
Viewpoint

Data Interoperability in Context: The Importance of Open-Source
Implementations When Choosing Open Standards

Daniel Kapitan1,2,3, DPhil; Femke Heddema2, MSc; André Dekker4, Prof Dr; Melle Sieswerda5, MD, MSc; Bart-Jan

Verhoeff6, MD; Matt Berg7, BA, MBA
1Eindhoven AI Systems Institute (EAISI), Eindhoven University of Technology, Eindhoven, The Netherlands
2PharmAccess Foundation, Amsterdam, The Netherlands
3Dutch Hospital Data, Utrecht, The Netherlands
4MAASTRO Clinic, Maastricht University Medical Centre, Maastricht University, Maastricht, The Netherlands
5Netherlands Comprehensive Cancer Organisation, Utrecht, The Netherlands
6Expertisecentrum Zorgalgoritmen, Utrecht, The Netherlands
7Ona, Burlington, VT, United States

Corresponding Author:
Daniel Kapitan, DPhil
Eindhoven AI Systems Institute (EAISI)
Eindhoven University of Technology
PO Box 513
Eindhoven, 5600 MB
The Netherlands
Phone: 31 624097295
Email: daniel@kapitan.net

Abstract

Following the proposal by Tsafnat et al (2024) to converge on three open health data standards, this viewpoint offers a critical
reflection on their proposed alignment of openEHR, Fast Health Interoperability Resources (FHIR), and Observational Medical
Outcomes Partnership (OMOP) as default data standards for clinical care and administration, data exchange, and longitudinal
analysis, respectively. We argue that open standards are a necessary but not sufficient condition to achieve health data
interoperability. The ecosystem of open-source software needs to be considered when choosing an appropriate standard for a
given context. We discuss two specific contexts, namely standardization of (1) health data for federated learning, and (2) health
data sharing in low- and middle-income countries. Specific design principles, practical considerations, and implementation choices
for these two contexts are described, based on ongoing work in both areas. In the case of federated learning, we observe convergence
toward OMOP and FHIR, where the two standards can effectively be used side-by-side given the availability of mediators between
the two. In the case of health information exchanges in low and middle-income countries, we see a strong convergence toward
FHIR as the primary standard. We propose practical guidelines for context-specific adaptation of open health data standards.
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Open Standards Are a Necessary but Not
Sufficient Condition for Interoperability

“A paradox of health care interoperability is the existence of a
large number of standards with significant overlap among them,”
says Tsafnat et al [1] followed by a call to action toward the

health informatics community to put effort into establishing
convergence and preventing collision. To do so, they propose
to converge on three open standards, namely (1) openEHR for
clinical care and administration, (2) Fast Health Interoperability
Resources (FHIR) for data exchange, and (3) Observational
Medical Outcomes Partnership Common Data Model (OMOP)
for longitudinal analysis. They argue that open data standards,
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backed by engaged communities, hold an advantage over
proprietary ones, and therefore, should be chosen as the stepping
stones toward achieving true interoperability.

While we support their high-level rationale and intention, we
feel their proposed trichotomy does not do justice to details that
are crucial in real-world implementations. This viewpoint
provides a critical reflection on their proposed framework in
three parts. First, we reflect on salient differences between the
three open standards from the perspective of the notion of
openness of digital platforms [2], the paradox of open [3], and
the hourglass model of open architectures [4,5]. Subsequently,
we outline the importance of open-source software (OSS) by
reflecting on our considerations in designing and implementing
health data platforms in two specific contexts, namely (1)
platforms for federated learning (FL) on shared health data in
high-income countries and (2) health data platforms for low-
and middle-income countries (LMICs). These case studies
illustrate the limitations of the trichotomy proposed by Tsafnat
et al [1]. Particularly, we argue that of the 3 standards, FHIR
stands out as being the most practical and adaptable which
allows it to be used for longitudinal analysis and routine
collection of clinical data, besides its original purpose as a health
data exchange standard. We conclude this viewpoint with
practical implications of these findings and directions for future
research of open health data standards.

