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Abstract

Background: Recent research has revealed the potential value of machine learning (ML) models in improving prognostic
prediction for patients with trauma. ML can enhance predictions and identify which factors contribute the most to posttraumatic
mortality. However, no studies have explored the risk factors, complications, and risk prediction of preoperative and postoperative
traumatic coagulopathy (PPTIC) in patients with trauma.

Objective: This study aims to help clinicians implement timely and appropriate interventions to reduce the incidence of PPTIC
and related complications, thereby lowering in-hospital mortality and disability rates for patients with trauma.

Methods: We analyzed data from 13,235 patients with trauma from 4 medical centers, including medical histories, laboratory
results, and hospitalization complications. We developed 10 ML models in Python (Python Software Foundation) to predict
PPTIC based on preoperative indicators. Data from 10,023 Medical Information Mart for Intensive Care patients were divided
into training (70%) and test (30%) sets, with 3212 patients from 3 other centers used for external validation. Model performance
was assessed with 5-fold cross-validation, bootstrapping, Brier score, and Shapley additive explanation values.

Results: Univariate logistic regression identified PPTIC risk factors as (1) prolonged activated partial thromboplastin time,
prothrombin time, and international normalized ratio; (2) decreased levels of hemoglobin, hematocrit, red blood cells, calcium,
and sodium; (3) lower admission diastolic blood pressure; (4) elevated alanine aminotransferase and aspartate aminotransferase
levels; (5) admission heart rate; and (6) emergency surgery and perioperative transfusion. Multivariate logistic regression revealed
that patients with PPTIC faced significantly higher risks of sepsis (1.75-fold), heart failure (1.5-fold), delirium (3.08-fold),
abnormal coagulation (3.57-fold), tracheostomy (2.76-fold), mortality (2.19-fold), and urinary tract infection (1.95-fold), along
with longer hospital and intensive care unit stays. Random forest was the most effective ML model for predicting PPTIC, achieving
an area under the receiver operating characteristic of 0.91, an area under the precision-recall curve of 0.89, accuracy of 0.84,
sensitivity of 0.80, specificity of 0.88, precision of 0.88, F1-score of 0.84, and Brier score of 0.13 in external validation.
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Conclusions: Key PPTIC risk factors include (1) prolonged activated partial thromboplastin time, prothrombin time, and
international normalized ratio; (2) low levels of hemoglobin, hematocrit, red blood cells, calcium, and sodium; (3) low diastolic
blood pressure; (4) elevated alanine aminotransferase and aspartate aminotransferase levels; (5) admission heart rate; and (6) the
need for emergency surgery and transfusion. PPTIC is associated with severe complications and extended hospital stays. Among
the ML models, the random forest model was the most effective predictor.

Trial Registration: Chinese Clinical Trial Registry ChiCTR2300078097; https://www.chictr.org.cn/showproj.html?proj=211051

(J Med Internet Res 2025;27:e66612) doi: 10.2196/66612
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Introduction

Severe trauma is a significant global public health burden and
a leading cause of reduced life expectancy. The Global Burden
of Diseases, Injury, and Risk Factors Study 2017 estimates that
trauma accounts for 8% of total deaths annually [1]. Traumatic
coagulopathy (TIC) is a systemic inflammatory state
accompanied by coagulation dysfunction, acidosis, and
hypothermia that occurs after traumatic injury [2]. TIC is
observed in one-quarter to one-third of patients with trauma
[3,4] and is associated with increased rates of massive
transfusion and multiple organ failure (MOF), prolonged
intensive care unit (ICU) stay and length of stay (LOS), and a
4-fold increase in mortality [3]. Harhangi et al [5] reported that
TIC is linked to a 9-fold increase in mortality and a 36-fold
increase in the likelihood of adverse outcomes [5]. Early
endogenous TIC is associated with increased bleeding, higher
red blood cell (RBC) transfusion rates, and a greater risk of
secondary complications like multiple organ dysfunction
syndrome (MODS) and thromboembolism [6]. Cohen and
Christie [7] also reported that patients with TIC have worse
prognoses, including higher rates of infection,
thromboembolism, acute lung injury, MOF, and mortality.
Without proper and timely diagnosis and treatment,
posttraumatic bleeding and associated TIC remain potentially
preventable causes of MOF [8]. Therefore, the latest European
guidelines indicate that the immediate identification and
management of TIC can improve outcomes for severely injured
patients [9].

