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Abstract

Background: Endometrial cancer is one of the most common gynecological tumors, and early screening and diagnosis are
crucial for its treatment. Research on the application of artificial intelligence (AI) in the diagnosis of endometrial cancer is
increasing, but there is currently no comprehensive meta-analysis to evaluate the diagnostic accuracy of AI in screening for
endometrial cancer.

Objective: This paper presents a systematic review of AI-based endometrial cancer screening, which is needed to clarify its
diagnostic accuracy and provide evidence for the application of AI technology in screening for endometrial cancer.

Methods: A search was conducted across PubMed, Embase, Cochrane Library, Web of Science, and Scopus databases to include
studies published in English, which evaluated the performance of AI in endometrial cancer screening. A total of 2 independent
reviewers screened the titles and abstracts, and the quality of the selected studies was assessed using the Quality Assessment of
Diagnostic Accuracy Studies—2 (QUADAS-2) tool. The certainty of the diagnostic test evidence was evaluated using the Grading
of Recommendations Assessment, Development, and Evaluation (GRADE) system.

Results: A total of 13 studies were included, and the hierarchical summary receiver operating characteristic model used for the
meta-analysis showed that the overall sensitivity of AI-based endometrial cancer screening was 86% (95% CI 79%-90%) and
specificity was 92% (95% CI 87%-95%). Subgroup analysis revealed similar results across AI type, study region, publication
year, and study type, but the overall quality of evidence was low.

Conclusions: AI-based endometrial cancer screening can effectively detect patients with endometrial cancer, but large-scale
population studies are needed in the future to further clarify the diagnostic accuracy of AI in screening for endometrial cancer.

Trial Registration: PROSPERO CRD42024519835; https://www.crd.york.ac.uk/PROSPERO/view/CRD42024519835

(J Med Internet Res 2025;27:e66530) doi: 10.2196/66530
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Introduction

Endometrial cancer is one of the most common malignant
tumors of the female reproductive system, primarily occurring

in postmenopausal women [1]. Globally, the incidence of
endometrial cancer is gradually increasing, mainly due to
lifestyle changes, obesity, and the use of hormone replacement
therapy [2,3]. According to data from the World Health
Organization, there were approximately 380,000 new cases of
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endometrial cancer worldwide in 2020, with about 90,000 deaths
[4]. The diagnosis of endometrial cancer typically requires
multiple tests, such as ultrasound, biopsy, and imaging studies.
These diagnostic procedures, along with subsequent treatments
like surgery, radiotherapy, or chemotherapy, consume significant
medical resources and incur substantial health care costs, placing
a considerable burden on both patients and society [5,6].

Despite significant advances in the management of endometrial
cancer, its early symptoms are often nonspecific, leading to a
risk of missed or incorrect diagnosis [2]. Early diagnosis is
crucial for the treatment and prognosis of endometrial cancer,
as patients with early-stage endometrial cancer who undergo
surgery and adjuvant therapy have a 5-year survival rate as high
as 90%, while the 5-year survival rate for late-stage patients is
less than 20% [7].

In traditional screening workflows, methods such as ultrasound,
biopsy, computed tomography (CT), magnetic resonance
imaging (MRI), and positron emission tomography are
commonly used [8,9]. However, identifying abnormal imaging
results can be challenging, not only being time-consuming but
also potentially leading to false-positive results and
overdiagnosis, which imposes additional treatment costs and
psychological burdens on patients [10,11]. Currently, there is
an effort to apply artificial intelligence (AI) technology to
overcome these issues [12].

First, computer-aided detection systems use AI algorithms,
especially deep learning models, to analyze endometrial images
(such as ultrasound, MRI, and CT images) [11]. AI can act as
a first reader, a second reader, or a parallel reader alongside
radiologists to identify and mark abnormal areas of the
endometrium, enhancing the accuracy and efficiency of imaging
examinations [13]. Second, AI can be used for image
preprocessing and postprocessing, including denoising,
enhancement, and segmentation, helping doctors to observe and
analyze the structure and lesions of the endometrium more
clearly [14]. In addition, AI technology can analyze digital
pathology images of endometrial biopsy samples, automatically
identifying and classifying cancer cells, thereby improving the
accuracy and consistency of pathological diagnosis [15]. Thus,
AI-based endometrial cancer screening may open new pathways
for optimizing early detection and screening workflows for
endometrial cancer.