Digital Platforms Require Extensibility,
Availability of Complementary
Components, and Availability of
Executable Pieces of Software

In their editorial, Tsafnat et al [1] argue that (1) the paradox of
interoperability of having overlapping standards can be
addressed by converging on just three standards; (2) practical
and sociotechnical considerations are as important as, if not
more important than, technical superiority and therefore
balancing of customizability and rigidity is of the essence; and
(3) open standards, backed by engaged communities, hold an
advantage over proprietary ones. While we concur with these
points, we argue that these are necessary, but not sufficient
conditions for convergence of health data standards. Existing
research on digital platforms underlines the importance of the
platform’s openness, not only in terms of open standards but
also in terms of the availability of executable pieces of software,
extensibility of the code base, and availability of complements
to the core technical platform (in this case, the health data
standard is a critical, defining component of the core technical
platform) [2]. Openness in this context pertains to the software
modules that constitute the digital platform (Textbox 1).
Realizing openness can be achieved through open-sourcing the
core components of the platform or defining standardized
interfaces through which components can interact [6]. Only
when the majority of these aspects of digital platforms are met
can we reasonably expect that the digital platform will indeed
flourish and be long-lived.

If open digital platforms are what we want, the question is how
to achieve that. In what they frame as “the paradox of open,”

Keller and Tarkowski [3] argue that open platforms and their
associated ecosystems can only flourish if two types of
conditions are met. The first condition states that many people
need to contribute to the creation of a common resource. “This
is the story of Wikipedia, OpenStreetMap, Blender.org, and the
countless free software projects that provide much of the
internet’s infrastructure” [3]. Indeed, Tsafnat et al [1] have
explicitly taken into account that “an engaged and vibrant
community is a major advantage for the longevity of the data
standards it uses,” which has informed their proposal to
converge toward OMOP, FHIR, and openEHR over other
existing health data standards. However, the importance of OSS
is somewhat overlooked. This point is only mentioned in passing
when Tsafnat et al [1] reference work done by Reynolds and
Wyatt [7] who already argued in 2011 “… for the superiority
of open-source licensing to promote safer, more effective health
care information systems. We claim that open-source licensing
in health care information systems is essential to rational
procurement strategy.” Hence, we extend the line of reasoning
of Tsafnat et al [1] by emphasizing that the availability of
executable OSS components, which inherently makes it easier
to extend the code base of the health data standard and thereby
drive greater availability of complementary components, is an
important criterion which needs to be explicitly taken into
account when choosing which standard to adopt.

The second condition put forward by Keller and Tarkowski [3]
is that open ecosystems have proven fruitful when “opening
up” is the result of external incentives or requirements, rather
than voluntary actions. Examples of such external incentives
are “...publicly funded knowledge production like Open Access
academic publications, cultural heritage collections in the Public
Domain, Open Educational Resources, and Open Government
data.” Another canonical example is the birth of the Global
System for Mobile Communications standard, which was
mandated by European legislation [8]. Reflecting on this
condition in the context of open health data ecosystems, we
observe a salient difference between FHIR versus openEHR
and OMOP, namely that the former is the only one that has been
mandated—or at least strongly recommended—in some
jurisdictions. Survey results on the state of FHIR show that the
FHIR standard has been mandated or advised in 20 countries
[9]. Notably, the European Electronic Health Record Exchange
Format, introduced by the European Commission in 2019 with
the aim to ensure secure, interoperable, cross-border access to
electronic health data across the European Union, decided in
2022 to adopt Health Level 7 FHIR as the exchange format for
future priority data categories [10]. In the United States, the
Office of the National Coordinator for Health Information
Technology and the Centers for Medicare and Medicaid Services
have introduced a steady stream of new regulations, criteria,
and deadlines in Health IT that has resulted in significant
adoption of FHIR [11]. In India, the open Health Claims
Exchange protocol specification—which is based on FHIR—has
been mandated by the Indian government as the standard for
e-claims handling [12,13]. The African Union recommends all
new implementations and digital health system improvements
use FHIR as the primary mechanism for data exchange [14],
but does not say anything about the use of, for example,
openEHR for clinical point-of-service systems.
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Our third critical reflection on choosing health data standards
pertains to the notion of the hourglass model [4,5] and the
concept of open architectures [15]. The hourglass model is “...an
approach to design that seeks to support a great diversity of
applications (at the top of the hourglass) and allow
implementation using a great diversity of supporting services
(at the bottom)” [5]. The center of the hourglass—the waist,
also called the spanning layer in information systems
parlance—is defined by a set of minimal standards that mediates
all interactions between the higher and lower layers. In the case
of the internet, the spanning layer is defined by the transmission
control protocol/internet protocol, which is supported by a