In recent years, artificial intelligence (AI) has received
significant attention for its potential use in various aspects of
human activities, including health care [10]. Sidey-Gibbons and
Sidey-Gibbons [11] and Liu and Salinas [12] suggested that
machine learning (ML) excels over traditional methods in
handling large, unstructured, nonlinear, or incomplete datasets,
improving outcome predictions for patients with trauma. With
the advent of ML and improved computational analysis methods,
recent approaches have aimed to enhance predictions and
identify which factors are most important in contributing to
posttraumatic mortality [13]. Rashidi et al [14] emphasized the
critical importance of rapid diagnosis and intervention for
managing hemostatic disorders, which can lead to
life-threatening bleeding or clotting. AI or ML models can
significantly enhance turnaround times, accuracy, and the

timeliness of diagnoses and interventions, potentially improving
patient care and outcomes.

Our data show that despite surgical interventions such as
hemostasis, vascular reconstruction, fracture reduction, organ
repair, blood transfusion, and the correction of electrolyte
imbalances in patients who experienced preoperative TIC, 50%
of these patients still had TIC postoperatively [15]. These
patients were more prone to develop complications during
hospitalization, and preoperative and postoperative traumatic
coagulopathy (PPTIC) was identified as an independent risk
factor for these complications. Therefore, we plan to explore
the risk factors for PPTIC in patients with trauma and its
relationship with in-hospital complications. We will use
admission indicators from patients with trauma to predict the
risk of PPTIC, applying 10 different ML models to estimate the
probability of PPTIC occurrence and conducting a
comprehensive evaluation of each model. This predictive
approach can aid clinicians in implementing timely and
appropriate interventions to reduce the incidence of PPTIC and
related complications, thereby lowering in-hospital mortality
and disability rates for these patients.

Methods

Ethical Considerations
Data from 4 medical centers were anonymized and integrated.
Ethical approvals were granted by the respective ethics
committees: Daping Hospital, Medical Research Ethics (2023)
261; Chongqing Emergency Medical Center, 2023 ethical review
(48); the People’s Liberation Army Rocket Force Characteristic
Medical Center (KY 2023037); and the General Hospital of
Southern Theatre Command of People’s Liberation Army
(NZLLKZ2024021). As this was a retrospective study, patient
informed consent was waived by the ethics committees. It was
registered with the Chinese Clinical Trial Registry
(ChiCTR2300078097) and adhered to the Declaration of
Helsinki. This study adheres to 2 key guidelines to ensure
rigorous reporting: the TRIPOD-AI (Transparent Reporting of
a Multivariable Prediction Model for Individual Prognosis or
Diagnosis—Artificial Intelligence) guidelines for the
development and reporting of multivariable ML predictive
models in biomedical research (Multimedia Appendix 1) [16]
and the STROCSS (Strengthening the Reporting of Cohort
Studies in Surgery) criteria, which standardize the reporting of
surgical observational studies [17].
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Inclusion and Exclusion Criteria
The inclusion and exclusion criteria are as follows:

• Inclusion criteria: Patients who underwent surgical
treatment after trauma from January 2017 to February 2023.

• Exclusion criteria: Patients without trauma (snake bites,
bee stings, and burns); patients who did not undergo surgery
or stopped treatment; patients younger than 18 years of age;
patients with hematological diseases; patients with a history
of liver cirrhosis; pregnant women; and patients without
coagulation-related tests results either preoperatively or
postoperatively.

Data Collection
We retrieved patients who underwent trauma or concurrent
surgeries using the MIMIC IV (Medical Information Mart for
Intensive Care) 2.2 database, with the detailed data extraction
process outlined in Multimedia Appendix 2. We then collected
the necessary indicators using subject_id and hadm_id, which
included the following information: ID number; sex; age; height;
weight; type of surgery (elective or emergency); and
preoperative comorbidities such as high blood pressure, diabetes,
cerebrovascular diseases, chronic obstructive pulmonary disease,
chronic bronchitis, asthma, and chronic renal insufficiency.
Preoperative indicators included systolic blood pressure, heart
rate (HR), saturation of pulse oximetry, and the presence of
shock upon admission. The laboratory examination indicators
(latest results prior to admission and first results postoperatively)
included the following: complete blood count (white blood cell,
lymphocyte [%], monocyte [%], neutrophil [%], eosinophil [%],
basophil [%], RBC, mean corpuscular hemoglobin
concentration, mean corpuscular volume, red cell distribution
width, hemoglobin, hematocrit, platelet count [PLT], mean
platelet volume, renal function [urea, creatinine, and blood uric
acid]), liver function (albumin, alkaline phosphatase, lactate
dehydrogenase, gamma-glutamyl transferase, total protein,
globulin, direct bilirubin, indirect bilirubin, total bilirubin,
alanine aminotransferase [ALT], and aspartate aminotransferase
[AST]), electrolytes (sodium, potassium, and calcium), and
coagulation function (activated partial thromboplastin time
[APTT], prothrombin time [PT], international normalized ratio
[INR], and D-dimer). The relevant intraoperative indicators
included the need for perioperative blood transfusion.
Complications during hospitalization included pulmonary
embolism, sepsis, septicemia, heart failure, delirium, pulmonary
edema, abnormal coagulation, endotracheal tube intubation,
invasive mechanical ventilation, tracheostomy, end-stage renal
disease, systemic inflammatory response, acute respiratory
distress syndrome, pleural effusion, cardiac arrest, anemia,
venous thrombosis, renal failure, acute kidney failure, urinary