Currently, there are 10 review studies [16-25] that have explored
the application of AI in endometrial cancer. However, the
literature searched in these reviews is limited to a few databases
[16,17,21,23], rely solely on narrative synthesis without
systematic evaluation [18,19,22,24], or fail to address
heterogeneity, leaving significant differences between studies
undiscussed [20,25]. The research on AI applications in
endometrial cancer diagnosis is progressing rapidly, and some
reviews have not updated the latest developments in a timely
manner. However, with the widespread adoption of AI
technology, concerns have also emerged regarding its potential
harms. These concerns include issues such as data bias,
over-reliance on technology, privacy breaches, and the lack of
algorithmic transparency, all of which may undermine the
reliability and safety of AI in endometrial cancer diagnosis.

Furthermore, the diagnostic accuracy of AI-based screening
remains uncertain, which necessitates a systematic review to
address these issues and ensure AI’s safety and effectiveness
in clinical practice. This study aims to provide valuable insights
and information regarding the current state of knowledge,
clinical practice, policy, and future research in AI-based
endometrial cancer screening. The goal is to systematically
synthesize and assess the diagnostic accuracy of AI in the early
detection of endometrial cancer.

Methods

Overview
This systematic review was performed in accordance with the
PRISMA-DTA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses of Diagnostic Test Accuracy
Studies) guidelines (see Table S1 in Multimedia Appendix 1)
[26]. This review was registered in the International Prospective
Register of Systematic Reviews (PROSPERO;
CRD42024519835). This study was conducted in full adherence
to the registered protocol with no deviations.

Eligibility Criteria
We included studies involving adults who were screened for
endometrial cancer either through scheduled screening programs
or as part of a broader health checkup (chance screening). For
studies that specified the screening type, we recorded whether
it was voluntary or systematic. However, most studies did not
differentiate between these two types in relation to AI diagnostic
performance, so we did not conduct subgroup analyses based
on screening type and included all eligible studies. The index
test includes an AI algorithm for diagnosing endometrial cancer
to detect it early. We included reference criteria that had been
elucidated by the study, including medical professional
interpretation of hospital images, histopathological confirmation
of tissue biopsy, surgical resection, hysteroscopy, or follow-up.
The purpose of this study was to explore the diagnosis of
endometrial cancer by AI, and studies involving other types of
endometrial diseases were excluded. We included all diagnostic
accuracy studies in English, regardless of the year of publication,
excluding editorials, abstracts, and reviews. Included studies
must provide diagnostic accuracy estimates, two-by-two data
(true-negative [TN], true-positive ([TP], false-negative [FN],
and false-positive [FP]), or other information sufficient to
calculate the estimates.

Search Strategy
Computer retrieval is the main retrieval method. We conducted
a preliminary search in 5 databases: PubMed, Embase, Cochrane
Library, Web of Science, and Scopus, and the initial keywords
were “endometrial cancer” and “artificial intelligence.” In
addition to computer-based retrieval, we also used
supplementary methods to ensure a comprehensive search. We
used the search methods from previous similar studies as a
reference and adjusted and optimized them according to our
research needs. During the process, we first defined the research
question and information requirements, then picked suitable
databases and search tools. We used keywords, synonyms, and
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related terms and built search queries with Boolean logic
operators.

Searches were performed using a combination of MeSH
(Medical Subject Headings) terms and entry terms. The
corresponding retrieval formula is formulated according to the
characteristics of each database (see Table S2 in Multimedia
Appendix 1).

Study Selection Process
The study selection process was carried out by 2 independent
reviewers (LW and ZW). Both reviewers were involved in all
stages of the selection process, including screening titles,
abstracts, and full-text articles. Any discrepancies between the
two reviewers were resolved through discussion. If a consensus
could not be reached, a third reviewer (BZ) was consulted to
make the final decision. This process ensured the accuracy and
consistency of the study selection. Citations and reasons for the
exclusion of studies are provided in Table S3 in Multimedia
Appendix 1.