variety of underlying connectivity services (many different
physical networks) on top of which many different applications
can be built (email, videoconferencing, etc). We argue that FHIR
has an added benefit over openEHR and OMOP because it can
act as the spanning layer within an open health data platform.
Because FHIR is inherently designed to function as a data
exchange standard, it can function as a mediator between
different components of the health data platform. The modularity
of the various components that are part of the FHIR ecosystem
allows it to be used effectively to implement subsystems,
including data pipelines and data processing engines (Textbox
2).

Textbox 1. Conceptual background of the digital platform.

Digital platforms are software-based digital infrastructures that facilitate interactions and transactions between users. In the context of this paper,
digital platforms serve as an interface used to interact with data systems. Data systems describe a set of technologies, tools, and processes that extract,
manage, and deliver data. Where the data system describes the functional implementation, the data architecture specifies the design framework,
outlining how the data flows in its collection, storage, processing, and governance. Its key components are data sources (original “raw” data that is
collected before any processing), data repositories like databases, data warehouses, or lakes, and data processing engines and pipelines that transform
raw data into a usable format for analysis.

All architectures include a core technical platform (the foundational infrastructure) that can be extended to facilitate the necessary digital services.
Data architectures contain different levels of specifications for the technical components entailed in the system. These levels include a systems code
base (machine-readable text describing how to extract and process certain data), software tools (programs and applications enabling digital operations),
and stacks (layers of software systems working together).

Textbox 2. Conceptual background of data processing pipelines for analytics.

Data pipelines define a sequence or workflow of processes for data. Data processing engines are tools that process, transform, and analyze large-scale
data and thereby provide the foundational infrastructure to implement data pipelines. Computing workloads are specific tasks executed across data
systems, like data processing and analytics.

Data transformation entails all the processing pipelines that convert data into usable insights. Mappings are specific data transformations that aim to
align data from different sources with a unified structure. Granular mappings transform data at the most detailed level, translating data elements across
different schemas. Queries are built on top of transformed data, and retrieve data for insights generation, sometimes requiring further data processing.

We argue that (1) the external incentives that have mandated
FHIR in certain jurisdictions and (2) the inherent modularity of
the FHIR standard have resulted in a large boost in both
commercial and OSS development activities in the FHIR
ecosystem. Illustrative of this is the speed with which the Bulk
FHIR API has been defined and implemented in almost all major
implementations [16,17], and the SQL-on-FHIR specification
to make large-scale analysis of FHIR data both accessible to a
larger audience, as well as portable between systems [18].

The external incentives have also led to more people voluntarily
contributing to FHIR-related OSS projects, which has resulted
in a wide offering of FHIR components across major technology
stacks (Java, Python, .NET), thereby strengthening the first
condition for establishing openness. By comparison, OMOP
and openEHR have profited less from external incentives to
spur the adoption and thereby grow the ecosystem beyond a
certain critical mass. To illustrate this, a quick scan of the
available OSS components listed on the website of the three
governing bodies, Health Level 7 [19], Observational Health
Data Sciences and Informatics [20], and openEHR [21],
indicates that the ecosystem of FHIR and OMOP have a

significantly larger offering of extensible and complementary
OSS components than openEHR, although for the latter, a
notable mature OSS implementation is available with EHRbase
[22]. Taking GitHub as a proxy of worldwide development
activities, Table 1 shows the number of contributors and
repositories for three different search terms. Given that the FHIR
standard has more application areas, one would expect more
GitHub projects than openEHR and hence these numbers should
only be taken as rough indicators.