tract infection, respiratory failure, pneumonia, LOS, in-hospital
death, and length of ICU stay. Data from the other 3 medical
centers were collected via electronic medical records, consistent
with the previously mentioned information. Our definition

criteria for TIC were as follows: PLT<100×10^9/L; INR>1.25;
PT>14 second; and APTT>36 second [18]. PPTIC was defined
as patients who experienced TIC both within 24 hours before
surgery (preoperative) and within 24 hours after surgery
(postoperative), meeting one or more of the above TIC
diagnostic criteria in both timeframes.

Process of ML Modeling

Handling Missing Data
We processed the data using Python (version 3.9; Python
Software Foundation), discarding variables with over 40%
missing data (Multimedia Appendix 3). For binary and
categorical variables, we applied 1-hot encoding. Continuous
variables were imputed using k-nearest neighbor (KNN) with
k=5, while categorical variables underwent multiple imputations
with 5 iterations.

Data Normalization and Feature Selection

Data Normalization

We created a StandardScaler object to standardize the data.
Both the training and test data were standardized via the same
procedure.

Outlier Handling

We calculated z scores for the training data, considering values
above 3 as outliers, and replaced these with the mean using
np.where.

Feature Selection

We assessed continuous variables with the Pearson correlation
coefficient and converted categorical variables to numerical
ones via label encoding. Then, the Pearson correlation
coefficient was calculated for each feature relative to the target
variable, and the top 50 features with the highest correlations
were selected. These selected features were then refined using
least absolute shrinkage and selection operator regression,
resulting in a final set of 25 features.

Dataset Splitting
We modeled data from 10,023 patients with trauma in MIMIC
IV, splitting it into a training set of 7631 cases and a test set of
1908 cases (7:3 ratio) using the train_test_split function.
Additionally, we used data from 3212 patients from 3 other
medical centers for external validation (Figure 1).
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Figure 1. The data processing. MIMIC: Medical Information Mart for Intensive Care; ML: machine learning; PLA: People’s Liberation Army.

Building the ML Models
We used Python 3.9 to build the ML models, using a total of
10 models (Multimedia Appendix 4): logistic regression (LR),
random forest (RF), support vector machine (SVM), decision
tree (DT), KNN, gradient boosting (GB), neural networks (NN),
naive Bayes (NB), AdaBoost, and extreme gradient boosting
(XGBoost). We assessed the models’ performances via 7
metrics: area under the receiver operating characteristic curve

(AUROC), area under the precision-recall curve (AUPRC),
accuracy, sensitivity, specificity, precision, and F1-score. The
Python 3.9 packages used for data processing and analysis are
shown in Multimedia Appendix 5. Additionally, the full code
and data processing steps, along with detailed instructions, have
been made publicly available via GitHub [19].
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Model Performance and Evaluation
In this study, we used “grid search” for hyperparameter
optimization. We conducted 5-fold cross-validation by dividing
the dataset into 5 subsets, using each subset once for testing and
the remaining four for training. This process, repeated 5 times,
helps reduce overfitting, stabilize performance evaluation, and
address sample selection bias [20]. We measured accuracy,
precision, recall, and F1-score.

To evaluate the robustness and generalization of 10 ML models,
we used bootstrap sampling with 1000 iterations. Each iteration
involved retraining the models on a bootstrap sample and
calculating accuracy, precision, recall, and F1-score. We then
estimated the distributions and 95% CIs for these metrics,
producing 12 key indicators: accuracy mean, accuracy lower
or upper 95% CI, precision mean, precision lower or upper 95%
CI, recall mean, recall lower or upper 95% CI, F1-score mean,
and F1-score lower or upper 95% CI.

To assess model calibration, we used the Brier score (BS), which
ranges from 0 to 1, with lower scores indicating better accuracy
of predicted probabilities. We trained the model, evaluated
predictions on the test set, computed the BS, and plotted a
calibration curve to visualize the model’s performance.

Interpretation of the ML
We use Shapley additive explanation (SHAP) values to assess
the significance of variables in the model by evaluating their
impact on predictions across all feature subsets and averaging
these effects [21]. We used the Python package SHAP to
visualize and rank the top 15 variables with the highest SHAP
values related to PPTIC. These variables were integrated into
the model, and SHAP values ranging from 0 to 1 were used for

risk interpretation. We also conducted univariate logistic
regression on these top 15 variables.