Data Extraction
A total of 2 independent review authors used data extraction
tables for diagnostic experiments and extracted data in duplicate.
The extracted items include characteristics of the study, that is,
author, year of publication, country, and purpose; Participant
characteristics, that is, the number of samples, images, or
subjects; Reference criteria, thresholds, and diagnostic accuracy
results, that is, TP, FP, TN, and FN, area under the curve,
sensitivity, specificity, and accuracy.

Literature Quality Evaluation
A total of 2 independent review authors used the Cochrane
Collaboration’s recommended Diagnostic Accuracy Studies
Quality Assessment Tool-2 (QUADAS-2) to assess the risk of
bias and suitability of included articles [27]. QUADAS-2
consists of the following areas: patient selection, reference
standard, index test, and flow and timing. We have tailored the
QUADAS-2 tool to address AI-specific biases and more
accurately assess the quality of AI diagnostic research [28]. The
changes are explicitly tracked in Table S4 in Multimedia
Appendix 1. If all the requirements in an individual area are
assessed as “yes,” the area is considered to have a low risk of
bias. If any requirement is assessed as “no,” the area is
considered to have a high risk of bias. If there is insufficient
information to make a judgment, the risk of bias is rated as
“unclear,” in line with the QUADAS-2 guidelines. When
differences in assessment arise, they are resolved through mutual
discussion and consensus with a third independent evaluator.

Diagnostic Accuracy Measures
The accuracy indexes of diagnostic measurement are mainly
sensitivity and specificity; sensitivity represents the probability

of detecting positive in the population judged by the gold
standard as diseased (positive), and specificity represents the
probability of detecting negative in the population judged by
the gold standard as disease-free (negative) [29]. The more
sensitive and specific a diagnostic test is, the more valuable it
is.

Synthesis of Results
Stata software was used for data analysis. Forest mapping using
extracted two-by-two data with sensitivity and specificity
measurements with 95% confidence contour. In addition, we
used the media’s command to calculate the likelihood ratio,
diagnostic odds ratio, and 95% confidence contour for
meta-analysis of diagnostic studies [30]. Given the heterogeneity
and unclear thresholds of endometrial cancer detection in
different AI models, we used the media’s command to plot a
summary receiver operating curve (SROC) curve, which
includes aggregated measures of sensitivity and specificity for
selected articles, area under the curve (AUC), with a 95%
confidence contour [31]. To investigate potential sources of
heterogeneity, we performed subgroup analyses based on
subgroups of AI type, region, study type, and year of publication
in the extracted information.

Certainty of Evidence
The GRADE (Grading of Recommendations, Assessment,
Development, and Evaluation) criteria were applied to assess
the certainty of evidence for the entirety of diagnostic accuracy
studies, focusing on 5 key domains: risk of bias, indirectness,
inconsistency (significant variations in diagnostic accuracy
estimates), imprecision (broad CIs), and publication bias [32,33].
Each study was independently evaluated by the reviewers. The
certainty of evidence was downgraded whenever there was
sufficient justification for such a decision in any of these
domains.

Results

Study Selection
A total of 1241 records were identified by the literature search
on January 1, 2024, of which 326 records were collected from
PubMed, 362 from Scopus, 250 from Embase, and 39 from the
Cochrane Library. In total, 264 records were collected from the
Web of Science database.

After removing duplicates (n=210), the titles of 1031 records
were filtered. According to the title and summary, 821 records
were excluded because the content or format was not relevant.
A careful reading of the full text removed 197 articles and finally
included 13 articles after two researchers independently reached
a consensus.

Figure 1 shows the study selection process and results.
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Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 2020 flow diagram.

