvement in image quality observed with
AI-based interventions (mean difference 0.70, 95% CI 0.43-0.96;
P<.001) is a key finding of this meta-analysis. This improvement
was consistent across different anatomical regions and clinical
applications, suggesting that AI algorithms have broad
applicability in enhancing CT image quality. The enhanced
image quality achieved through AI could have substantial
clinical implications. Improved image clarity and detail may
lead to more accurate diagnoses, potentially reducing the need
for repeat scans or additional imaging studies [19]. This, in turn,
could contribute to reduced overall radiation exposure for
patients and improved workflow efficiency in radiology
departments.

While the meta-analysis showed a trend toward CT dose index
reduction with AI-based interventions, the result was not
statistically significant (mean difference 0.47, 95% CI –0.21 to
1.15; P=.18). The lack of statistical significance does not
necessarily imply that AI has no effect on radiation dose
reduction. Rather, it highlights the need for further research to
elucidate the factors influencing AI’s impact on radiation dose
across different CT applications. It is possible that some AI
algorithms are more effective at dose reduction than others, or
that dose reduction capabilities may be more pronounced in
certain anatomical regions or clinical scenarios [20].

Moreover, the trend toward dose reduction, even if not
statistically significant, is encouraging. When combined with
the significant improvements in image quality, these findings

suggest that AI may enable a favorable shift in the balance
between image quality and radiation dose in CT imaging [21].

The significant improvement in the efficiency of image analysis
with AI-based methods (odds ratio 1.57, 95% CI 1.08-2.27;
P=.02) is another important finding of this meta-analysis. This
improvement in efficiency could have far-reaching implications
for radiology workflows and patient care. Faster image analysis
times could lead to reduced reporting turnaround times,
potentially enabling quicker clinical decision-making and
treatment initiation [22]. Additionally, improved efficiency
could help address the growing demand for CT imaging services
and the increasing workload on radiologists [23]. The lack of
heterogeneity (I²=0%) in this analysis suggests that the
efficiency gains with AI are consistent across different
applications. This consistency is particularly noteworthy given
the diversity of clinical scenarios represented in the included
studies.

Comparison With Prior Work
While not all studies reported comprehensive diagnostic
performance metrics, those that did showed promising results.
The high accuracy, sensitivity, and specificity reported by Hu
et al [14] for intracranial aneurysm detection, as well as the
noninferiority of low-dose CT with AI reconstruction for liver
lesion detection reported by Lee et al [17], suggest that AI can
maintain or even enhance diagnostic performance while
potentially reducing radiation dose. These findings align with
previous studies that have demonstrated the potential of AI to
improve diagnostic accuracy in various imaging modalities [24].
The combination of improved image quality, potential dose
reduction, and maintained or enhanced diagnostic performance
positions AI as a powerful tool for advancing CT imaging
practices.

The principle of action by which AI, particularly deep learning
algorithms, enhances CT image quality is multifaceted. First,
AI-driven approaches use advanced computational techniques
to reconstruct images from raw data, optimizing the balance
between image sharpness and noise reduction. This is achieved
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through the use of convolutional neural networks that learn to
identify and enhance features of interest while suppressing
background noise, leading to clearer and more detailed images
[24]. Second, AI algorithms can adaptively adjust image
reconstruction parameters based on the specific characteristics
of the scanned tissue, resulting in improved contrast resolution
and better visualization of anatomical structures. Third, AI-based
techniques offer the capability for automated image analysis,
which can standardize the interpretation process and reduce
interobserver variability, thereby contributing to more accurate
and consistent diagnostic outcomes [22]. These mechanisms
collectively contribute to the significant improvement in image
quality observed in our meta-analysis, underscoring the potential
of AI to revolutionize CT imaging practices by enhancing
diagnostic accuracy and patient safety.

Strengths and Limitations
Several limitations of this meta-analysis should be noted. First,
the small number of included studies limits the generalizability
of the findings and precludes more detailed subgroup analyses.
Second, the heterogeneity in AI algorithms, CT protocols, and
outcome measures across studies made direct comparisons
challenging. Third, the lack of long-term, follow-up data in the
included studies means that the potential long-term impacts of

AI-enhanced CT imaging on patient outcomes remain unclear.
Future research should focus on larger, multicenter studies with
standardized protocols and outcome measures to more
definitively establish the impact of AI on CT image quality and
radiation dose [25]. Long-term studies are needed to assess the
clinical impact of AI-enhanced CT imaging on patient outcomes
and radiation-induced cancer risk. Additionally, research into
the cost-effectiveness of implementing AI in CT imaging
workflows would be valuable for health care systems
considering the adoption of these technologies.

Conclusions
This meta-analysis provides evidence that AI-based
interventions can significantly improve CT image quality and
efficiency in image analysis, with the potential for radiation
dose reduction. These findings suggest a promising role for AI
in enhancing CT imaging practices, potentially leading to
improved diagnostic accuracy, reduced radiation exposure, and
enhanced patient care. As AI technologies continue to evolve,
their integration into CT imaging workflows may become
increasingly important in addressing the ongoing challenges of
balancing image quality, radiation safety, and diagnostic
accuracy.
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