Statistics
Statistical analysis was performed using SPSS Statistics (version
27.0; IBM Corp). Patients were divided into PPTIC and
non-PPTIC groups, with PPTIC as the independent variable
and other factors as dependent variables. Categorical data are
presented as percentages, and continuous data as mean (SD).
Depending on the distribution, continuous variables were
assessed via 2-tailed t tests or Mann-Whitney U tests, and
categorical variables via chi-square tests or exact tests.
Univariate analysis identified risk factors for persistent
trauma-induced coagulopathy, and multivariable logistic
regression analyzed complications during hospitalization in the
PPTIC group. A P value less than .05 was considered
statistically significant.

Results

Basic Information of the Patients
We ultimately included 13,237 patients with trauma, among
whom 6586 (49.8%) experienced PPTIC. The mean age of our
patients was 62.45 (SD 17.85) years. In the PPTIC group, the
average age was 63.6 (SD 17.4) years, whereas in the
non-PPTIC group, it was 61.3 (SD 18.2) years, with P<.001
(Table 1). Among the patients, there were 5590 (42.2%) male
individuals and 7646 (57.8%) female individuals, and this
difference was significant (P<.001). The racial distribution
included 3452 (26.1%) Asian individuals, 7402 (55.9%) White
individuals, 342 (2.6%) Black individuals, 940 (7.1%) Latino
individuals, and 1101(8.3%) individuals of other races.
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Table 1. The basic information of the patients.

P valuebNon-PPTIC groupPPTICa group

<.00161.3 (18.2)63.6 (17.4)Age (years), mean (SD)

.00271.8 (20)74.9 (23.8)Weight (kg), mean (SD)

.00127.3 (7.4)27.9 (8)BMI (kg/m2), mean (SD)

<.00184.6 (17)86.3 (19.3)Admission HRc, mean (SD)

.001131.3 (131.4)125 (22.1)Admission SBPd (mmHg), mean (SD)

<.00134.5 (6.5)31.9 (6.4)Pre-hematocrit (%), mean (SD)

<.001113.7 (22.6)104.1 (22)Pre-hemoglobin (g/L), mean (SD)

<.0013.8 (0.7)3.5 (0.8)Pre-RBCe (×10×12/L), mean (SD)

<.00144.4 (86)69.6 (258.2)Pre-ALTf (U/L), mean (SD)

<.00148.4 (101.2)87.2 (305.3)Pre-ASTg (U/L), mean (SD)

.03146.4 (95.7)54.1 (104)Pre-GGTh (U/L), mean (SD)

<.0012.2 (0.2)2.1 (0.2)Pre-calcium (mmol/L), mean (SD)

<.0010.04760.0552Pre-sodium (mmol/L) mean (SD)

<.00112.8 (1.8)18.3 (7.9)Pre-PTi (s), mean (SD)

<.00130.8 (6.7)40.3 (13.5)Pre-APTTj (s), mean (SD)

<.001232.8 (103)212.5 (124.3)Pre-PLTk (×10×9/L), mean (SD)

<.0011.1 (0.2)1.6 (0.7)Pre-INRl, mean (SD)

<.0011.1 (0.1)1.6 (0.6)Post-INR, mean (SD)

<.00112.9 (1.5)17.5 (6.7)Post-PT (seconds), mean (SD)

aPPTIC: preoperative and postoperative traumatic coagulopathy.
bP value less than .05 was considered statistically significant.
cHR: heart rate.
dSBP: systolic pressure.
eRBC: red blood cell
fALT: alanine aminotransferase.
gAST: aspartate amino transferase.
hGGT: glutamyl transferase
iPT: prothrombin time
jAPTT: activated partial thromboplastin time.
kALT: alanine aminotransferase.
lINR: international normalized ratio.

Results of the ML Models

Training Results of the ML Models
We developed 10 ML risk models for predicting PPTIC. In the
training set, all 10 models achieved an AUROC of 0.83 or
higher, with RF, DT, and XGBoost reaching AUROC values

of 1. In the internal testing set, RF achieved an excellent
AUROC of 0.92, whereas the AUROC of SVM was 0.9, that
of GB was 0.93, that of NN was 0.9, that of AdaBoost was 0.91,
and XGBoost performed well (Figure 2). RF, GB, and XGBoost
demonstrated superior performance in both the training and
testing sets, with AUROC, accuracy, sensitivity, specificity,
precision, and F1-score all above 0.8 (Multimedia Appendix 6).
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Figure 2. The AUROC curves of 10 machine learning models in the (A) training, (B) test, and (C) external validation set for predicting PPTIC in
patients with trauma. The ROC curve for predicting PPTIC in patients with trauma is defined by the false positive rate on the x-axis, representing the
proportion of negative cases misclassified as positive, and the true positive rate on the y-axis, reflecting the proportion of correctly identified positive
cases (sensitivity), with both axes ranging from 0 to 1. The AUROC is a key metric for assessing the model’s predictive performance, where a higher
AUROC signifies superior discriminatory ability in predicting PPTIC and improved generalizability. AUROC: area under the receiver operating
characteristic curve; PPTIC: preoperative and postoperative traumatic coagulopathy; ROC: receiver operating characteristic curve; SVM: support vector
machine.
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Evaluating the ML Models