Features Included in This Study
Finally, 13 studies were included in this study, involving 6400
patients and 438,617 samples. Table 1 shows the basic
characteristics of the selected articles. Additional characteristics
of the included studies, including the PPV (positive predictive
value), NPV (negative predictive value), Function and
Objectives of the AI System, Source of Training Data, and
Data-Study Population Match, are detailed in Table S5 in
Multimedia Appendix 1. The included studies were published
between 2017 and 2022, mainly from Asian countries (n=9),
including China (n=6) and Japan (n=3), in addition to a number
of non-Asian countries (n=4), including Italy (n=1), Greece
(n=1), Canada (n=1), and the United States (n=1). In total, 8 of

the 13 studies were retrospective, and 5 were prospective. Of
the studies included, 7 used deep learning to screen for
endometrial cancer, and the remaining 6 applied machine
learning. There are 7 AI models included in these studies, the
most common being convolutional neural network (n=6) and
random forest (n=2). Of the selected articles, 2 studies used
histopathology, 9 studies used expert diagnoses as reference
standards, and 2 studies did not specify reference standards.
Most studies (n=11) enrolled patients and collected samples
from local hospitals or Cancer institutes, while others obtained
patient data and samples of pathological images from public
databases, such as the pathological database, the Cancer Imaging
database, and the Gene Expression Omnibus database.
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Table 1. Characteristics of included studies.

Reference standardType of AIeStudy designCountryTNdFNcFPbTPaAuthor, year

Expert readersDeep learning

(CNNf)

Retrospective co-
hort

China10561512Chen et al [34],
2020

Expert readersMachine learningRetrospective co-
hort

Italy437416Chiappa et al [35],
2021

NRhMachine learning

(RFg)

Retrospective co-
hort

China26859463Dongli Zhao et al
[36], 2022

HistopathologyMachine learning

(SVMi)

Retrospective co-
hort

Canada15024122951093Ebrahimian et al
[37], 2020

Expert readersDeep learning
(CNN)

Retrospective co-
hort

China5166791039Fengjun Zhao et al
[38], 2022

Expert readersMachine learning
(RF)

Prospective cohortUnited States483247Hart et al [39], 2020

Expert readersMachine learning
(Python)

Retrospective co-
hort

China45916251254Li et al [40], 2021

Expert readersDeep learning
(CNN)

Prospective cohortChina1052217771192Li et al [41], 2022

NRMachine learning
(Neural network)

Prospective cohortGreece2272117151Makris et al [42],
2017

Expert readersDeep learning
(CNN)

Retrospective co-
hort

Japan74352Saida et al [43],
2022

Expert readersDeep learning
(CNN)

Prospective cohortChina14113046Sun et al [44], 2020

HistopathologyDeep learning

(DNNj)

Prospective cohortJapan12631533Takahashi et al [45],
2021

Expert readersDeep learning
(CNN)

Retrospective co-
hort

Japan403648Urushibara et al
[46], 2022

aTP: true-positive.
bFP: false-positive.
cFN: false-negative.
dTN: true-negative.
eAI: artificial intelligence.
fCNN: convolutional neural network.
gRF: random forest.
hNR: not reported.
iSVM: support vector machine.
jDNN: deep neural network.

Risk of Bias and Applicability
The overall methodological quality of the study was assessed
using QUADAS-2, and Figure 2 [34-46] shows the results. Of
the included studies, 10/13 (77%) had a high risk of bias, mainly
due to inadequate case-control design information and
inappropriate exclusion criteria. Regarding the use of AI in
diagnostics, a high risk of bias was found in 10/13 (77%) studies.
These studies lacked a blind evaluation of the index test, and
the model codes were not publicly available. In terms of process

and timing, there was a high risk of bias in 6/13 (46%) studies,
mainly because the time interval between the trial to be
evaluated and the gold standard in some studies could not be
determined, or it was not possible to determine whether all
patients received only one gold standard. High applicability
concerns of the evidence to patients were found in 5 (38%)
studies. There are low applicability concerns regarding the
evidence for the index test in all studies. There are high
applicability concerns of the evidence to the reference standard
in 2/13 (15%) studies.
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Figure 2. Risk of bias and applicability concerns summary [34-46].

Results of Individual Studies
Figure 3 [34-46] shows the forest plot of the sensitivity and
specificity of each study. In 13 studies, the sensitivity of using

AI to screen for endometrial cancer ranged from 67% to 94%,
and the specificity ranged from 70% to 100%.