In summary, we stress that beyond evaluating the intrinsic
structure of an open standard and the community that supports
the standard, we need to consider the wider ecosystem of OSS
implementations and the availability of complementary
components. From this wider perspective of the ecosystem
surrounding the three standards, FHIR stands out as having the
most diverse and rich ecosystem because it has been mandated
in certain jurisdictions and because its technical foundations
are inherently broader and more modular. This is relevant when
comparing these standards in real-world implementations. We
now turn to two specific use cases where these considerations
are at play.
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Table 1. Number of contributors and number of repositories on GitHub for the three health care data standards as of January 28, 2025.

Repositories, nContributors, nPeriod and search term

Last three months

4982“openEHR”

221446“OMOP” or “OHDSI”

7561648“FHIR”

All time

450429“openEHR”

1131019“OMOP” or “OHDSI”

86178497“FHIR”

Standardization of Health Data for FL

The current fragmentation of health data is one of the major
barriers to leveraging the potential medical data for machine
learning (ML). Without access to sufficient data, ML will be
limited in its application to health improvement efforts, and
ultimately, from making the transition from research to clinical
practice. High-quality health data, obtained from a research
setting or a real-world clinical practice setting, is hard to obtain
because health data is tightly regulated.

FL is a learning paradigm that aims to address these issues of
data governance and privacy by training algorithms
collaboratively without moving (copying) the data itself
(Textbox 3) [23,24]. Based on ongoing work with the PLUGIN
health care consortium [25], we have detailed an architecture
for FL for the secondary use of health data for hospitals in the
Netherlands. The starting point for this implementation is the
National Health Data Infrastructure agreements for research,
policy, and innovation for the Dutch health care sector, which
were adopted at the beginning of 2024 [26]. Figure 1 shows a
high-level reference architecture of the infrastructure to be,
comprising three areas (multiple use, applications, and generic
functions and a total of 26 functional components [26]. One of
the prerequisites of this architecture is that organizations that
participate in a federation of “data stations” use the same
common data model to make the data Findable, Accessible,
Interoperable, and Reusable (FAIR). These FAIR data stations
comprise components 7, 8, and 9 in Figure 1, that is, the data,
metadata, and APIs, respectively, through which the data station
can be accessed and used.

Following the line of reasoning of Tsafnat et al [1], OMOP
would be the go-to standard for storing the longitudinal data in
each of the data stations, where data are transformed from the
original source (component 6), stored using a common data
model (component 7) and properly annotated with metadata
(component 8). Indeed, by now, there are quite a real-world
implementations of FL networks based on the Observational
Health Data Sciences and Informatics-OMOP stack, including
a global infrastructure with 22 centers for COVID-19 prediction
models [27], FeederNet in South Korea with 57 participating
hospitals [28], Dutch multicohort dementia research with 9
centers [29], the European severe heterogeneous asthma research

collaboration [30], and the recently initiated Belgian Federated
Health Innovation Network [31].

For the PLUGIN project, however, we choose to adopt FHIR
as a data model because it is more compatible with the data
model of the clinical administration systems. As PLUGIN
focuses on the secondary use of routine health data, we feel it
is more suitable than OMOP, the latter being more suitable for
clinical research data. OpenEHR might have been an option,
too, if more implementations and complementary components
had been available. Another reason for choosing FHIR is its
practicality and extensibility to be used in a Python-based data
science stack, provenance of RESTful APIs out-of-the-box to
facilitate easy integration with the container-based vantage6 FL
framework, and the support of many health care terminologies
and flexibility through its profiling mechanism [32-34].
Increasingly, other projects have reported the use of FHIR for
persistent, longitudinal storage for FL. A scoping review on the
use of FHIR for clinical research shows that it is increasingly
being used for data preparation, cohort selection, and secondary
data sharing [35]. The CODA platform, which aims to
implement an FL infrastructure in Canada similar to the
PLUGIN project, compared OMOP and FHIR and chose the
latter as it has been found to support more granular mappings
required for analytics [36]. The fair4health project used FHIR
as part of a FAIRification workflow to simplify the process of
data extraction and preparation for clinical study analyses [37].