Results of the 5-Fold Cross-Validation

The results from the 5-fold cross-validation (Multimedia
Appendix 7) showed that our RF, GB, AdaBoost, and XGBoost
models consistently performed well across diverse subsets,
demonstrating high accuracy and consistency. The SDs of the
accuracy, precision, recall, and F1-scores were minimal,
confirming the robustness and reliability of these ML models.

Bootstrap Results

The bootstrap analysis results indicated that RF, DT, GB,
AdaBoost, and XGBoost achieved average accuracy, precision,
recall, and F1-score all exceeding 0.91, accompanied by narrow
95% CIs (Table 2). This suggests consistently high accuracy
across various sample resampling conditions, underscoring the
robustness of these models. Moreover, RF, DT, GB, AdaBoost,
and XGBoost demonstrated substantial stability and reliability
across their respective performance metrics.

Table 2. The bootstrap results of 10 kinds of machine learning models.

95% CI
F1-score

Mean
F1-score

95% CI recallMean recall95% CI precisionMean precision95% CI accuracyMean accuracy

0.709-0.820.7630.713-0.8210.7660.712-0.8210.7660.713-0.8210.766LRa

0.956-0.9660.9610.956-0.9660.9610.956-0.9660.9610.956-0.9660.961RFb,c

0.417-0.4210.4190.572-0.5730.5730.328-0.7550.5030.572-0.5730.573SVMd

0.926-0.9410.9340.926-0.9410.9340.926-0.9410.9350.926-0.9410.934DTe

0.645-0.6680.6560.651-0.6730.6610.647-0.6690.6570.651-0.6730.661KNNf

0.914-0.9230.9180.914-0.9230.9180.914-0.9230.9180.914-0.9230.918GBg

0.399-0.7430.5940.49-0.7420.6330.625-0.7460.6970.49-0.7420.633NNh

0.685-0.7490.7240.689-0.750.7280.713-0.7590.740.689-0.750.728NBi

0.884-0.8980.8910.885-0.8990.8920.885-0.8980.8920.885-0.8990.892AdaBoost

0.954-0.9640.960.954-0.9640.960.954-0.9640.960.954-0.9640.96XGBoostj

aLR: logistic regression.
bRF: random forest.
cItalics are used to highlight the better-performing machine learning models in our study.
dSVM: support vector machine
eDT: decision tree.
fKNN: k-nearest neighbor.
gGB: gradient boosting.
hNN: neural networks.
iNB: naive Bayes.
jXGBoost: extreme gradient boosting.

Calibration and Precision-Recall of the ML Models

In the training set, RF, DT, GB, and XGBoost achieved BSs of
0.01, 0.00, 0.05, and 0.00, respectively, with precision-recall
values above 0.9, demonstrating robustness. In the internal
testing set, RF, GB, and XGBoost had BSs of 0.1, 0.09, and
0.10, and precision-recall values of 0.87, 0.87, and 0.86. During

external validation, they recorded BSs of 0.13, 0.13, and 0.15,
with precision-recall values around 0.88, 0.84, and 0.87. The
BS and precision-recall values of RF, GB, and XGBoost in the
external validation set closely mirrored those in the internal
testing set (Figure 3), underscoring the consistency and
reliability of these models.
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Figure 3. The precision-recall curve and train data calibration curve of 10 machine learning models in (A-B) train, (C-D) internal test, and (E-F) external
validation sets predicted patients with PPTIC. PPTIC: preoperative and postoperative traumatic coagulopathy; SVM: support vector machine.

Results of the External Validation of the ML Models

In the external validation set, RF, GB, NN, and XGBoost
achieved AUROC values of 0.91, 0.89, 0.89, and 0.89,
respectively (Figure 2), while other models attained
approximately 0.87. RF showed the highest performance with
AUROC 0.91 (95% CI 0.90-0.913), AUPRC 0.89 (95% CI
0.88-0.90), accuracy 0.84 (95% CI 0.83-0.85), sensitivity 0.80
(95% CI 0.79-0.81), specificity 0.88 (95% CI 0.87-0.89),

precision 0.88 (95% CI 0.87-0.89), and F1-score 0.84 (95% CI
0.83-0.84). Despite being slightly lower than in the training set,
RF’s performance remained stable, demonstrating strong
generalizability. Thus, RF was identified as the optimal model
based on 5-fold cross-validation, bootstrap, calibration,
precision-recall, and external validation results.
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Interpretation of the ML Models
Analysis of SHAP values highlighted the key features
influencing model predictions. For RF, GB, and XGBoost
(Figure 4), as well as the other 7 ML models (Multimedia
Appendix 8), we observed the top 15 variables ranked by their
average impact. In RF, the primary predictors of PPTIC in
patients with trauma were preoperative APTT, PT, INR, AST,