J Med Internet Res 2025 | vol. 27 | e66530 | p. 6https://www.jmir.org/2025/1/e66530
(page number not for citation purposes)

Wang et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 3. Forest plots of sensitivity and specificity in 13 included studies on using artificial intelligence (AI) for endometrial cancer screening [34-46].

Synthesis of Results
Based on the sensitivity and specificity of the included studies,
the SROC curve was fitted to evaluate the performance of AI
systems in supporting the diagnostic process for endometrial
cancer. Figure 4 shows the SROC curve, with a prediction
interval of 95% and a CI of 95%, and its overall aggregated

estimates are as follows: sensitivity of 86% (95% CI 79%-90%),
specificity of 92% (95% CI 87%-95%), and area under the curve
of 95%. Summary points are represented by a red diamond, and
individual studies are represented by a circle with a number
marker. The short dashed and dotted lines represent the 95%
confidence and 95% prediction contour, respectively.
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Figure 4. Summary receiver operating characteristic curves of included studies. SENS; sensitivity; SPEC: specificity; SROC: summary receiver
operating characteristic curve; AUC: area under the curve.

Subgroup Analyses
In order to analyze the possible causes and sources of inter-study
heterogeneity, we conducted a series of subgroup analyses, the
detailed results of which are shown in Table 2. Specific
groupings include the type of AI used in the studies (machine

learning versus deep learning), region (Asian vs non-Asian),
year of publication (pre-2022 and post-2022), and type of study
(prospective vs retrospective), with the results of the subgroup
analysis similar to those of the main analysis of AI screening
for endometrial cancer.
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Table 2. Subgroup analyses for using artificial intelligence (AI) for endometrial cancer screening.

Specificity, % (95% CI)Sensitivity, % (95% CI)Number of eligible studies, nSubgroup variables

Type of artificial intelligence

89 (84-93)81 (69-88)4Machine learning

94 (85-98)90 (84-94)9Deep learning

Region

92 (84-96)87 (79-92)9Asia

91 (84-95)84 (74-91)4Non-Asia

Year of publication

93 (87-96)80 (70-87)5≤2021

90 (72-97)90 (86-93)8≥2022

Type of study

95 (89-98)89 (84-93)5Prospective

89 (82-94)83 (72-90)8Retrospective

Certainty of Evidence
Each reviewer independently assessed the overall certainty of
the evidence. The domains of risk of bias, indirectness, and
consistency were downgraded due to numerous studies
exhibiting a high risk of bias in patient selection, flow and
timing, and reference standards, as well as significant variability
in specificity. Following the GRADE approach for diagnostic
tests, the certainty of evidence for the accuracy of AI-based
tests in endometrial cancer screening was deemed very low for
both sensitivity and specificity estimates (see Table S5 in
Multimedia Appendix 1).

Discussion

Principal Findings
This is the first systematic review and meta-analysis to evaluate
the diagnostic accuracy of AI-based screening for early-stage
endometrial cancer. The analysis found that AI-based screening
was able to detect 86% (95% CI 79%-90%) of endometrial
cancer patients and exclude 92% (95% CI 87%-95%) of
nonendometrial cancer patients. However, significant
heterogeneity in study methodologies, along with a lack of
consistent reporting on patient selection, processes, and timing,
may introduce substantial bias. In addition, the included studies
did not fully adhere to existing reporting standards for diagnostic
accuracy studies, such as the Standards for Reporting Diagnostic
Accuracy (STARD) [47]. This highlights the need for
appropriate reporting standards to improve the quality and
completeness of AI-specific diagnostic accuracy research.

While the QUADAS-2 tool provides a robust framework for
assessing bias in diagnostic accuracy studies, its application to
AI-based models requires contextual customization to address
algorithmic and data-driven biases. Recent literature [48] has
highlighted these difficulties and proposed AI-specific reporting
guidelines to address biases in data curation and model
transparency. In this review, we addressed these limitations by
tailoring QUADAS-2 signaling questions to target AI-related
confounders. Key modifications included replacing generic

questions with the Patient Selection domain to detect data
leakage risks and adding new signaling questions in the Index
Test domain with criteria evaluating model reproducibility. We
advocate for broader adoption of domain-specific tailoring of
QUADAS-2 in AI diagnostic reviews, complemented by
emerging tools such as PROBAST-AI [48]. Future efforts should
prioritize consensus-building on standardized AI adaptations
to enhance cross-study comparability.