Given that OMOP can, conceptually, be viewed as a strict subset
of FHIR, hybrid solutions using a combination of OMOP and
FHIR have also been reported, such as the German KETOS
platform [38], and the preliminary findings from the European
GenoMed4All project, which aims to connect clinical and -omics
data [39]. A collaboration of 10 university hospitals in Germany
has shown that standardized ETL-processing from FHIR into
OMOP can achieve 99% conformance [40], which confirms the
feasibility of the solution pattern where FHIR acts as an
intermediate sharing standard through which data from (legacy)
systems are extracted and made available for reuse in a common
data model. One could argue that the distinction between FHIR
and OMOP becomes less relevant if data can be effectively
stored in either standard. We are hopeful that initiatives like
OMOP-on-FHIR indeed will foster convergence rather than a
collision between these two standards [41].
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Textbox 3. Conceptual background of distributed data systems.

Data systems often have a centralized architecture, where data are collected in a single repository or location. However, data systems can also distribute
the storage and processing of data across different nodes or locations such as servers and edge devices.

Servers act as the central processing units in data architecture, supporting computing workloads in data extraction, storage, and transformation of data.
Edge devices mainly provide support for data extraction and preprocessing, generally located near the source of the data.

Federated learning is an approach where machine learning (ML) models are trained across a distributed data system. Data transformations and analyses
are performed on locally held data across multiple nodes, typically using edge devices or local servers. In this setup, the server that hosts the ML
model does not need direct access to the source data. Instead, it aggregates the outputs of the local nodes (the updated model parameters) to train a
global model. This method ensures that sensitive data remains local, preserving privacy while still enabling collaborative model training across
distributed systems.

Figure 1. Reference architecture for the Dutch health data infrastructure for research and innovation (reproduced from Health-RI [26], with permission
from Health-RI). API: application programming interface; DAC: data access controller; EDC: electronic data capture; EMR: electronic medical record.

In the case of PLUGIN, another important consideration for
choosing FHIR over OMOP is, that from a data architecture
perspective, the mechanism of FHIR Profiles can be tied to the
principle of late binding commonly applied in data lake or
warehouse architectures (Figure 2): allow ingest of widely
different sources, and gradually add more constraints and
validations as you move closer to a specific use case. If ML is
the primary objective for secondary use, one wants to be able
to cast a wider net of relevant data, rather than being too
restrictive when ingesting the data at the start of the processing
pipeline. Late binding in data warehousing is a design
philosophy where data transformation and schema enforcement
are deferred as late as possible in the data processing pipeline,
sometimes even until query time. This approach contrasts with
early binding, where data is transformed and structured as it is
ingested into the data warehouse. The advantage of this design
is that it allows for greater flexibility and allows us to leverage

new standards and technologies using the lakehouse architecture
and the composable data stack for the implementation of the
data stations (Textbox 4). During the initial ingestion of the
data, we only require the data to conform to the minimal
syntactic standard defined by the base FHIR version (R4 in
Figure 2). As the data is processed, more strict checks and
constraints are applied, whereby ultimately different profiles
can coexist next to one another (the two most inner rectangles
in Figure 2), within a larger rectangle with fewer restrictions.
Note that if any of the profiles includes a FHIR extension, such
as adding a field to include a birth name, the profiles are no
longer strictly concentric. Hence extra care needs to be taken
when dealing with extensions when applying the principle of
late binding.

One of the key challenges in using FHIR in this way pertains
to the need for upgrading the whole extract-load-transform
pipeline when upgrading to a new primary FHIR version, for
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example, R6. The potential technical debt of version upgrades
in the future is not specific to FHIR, but being a younger
standard changes are more frequent compared to OMOP and
openEHR. However, we expect that the development time
required to upgrade FHIR versions is significantly less than the
initial migration to FHIR.

The considerations above also show the conceptual difference
between FHIR as a health data exchange standard versus

openEHR as a persistent storage of routine health care data and
OMOP as a persistent storage of health research data. For health
data exchange and FL, the recipient of the data determines, to
a large extent, what subset of data in the source needs to be
made available, that is, the target data model is known late and
this favors late binding. In the case of routine collection of data,
the holder of the source data determines what data needs to be
stored—and typically everything—which favors early binding.

Figure 2. Principle of late binding with FHIR profiling mechanism, illustrated with FHIR profiles that are currently in use in the Netherlands. Each of
the successive profiles are concentric, where the two most inner profiles are illustrated to cover different subsets of the parent profile. In practice, the
two inner profiles will have an overlap as they, for example, will both include the Patient resource. FHIR: Fast Health Interoperability Resources.