ALT, calcium, hemoglobin, sodium, hematocrit, admission
SBP, RBC, admission HR, and the need for emergency surgery
or perioperative blood transfusion (Table 3). Univariate logistic
regression identified prolonged APTT, PT, and INR; low levels
of hemoglobin, hematocrit, RBC, calcium, and sodium; elevated
ALT and AST; and the need for emergency surgery or blood
transfusion were significant risk factors for PPTIC.

Figure 4. SHAP values of (A) GB, (B) XGBoost, and (C) RF for predicting the risk of TIC before and after surgery in patients with trauma. We selected
the three best-performing ML models (GB, XGBoost, and RF) from a set of 10 to predict PPTIC outcomes and evaluated their SHAP values. The SHAP
plot highlights the top 15 features with the most significant impact on model predictions, ranked in descending order of importance from top to bottom.
The x-axis represents the SHAP value, while the y-axis lists the corresponding feature names. Red points represent higher feature values, while blue
points represent lower feature values. If red points are skewed toward the positive direction (higher SHAP values), it indicates that higher feature values
contribute positively to the prediction outcome (increasing the predicted value). Conversely, if blue points are skewed toward the negative direction
(lower SHAP values), it suggests that lower feature values contribute negatively to the prediction outcome (decreasing the predicted value). ALT:
alanine aminotransferase; APTT: activated partial thromboplastin time; AST: aspartate aminotransferase; DBP: diastolic blood pressure; GB: gradient
boosting; HR: heart rate; PPTIC: preoperative and postoperative traumatic coagulopathy; PT: prothrombin time; RBC: red blood cell; RF: random
forest; SBP: systolic pressure; SHAP: Shapley additive explanation; TIC: traumatic coagulopathy.
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Table 3. Univariate logistic regression of risk factors for preoperative and postoperative TICa in patients with trauma.

P valuecORb (95% CI)

<.0011.14 (1.13-1.14)Pre-APTTd (s)

<.0011.99 (1.92-2.05)Pre-PTe (s)

<.0011289.15 (936.81-1773.99)Pre-INRf

<.0010.98 (0.98-0.98)Pre-hemoglobin (g/L)

<.0010.94 (0.94-0.95)Pre-hematocrit (%)

<.0010.61 (0.57-0.64)Pre-RBCg (×10×12/L)

<.0010.4 (0.33-0.49)Pre-calcium (mmol/L)

<.0010.96 (0.95-0.97)Pre-sodium (mmol/L)

<.0010.99 (0.99-0.99)Admission SBPh (mmHg)

.0051.004 (1.004-1.006)Admission HRi

<.0011.34 (1.24-1.45)Emergency

<.0011.001 (1.001-1.002)Pre-ALTj (U/L)

<.0011.001 (1.001-1.002)Pre-ASTk (U/L)

.0041.42 (1.12-1.81)Perioperative blood transfusion

aTIC: traumatic coagulopathy.
bOR: odds ratio.
cP value less than .05 was considered statistically significant.
dAPTT: activated partial thromboplastin time.
ePT: prothrombin time.
fINR: international normalized ratio.
gRBC: red blood cell.
hSBP: systolic pressure.
iHR: heart rate.
jALT: alanine aminotransferase.
kAST: aspartate amino transferase.

Complications During Hospitalization in Patients With
PPTIC
Multivariate logistic regression analysis showed that compared
with patients with non-PPTIC, those with PPTIC had
significantly higher postoperative risks of the following
complications: sepsis (1.75-fold, 95% CI 1.18-2.6; P=.006),

heart failure (1.5-fold, 95% CI 1.24-1.82; P<.001), delirium
(3.08-fold, 95% CI 1.62-5.83; P=.001), abnormal coagulation
(3.57-fold, 95% CI 2.26-5.63; P<.001), tracheostomy (2.76-fold,
95% CI 2.02-3.77, P=.001), in-hospital mortality (2.19-fold,
95% CI 1.84-2.61; P<.001), urinary tract infection (1.95-fold,
95% CI 1.46-2.59; P<.001), and longer LOS and ICU stay
(Figure 5).