The results of this study suggest that AI-based approaches,
particularly deep learning, have the potential to support early
screening for endometrial cancer by providing high sensitivity
and specificity. In this study, the sensitivity of deep learning
was 90% (95% CI 84%-94%) and the specificity was 94% (95%
CI 85%-98%), compared with the highest sensitivity and
specificity in previous studies, which were 87% (95% CI
83%-90.2%) and 92.5% (95% CI 85.1%-96.4%), respectively
[11,49]. While these findings are promising, the certainty of
evidence for these estimates was deemed very low, largely due
to methodological limitations in the included studies.
Furthermore, the pooled estimates may not fully account for
challenges such as overdiagnosis, variability in clinical settings,
and the impact of AI on downstream clinical decision-making.
Future research should focus on addressing these gaps to provide
stronger evidence for the effectiveness and safety of AI in
endometrial cancer screening.

Subgroup analysis suggested that studies using deep learning
reported higher sensitivity and specificity compared with those
using machine learning, though this observation may be
influenced by variations in study design, populations, and
methodologies. Due to the limited ability of machine learning
to handle complex data, it may not perform as well as deep
learning when dealing with highly complex and
high-dimensional data [11]. However, in cases where input
imaging data is insufficient, traditional machine learning can
still accurately detect endometrial cancer across different
imaging modalities, retaining significant diagnostic potential
comparable to deep learning in clinical applications [50,51].
Given the increasing application of AI in cancer screening and
treatment, this study highlights the potential advantages of deep
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learning over traditional screening methods for early detection
of endometrial cancer. Deep learning, particularly convolutional
neural networks (CNNs), has shown promise in automatically
extracting complex features from images and handling
large-scale, high-dimensional datasets [10,52,53]. However,
this recommendation must be interpreted cautiously, as the
certainty of evidence remains low, and the potential harms of
AI, such as overdiagnosis and resource implications, have not
been thoroughly studied. Further research is needed to evaluate
how AI-based methods compare with traditional approaches in
real-world clinical settings and their overall impact on patient
outcomes. However, considering the high accumulation and
training costs associated with deep learning algorithms, future
guidelines and policies need to be developed to adapt and adjust
AI-based imaging for endometrial cancer screening tailored to
the medical contexts of different countries.

In the subgroup analysis, AI-based screening demonstrated
higher sensitivity in Asian endometrial cancer patients, with a
correct detection rate of 87% (95% CI 79%-92%), compared
with 84% (95% CI 79%-91%) in non-Asian patients, while the
specificity for excluding nonendometrial cancer cases was
similar between the two groups. For AI-based imaging
examinations, quantitative imaging features related to
tumor-associated biomarkers, such as estrogen receptor (ER)
and progesterone receptor (PR), play a critical role in the early
screening of endometrial cancer [54]. Existing studies suggest
that there may be differences in hormone receptor expression
levels across racial groups [55,56]. Given that AI must
continuously track disease evolution, these racial differences
in endometrial cancer biomarkers, along with the varied imaging
features, may at least partially explain the superior performance
of AI-based imaging in the early detection of endometrial cancer
among Asian populations. However, before concluding the
impact of racial differences, further evaluation is needed to
assess the diagnostic accuracy differences of AI-based imaging
between Asian and non-Asian populations.

Regarding the differences in diagnostic performance across
studies published in different years, we found that studies
conducted in 2022 and later demonstrated better diagnostic
accuracy compared with those conducted in 2021 and earlier.
Notably, over half of the diagnostic accuracy studies conducted
in 2022 and beyond focused on the development and evaluation
of deep learning performance, suggesting that the type of AI
used significantly impacts diagnostic performance, with deep
learning outperforming machine learning. This finding supports
the use of deep learning algorithms in developing AI-based
screening methods, such as computer-aided detection and
diagnostic systems [11], with promising potential for clinical
application. Therefore, future research should aim to further
refine machine learning algorithms to enhance their performance
in detecting endometrial cancer.