Textbox 4. Lakehouse architecture and the composable data stack.

Data lakehouses typically have a zonal architecture that follows the extract-load-transform (ETL) pattern where data is ingested from the source
systems in bulk (E), delivered to storage with aligned schemas (L), and transformed into a format ready for analysis and reuse (T) [42-44]. The
discerning characteristic of the lakehouse architecture is its foundation on low-cost and directly accessible storage that also provides traditional database
management and performance features such as ACID (Atomicity, Consistency, Isolation, and Durability) transactions, data versioning, auditing,
indexing, caching, and query optimization [45].

The composable data stack [46] is a new set of technologies and open standards for the fast processing of data using columnar data formats, including
Apache Arrow as the standard columnar in-memory format with remote procedure call–based data movement [47]; Apache Parquet as the standard
columnar on-disk format [48]; and Apache Iceberg as the open table format [49,50]. This design also enables the use of new embedded, in-memory
data processing engines. In turn, this opens up possibilities to bring computing workloads to edge devices, such as running DuckDB in the browser
on top of WebAssembly [51].

Using these technologies, full separation of storage and compute can be achieved which allows for cost-effective implementation of data stations.

Health Data Standards in LMICs

It is a widely held belief that digital technologies have an
important role to play in strengthening health systems in LMICs.
Yet, also here, the current fragmentation of health data stands
in the way of scaling up digital health programs beyond
project-centric, vertical solutions into sustainable health
information exchanges (HIEs) [52]. In the context of global
digital health developments, Mehl et al [15] have also called
for convergence to open standards, similar to Tsafnat et al [1],
but additionally stress the need for OSS (as our main argument
in this paper), open content (representations of public health,
health system or clinical knowledge to guide implementations),

and open architectures (reusable enterprise architecture patterns
for health systems). As for the open architecture, we see a
convergence toward the OpenHIE framework [53], which has
been adopted by many African countries as the architectural
blueprint for implementing nationwide HIEs [54], including
Nigeria [55], Kenya [56], and Tanzania [57]. Figure 3 shows
an overview of the OpenHIE architecture.

While the OpenHIE specification is agnostic to which data
standards should be used, in practice, the digital health
community in LMICs has converged toward FHIR as the
primary standard for HIE, in line with the proposal by Tsafnat
et al [1]. To illustrate this point, consider the OpenHIM Platform
architecture (Figure 4), which is currently the largest OSS
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implementation of the OpenHIE specification. In OpenHIM,
clients (point-of-service systems) can initiate various workflows
to submit or query patient data. The shared health record (SHR)
acts as the core transactional system for the HIE, which in this

case is realized with the HAPI FHIR server, being one of the
most widely used open-source FHIR server implementations
[58].

Figure 3. OpenHIE architecture showing the point of service systems (black), the interoperability Layer (green), and the component layer (blue).

Figure 4. OpenHIM Platform Architecture, illustrating the use of FHIR-based workflows between the components as specified in OpenHIE. API:
application programming interface; ASYNC: asynchronous; CR: client registry; FHIR: Fast Health Interoperability Resources; IOL: interoperability
layer; MPI: master patient index; SHR: shared health record; SYNC: synchronous.

Looking at the point-of-service systems, we see that as of today,
openEHR is rarely used as the standard for routine collection
of clinical data in LMICs. The largest OSS electronic health
record (EHR) implementations for low-resource settings are

based on nonstandardized data models, and it is unlikely this
will change any time soon [59]. Instead, we see that FHIR-native
software development frameworks such as OpenSRP [60] and
the Open Health Stack [61] are being used more and more. In
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this approach, health professionals use Android apps to register
and collect routine health data (Figure 5). As an example,
OpenSRP has been deployed in 14 countries targeting various
patient populations, among which is the implementation of the
WHO antenatal and neonatal care guidelines for midwives in
Lombok, Indonesia [62,63]. Beda EMR takes a similar approach
and provides an FHIR native front-end that can be used in

combination with any FHIR server as a backend [64]. Such a
solution design is particularly useful for midsize and smaller
health care facilities, which are often resource-constrained, and
lacking the basic IT infrastructure to deploy a full-blown
electronic medical record system. Hence, the FHIR-based SHR
functions as both, the administrative system-of-record and as
the hub for information exchange at the same time.