J Med Internet Res 2025 | vol. 27 | e66612 | p. 11https://www.jmir.org/2025/1/e66612
(page number not for citation purposes)

Xiong et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 5. Multivariate logistic regression of postoperative complications in patients with trauma who developed TIC both before and after surgery.
LOS: length of stay; ICU: intensive care unit; OR: odds ratio; TIC: traumatic coagulopathy. P value .05 was considered statistically significant.

Discussion

ML Models for Predicting PPTIC in Patients With
Trauma
Our study found that RF, GB, and XGBoost had AUROC values
above 0.89 for predicting PPTIC, with RF performing best at
0.91. RF showed excellent performance across training, testing,
and external validation sets. RF is an ML algorithm capable of
capturing potential nonlinear relationships between risk factors
and outcomes [22]. It operates by creating hundreds or thousands
of smaller decision trees and combining their outputs for
prediction [23]. This approach helps overcome the tendency of
decision trees to overfit [23] while enhancing model
generalizability [24]. Therefore, we recommend the use of the
RF to predict the occurrence of PPTIC in patients with trauma.
The prediction variables were primarily continuous laboratory
indicators, eliminating the need for conversion into binary or
categorical forms and facilitating practical use. Physicians can
directly input these indicators into the RF model to assess the
risk of PPTIC in patients with trauma. Recent guidelines
highlight the importance of early detection and management of
TIC to improve outcomes for severely injured patients [9]. Our
study aims to predict PPTIC using preoperative indicators to
facilitate early intervention and thereby improve clinical
outcomes in such patients.

Most robust PPTIC prediction models in our study are
tree-based, such as RF, DT, GB, and XGBoost, a trend also
seen in other coagulopathy-related ML models. Perkins et al
[25] used BN to predict early TIC, defined as an INR>1.2. Their
model, trained on 600 patients with trauma, achieved an
AUROC of 0.93 with a BS of 0.06 in the development dataset
and an AUROC of 0.95 with a BS of 0.05 in the validation set
[25]. In comparison, Our RF model achieved an AUROC of 1
in training, 0.92 in validation, and 0.91 in external validation,
with BS values of 0.01, 0.10, and 0.13, respectively. Li et al
[26] defined acute traumatic coagulopathy (ATC) as an INR>1.5
and collected data from 818 patients with trauma admitted to
the emergency department. They used LR and RF to predict
ATC occurrence, with LR achieving an AUROC of 0.858 and
RF achieving an AUROC of 0.830 in the internal validation set
[27]. Their study used only 2 ML models, with RF and LR
achieving moderate predictive performance for ATC. Peltan et
al [27] predicted the occurrence of prehospital ATC in 285
severely injured patients, defining coagulopathy as an INR>1.5,
with an AUROC value of only 0.73. Previous studies had small
sample sizes and moderate predictive power, and were limited
to single centers without external validation. In contrast, our
multicenter study employed 10 ML models, with 3
demonstrating excellent performance. It included diverse
medical centers and populations (White, Asian, Black, and
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Latino) and featured external validation, showcasing the models’
broad applicability and generalizability.

Preoperative Risk Factors and In-Hospital
Complications of PPTIC in Patients With Trauma
The definition of TIC relies primarily on coagulation tests,
drawing from extensive literature on the subject. Brohi et al [3]
recommended that patients with a PT > 18 s, an INR > 1.5, an
APTT>60 s, or a TT>15 s could be diagnosed with the
hypocoagulable phenotype of TIC, and this diagnosis was not
affected by the use of anticoagulant medications or abnormal
blood samples. MacLeod et al [28] predicted early coagulopathy
in 20,103 patients with trauma and reported a higher incidence
after trauma, which was associated with mortality. They defined
early coagulopathy as a PT>14 s, an APTT>35 s, and a
PLT<100×10^9/L, highlighting its role as an independent
predictor of death despite other risk factors [28]. Currently, the
accepted definition of TIC utilizes the INR, with an INR>1.2
being the threshold for detecting TIC [8]. Yuan et al [18] defined
TIC for predicting mortality among patients with trauma as a

PLT<100×109/L, an INR>1.25, a PT>14 seconds, and an
APTT>36 seconds [18]. We defined TIC based on coagulation
test reference ranges from various centers and literature, using
slightly lower standards than Brohi et al [3]. The main reasons
for adopting these criteria are as follows: (1) lower diagnostic
criteria alert clinicians to take early preventive measures to
prevent PPTIC from progressing to disseminated intravascular
coagulation; and (2) patients with preexisting TIC have a 50%
chance of persisting with TIC postoperatively.