In addition, our subgroup analysis of the study types included
revealed that prospective studies have an advantage over
retrospective studies in evaluating diagnostic performance and
reliability [52]. Prospective studies set clear inclusion criteria
at the outset and sequentially enroll patients who meet these
criteria, thus reducing selection bias. Furthermore, prospective
studies collect real-time data, which more accurately reflects

current clinical practice and the latest technological
advancements. In contrast, retrospective studies may suffer from
selection bias due to inconsistent data collection and the
selective inclusion of specific cases, and their data may not
reflect the most up-to-date diagnostic techniques and methods
[53]. Furthermore, our analysis found that there are currently
fewer prospective studies available. In the future, more
prospective studies should be conducted to dynamically observe
the long-term effects and reliability of AI-based diagnostic tests,
providing a more comprehensive evaluation of their
performance.

In this study, we strictly adhered to guidelines for diagnostic
systematic reviews [57]. We applied rigorous eligibility criteria
and quality assessment tools to the included studies. After a
comprehensive search across multiple databases, we extracted
data that could influence the diagnostic performance of AI-based
endometrial cancer screening, such as TPs, FPs, FNs, TNs, AI
type, study region, and publication year. Subgroup analysis was
conducted to reduce the heterogeneity of the results. Despite
these efforts, some inevitable limitations remain in this study.
First, more than half of the included articles had a high risk of
bias, particularly in patient selection. It is difficult to determine
whether patient samples from some publicly accessible datasets
were enrolled consecutively or randomly, which may result in
the inclusion of patients with severe disease or healthy controls.
This could lead to an overestimation of the pooled sensitivity
and specificity of AI-based diagnostic accuracy. Second, most
studies used public data sources for retrospective analyses, and
only 5 prospective studies evaluated AI algorithm performance
in clinical settings. This methodological limitation may have
introduced bias. Third, the included studies did not consistently
report test failures, limiting our ability to analyze their potential
impact on diagnostic performance. Standardized reporting of
test failures in future research could provide a more
comprehensive evaluation of AI-based screening tools. Fourth,
the lack of consistent reporting on test thresholds across studies
is another limitation. Test thresholds are critical in defining
positive results, and variability among AI systems may affect
the comparability and synthesis of sensitivity and specificity
estimates. Transparent and standardized reporting of test
thresholds is necessary to improve the interpretability of future
meta-analyses. Finally, excluding non–English-language studies
may have led to the omission of important research on the
performance of AI-based screening.

Early screening is crucial for endometrial cancer patients, as
accurate identification in the early stages allows for timely
management, improving patient outcomes [58]. To enhance the
quality of future AI-based screening research, the following
recommendations should be adopted: first, future studies should
strengthen patient selection criteria to increase the reliability of
the research [59]. Second, many AI algorithms are developed
and evaluated on similar populations, often using subsets of the
same data sources, which may lead to overly optimistic
performance results compared with true external validation sets.
To achieve greater generalizability and reproducibility, future
research should develop AI models using large, diverse datasets
from specialized hospitals, endometrial cancer screening
programs, cancer research institutes, and national databases
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[12,60]. Third, dedicated studies should be conducted to evaluate
the diagnostic performance of AI, such as comparing AI with
health care professionals or assessing the combined performance
of AI models and health care professionals. These studies are
critical for endometrial cancer screening and will enhance the
robustness of developed AI models, making them more suitable
for early detection of endometrial cancer. Finally, further
research is needed to explore how these AI models can be
effectively integrated into endometrial cancer screening
workflows and to assess their impact on patient-related clinical
outcomes.

Conclusion
The diagnostic performance of AI-based early detection of
endometrial cancer is promising and holds potential clinical
value. In the future, well-designed randomized controlled trials
and cohort studies in large populations undergoing endometrial
cancer screening are needed to compare test accuracy. These
studies should assess the accuracy of AI-based screening and
evaluate clinical diagnostic models that combine AI with health
care professionals’ expertise.
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