Figure 5. Overview of OpenSRP2 OSS framework for building clinical administration apps. API: application programming interface; FHIR: Fast
Health Interoperability Resources; HIS: health information systems.

Finally, regarding longitudinal data analysis, we also see a
convergence toward FHIR as the primary standard in LMICs.
As in the case of FL, the choice for FHIR to implement data
warehouse and analytic platforms is the preferred method due
to the widespread availability of complementary OSS
components. FHIR-specific technologies such as Bulk FHIR
data access and SQL-on-FHIR mentioned earlier, allow the
FHIR ecosystem to be used, complemented, and integrated with
generic OSS data warehousing components such as Clickhouse
[65] and dbt [66]. Recently, more studies have pointed to the
potential that FHIR brings when it is used in conjunction with
ML and artificial intelligence [67]. FHIR-based SHRs can act
as systems of records for countries, thereby enabling reuse by
health researchers, foundations, etc, to create public value with
this data.

All in all, we see that in the context of LMICs, the
standardization of the three domains put forward by Tsafnat et
al [1] merge into one. The SHR, as the key component within
the OpenHIE specification, serves as the back-end of the system
of record and provides a transactional, persistent storage engine
for information exchange. Downstream longitudinal data stores
continue to use FHIR as the common data model for analytical
purposes. One could argue that it is in fact advantageous to
converge to just one standard, thereby reducing the complexity
and cost of the total system. Such a perspective ties in with the
notion of the hourglass model and open architectures: because
FHIR is inherently designed to make optimal use of internet
standards, such as the JSON file format and REST APIs, it is
very modular and developer-friendly. The many components
that make up the FHIR allow the standard to be used effectively
to implement subsystems, such as a facility registry or a health

worker registry. By comparison, OMOP and openEHR are
designed with a smaller scope with fewer application areas and
are thereby less suitable as a standard to implement the
subsystems defined in the OpenHIE specification.

Discussion, Conclusion, and Future
Research

We agree with Tsafnat et al [1] that there is a dire need to
converge to open data standards in health care and support their
proposal to focus on openEHR, FHIR, and OMOP in health
care informatics going forward. However, open standards are
a necessary but not sufficient condition for the convergence of
health data standardization. The availability of OSS
implementations and complementary technologies is important
when choosing which open standard to use. We find that the
proposed trichotomy is too restrictive and therefore of limited
use in guiding design choices to be made in real-world scenarios.
Instead, we think that the full-STAC approach described by
Mehl et al [15] is more comprehensive. Furthermore, we argue
that FHIR has the potential to act as the spanning layer for health
data interoperability, thereby enabling much wider
standardization and adoption within the health data ecosystem
at large. This is illustrated by the two cases considered in this
paper, where FHIR is used beyond its original scope as a health
data exchange standard.

In the case of FL, FHIR can be used interchangeably with
OMOP for longitudinal analysis. In addition, due to its
inherently modular design, FHIR can be used in conjunction
with the principle of late binding, as opposed to early binding
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for OMOP and openEHR, which is a relevant design criterion
for implementing federated data platforms for secondary use.
In the case of LMICs, we see that FHIR is emerging as the
standard for all three domains of routine health data collection
at the clinical point-of-service, data exchange, and longitudinal
analysis. We believe this is driven by the resource-constrained
setting in LMICs, the modularity of FHIR, and the lower
complexity and shallower learning curve of FHIR compared to
openEHR. We expect that FHIR will play a major role in driving
health data convergence in LMICs because the availability of
OSS implementations and complementary components are
important enablers in these resource-constrained environments.
We strongly support ongoing developments to increase the
availability of OSS implementations as digital public goods
[68] and integration projects such as Instant OpenHIE [69],
which will improve health data interoperability in LMICs.