The prolongation of the preoperative APTT, PT, and INR in
patients with trauma is understandable as a risk factor for PPTIC.
The decreases in hemoglobin, hematocrit, and RBC levels and
lower admission DBP are associated mainly with acute anemia
due to preoperative bleeding in patients with trauma. Ryan et
al [29] noted a close correlation between initial low hematocrit
or hemoglobin levels in patients with trauma and hemorrhagic
shock. RBC and hematocrit levels are key factors in platelet
transport and adhesion to endothelial injury. Platelet adhesion
increases 5-fold when hematocrit rises from 10% to 40% [30].
Therefore, the RBC level is closely related to the platelet level.
Steele et al [31] reported an independent correlation between
hyponatremia at admission and hypocalcemia. Ionic calcium is
crucial not only for the formation and stability of fibrin
polymerization sites but also for many platelet-related functions
[32]. Platelet activation and aggregation are also
calcium-dependent [33] and play crucial roles in the
pathophysiology of TIC [34]. Elevated ALT and AST levels
indicate liver damage, which impacts coagulation factor
production and the coagulation process.

Hess et al [35] reported that patients with TIC experience more
blood loss, higher transfusion needs, and a greater incidence of
MODS compared to those without TIC. Brohi et al [3]

highlighted that TIC is associated with a 4-fold increase in
mortality, increased rates of massive transfusion and MODS,
and prolonged ICU and LOS. Smalls et al [36] reported that
patients with TIC due to splenic injury face 2.4 times more
complications, with increased mortality (1.3-fold), sepsis
(2-fold), acute respiratory distress syndrome (2.6-fold), acute
renal failure (1.5-fold), and cardiac arrest (1.5-fold). These
findings align with our study, where patients with PPTIC had
increased risks of sepsis (1.75-fold), heart failure (1.5-fold),
delirium (3.08-fold), abnormal coagulation (3.57-fold),
tracheostomy (2.76-fold), mortality (2.19-fold), urinary tract
infection (1.95-fold), and longer LOS and ICU stay.

Limitations
This retrospective study focused primarily on predicting PPTIC
in patients with trauma via admission laboratory indicators and
medical records. In this study, we addressed missing data to
varying extents by excluding variables with more than 40%
missing values and applying distinct imputation methods for
variables with less than 40% missing data (KNN for continuous
variables and multiple imputation for categorical variables).
While multiple imputation is an effective method to mitigate
systematic bias from nonrandom missing data, some data
remained missing, which could affect the model’s predictive
accuracy for specific patient characteristics. Due to missing
values exceeding 40% for certain indicators, such as height,
admission peripheral capillary oxygen saturation, temperature
on admission, pre-lymphocyte, pre-total protein, pre-globulin,
pre-direct bilirubin, pre-lactate dehydrogenase, pre-D-dimer,
and post-D-dimer (Multimedia Appendix 3), these variables
were excluded from model development. As these missing data
may impact the predictive performance of the model, future
studies could address this by collecting more comprehensive
data to improve model robustness. Additionally, large-sample
prospective clinical trials are necessary to validate the model’s
applicability in clinical settings and assess its effectiveness in
reducing the incidence of PPTIC.

Conclusions
Our study, using data from 4 medical centers, identified risk
factors for PPTIC in patients with trauma. Significant factors
included (1) prolonged preoperative APTT, PT, and INR; (2)
decreased hemoglobin, hematocrit, RBC, calcium, and sodium
levels; (3) lower admission DBP; (4) elevated ALT and AST
levels; (5) increased admission HR; and (6) the need for
emergency surgery or perioperative transfusion. PPTIC was
associated with higher rates of sepsis, heart failure, delirium,
abnormal coagulation, tracheostomy, mortality, and extended
hospital and ICU stays. Of the 10 ML models evaluated for
predicting PPTIC, RF demonstrated the best performance with
an AUROC of 0.91, AUPRC of 0.89, accuracy of 0.84, and a
BS of 0.13.
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Abbreviations
AI: artificial intelligence
ALT: alanine aminotransferase
APTT: activated partial thromboplastin time
AST: aspartate amino transferase
AUPRC: area under the precision-recall curve
AUROC: area under the receiver operating characteristic curve
BS: Brier score
DBP: diastolic blood pressure
DT: decision tree
GB: gradient boosting
HR: heart rate
ICU: intensive care unit
INR: international normalized ratio
KNN: k-nearest neighbor
LOS: length of stay
LR: logistic regression
ML: machine learning
MODS: multiple organ dysfunction syndrome
MOF: multiple organ failure
NB: naive Bayes
NN: neural networks
PLT: platelet count
PPTIC: preoperative and postoperative traumatic coagulopathy
PT: prothrombin time
RBC: red blood cell
STROCSS: Strengthening the Reporting of Cohort Studies in Surgery
TRIPOD-AI: Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or
Diagnosis—Artificial Intelligence
RF: random forest
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SHAP: Shapley additive explanation
SVM: support vector machine
TIC: traumatic coagulopathy
XGBoost: extreme gradient boosting
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