Although openEHR has not been chosen as the standard for the
two use cases presented here, we want to stress that it is not our
intention to argue for or against any of the three standards a
priori nor do we intend to dismiss openEHR outright. Instead,
our aim is to illustrate the kind of design choices and trade-offs
that need to be made, particularly those related to the availability
and complementarity of OSS components. Significant
developments and uptake of openEHR as a clinical data
repository have been reported, with currently 17 openEHR
solution providers that have been implemented in thousands of
clinics and research organizations worldwide [70]. Additionally,
work is underway to integrate openEHR with FHIR for data
exchange [71,72]. Some experts agree that openEHR is the only
specification that provides a comprehensive solution for building
a standardized EHR [73]. Furthermore, openEHR is not only
being deployed as a clinical system of record but also as a
persistent clinical data repository for implementing national
HIEs in European Nordic countries [74] and Slovenia [75],
which is very similar to the solution design of the SHR within
the OpenHIE architecture presented here. An ongoing program
in the south of the Netherlands has demonstrated a decentralized
data sharing ecosystem using separate openEHR data stores,
where federated queries are supported by the openEHR
Archetype Query Language [76].

The two cases allow us to reflect and revisit the key arguments
of this paper, namely the importance of OSS implementations
and the availability of complementary components for the
wide-scale adoption of health data standards. There is an
important and equally complex interplay between OSS
development and standardization, where OSS implementation
can occur before, after, or in parallel to standardization efforts
[77,78]. Various studies have provided increasing evidence that
OSS is a key success factor in driving software-related
standardization [78], and by extension, we think it is critical
when aiming to achieve data standardization. The history of
how the Digital Imaging and Communications in Medicine
imaging standard came to be is a good example of how OSS
development was pivotal in achieving wide-scale adoption of
this standard [79,80].

In contrast, the phenomena of forking, fragmentation, and
splintering are known to hinder an industry from consolidating
toward a set of open standards [81]. Given the specific
characteristics of data as an artifact, fragmentation is arguably
the most relevant of these phenomena. de Reuver et al [6] expect
fragmentation to persist for some time in the evolution of data
platforms and associated ecosystems. The case of the Unix
operating system is an interesting example where fragmentation
hampered standardization, next to market dynamics and issues
related to intellectual property rights [81].

But even when OSS has successfully contributed to “tip” the
health care industry to a set of health data standards, issues
remain regarding the sustainability of the OSS ecosystem itself.
The market dynamics and economics of OSS ecosystems differ
considerably from industry to industry: sustainability of OSS
in the context of, say, the cultural and scientific heritage sector
will be different from the challenges of OSS projects that are
used as mission-critical components of open digital
infrastructures worldwide. In the case of the latter, underfunding
is a critical issue and initiatives such as the German Sovereign
Tech Agency have been launched to alleviate this [82]. In the
context of open health data standards, we believe that risks
related to underfunding are lower and more manageable. Within
the digital health community, there is a range of commercial
companies supporting the OSS projects and creating sustainable
businesses from it using various business models like offering
support contracts, split licensing, and complementary
closed-source products [83]. Regarding the dynamics of forking
and fragmentation mentioned earlier, we feel that code forking
on balance has a net positive effect on the long-term
sustainability of OSS at the level of the software itself, the
community, and the ecosystem [84].

Going forward, we suggest the following directions for future
research. Given that health data standardization will continue
to require mappings, we propose to explore the use of ML,
particularly large-language models, as a means to reduce the
development effort required to create transformations between
various health data formats. New ML methods can also be
developed to assess and improve data quality across the various
stages of the data processing pipelines. In terms of data
integration, we expect that health data will increasingly be used
in conjunction with data from social services and the welfare
domain, which requires new techniques to integrate different
data domains, for example, using knowledge graphs and
ontologies. Last, but certainly not least, future research should
not only explore the technical but also the social implications
of implementing OSS components for data standardization
across the health care system, specifically in settings where
governance or ethical considerations of data interoperability
have not specifically been addressed at a regulatory level. In
line with the embedding of open standards in the open-source
ecosystem, we assert that the benefits of health data
standardization will only be realized if they are coupled with
collaborative, community-driven governance models. It remains
essential to ensure that the development, adoption, and evolution
of standards remain inclusive, transparent, and responsive to
the diverse needs within the health system.
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