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Abstract

Background: Considering that most patients with low or no significant risk factors can safely undergo noncardiac surgery
without additional cardiac evaluation, and given the excessive evaluations often performed in patients undergoing intermediate
or higher risk noncardiac surgeries, practical preoperative risk assessment tools are essential to reduce unnecessary delays for
urgent outpatient services and manage medical costs more efficiently.

Objective: This study aimed to use the Observational Medical Outcomes Partnership Common Data Model to develop a
predictive model by applying machine learning algorithms that can effectively predict major adverse cardiac and cerebrovascular
events (MACCE) in patients undergoing noncardiac surgery.

Methods: This retrospective observational network study collected data by converting electronic health records into a standardized
Observational Medical Outcomes Partnership Common Data Model format. The study was conducted in 2 tertiary hospitals. Data
included demographic information, diagnoses, laboratory results, medications, surgical types, and clinical outcomes. A total of
46,225 patients were recruited from Seoul National University Bundang Hospital and 396,424 from Asan Medical Center. We
selected patients aged 65 years and older undergoing noncardiac surgeries, excluding cardiac or emergency surgeries, and those
with less than 30 days of observation. Using these observational health care data, we developed machine learning–based prediction
models using the observational health data sciences and informatics open-source patient-level prediction package in R (version
4.1.0; R Foundation for Statistical Computing). A total of 5 machine learning algorithms, including random forest, were developed
and validated internally and externally, with performance assessed through the area under the receiver operating characteristic
curve (AUROC), the area under the precision-recall curve, and calibration plots.

Results: All machine learning prediction models surpassed the Revised Cardiac Risk Index in MACCE prediction performance
(AUROC=0.704). Random forest showed the best results, achieving AUROC values of 0.897 (95% CI 0.883-0.911) internally
and 0.817 (95% CI 0.815-0.819) externally, with an area under the precision-recall curve of 0.095. Among 46,225 patients of the
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Seoul National University Bundang Hospital, MACCE occurred in 4.9% (2256/46,225), including myocardial infarction
(907/46,225, 2%) and stroke (799/46,225, 1.7%), while in-hospital mortality was 0.9% (419/46,225). For Asan Medical Center,
6.3% (24,861/396,424) of patients experienced MACCE, with 1.5% (6017/396,424) stroke and 3% (11,875/396,424) in-hospital
mortality. Furthermore, the significance of predictors linked to previous diagnoses and laboratory measurements underscored
their critical role in effectively predicting perioperative risk.

Conclusions: Our prediction models outperformed the widely used Revised Cardiac Risk Index in predicting MACCE within
30 days after noncardiac surgery, demonstrating superior calibration and generalizability across institutions. Its use can optimize
preoperative evaluations, minimize unnecessary testing, and streamline perioperative care, significantly improving patient outcomes
and resource use. We anticipate that applying this model to actual electronic health records will benefit clinical practice.

(J Med Internet Res 2025;27:e66366) doi: 10.2196/66366
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Introduction

Major adverse cardiac and cerebrovascular events (MACCE)
are among the leading causes of perioperative morbidity and
mortality following noncardiac surgeries, particularly in an
aging population [1-4]. With over 300 million noncardiac
surgeries performed annually, accurate preoperative risk
assessment has become essential to optimize patient outcomes
and reduce health care costs [5,6]. However, the predictive
accuracy of traditional assessment tools is not consistently high,
and various tools are used at different physicians’ discretion
[7].

Traditionally, the Revised Cardiac Risk Index (RCRI), which
comprises 6 equally weighted components, is extensively used
to mitigate major perioperative cardiac complications owing to
its simplicity and relatively high predictability of in-hospital
major adverse cardiac events (MACE) or cardiovascular-related
death [8]. However, the index developed over 2 decades ago
has certain challenges, including limited external validation and
reduced precision in vascular surgery [9]. These factors may
modestly impact its effectiveness in predicting clinical outcomes
following noncardiac surgeries in practical clinical environments
[10]. Subsequent predictive tools, such as the American College
of Surgeons, National Surgical Quality Improvement Project
(NSQIP), and NSQIP Myocardial Infarction or Cardiac Arrest,
developed after RCRI, also show strong performance in
predicting postoperative MACE. However, these tools pose
challenges for clinicians in practical clinical use because they
rely on subjective predictors, leading to low interrater reliability
[11]. Despite their enhanced predictive accuracy, their
application in real-world settings is often constrained by these
practical limitations. Given these challenges, our research uses
machine learning techniques integrated with the Observational
Medical Outcomes Partnership (OMOP) Common Data Model
(CDM). Recent advances in machine learning have demonstrated
significant potential in addressing these limitations by leveraging
large-scale electronic health records (EHRs) to develop
predictive models with enhanced accuracy and adaptability.
Machine learning algorithms can extract meaningful patterns
from high-dimensional datasets, facilitating the identification
of key predictors for perioperative risks [12]. Furthermore, the
OMOP CDM standardizes diverse observational databases,

improving data interoperability and facilitating seamless
integration of predictive models across institutions. This
standardized framework enhances data sharing and model
validation across health care systems, ensuring broader
applicability and reliability, as highlighted by Ahmadi et al [13]
in their evaluation of OMOP CDM’s transformative potential
in harmonizing patient data across institutions [13-16].

Compared with traditional tools like RCRI, our model
incorporates a significantly larger number of predictors, allowing
for a more precise risk assessment. The OMOP CDM framework
further enhances this capability by offering a comprehensive
and standardized approach to data integration, addressing the
limitations of previous models and ensuring adaptability across
diverse clinical environments. Building upon this robust
foundation, we developed a machine learning–based prediction
model that leverages advanced algorithms to analyze complex
patterns within extensive patient datasets. Unlike American
College of Surgeons, NSQIP, and NSQIP Myocardial Infarction
or Cardiac Arrest, which often rely on subjective inputs and are
constrained by interrater variability, our model automates
predictor integration, ensuring consistency and practicality in
real-world applications [17,18]. Through this approach, we aim
to provide a more advanced and precise tool for personalized
risk prediction, demonstrating improved performance compared
to traditional and contemporary predictive models.

Methods

Data Sources
The data sources used in this study were selected and
standardized to ensure the integrity and compatibility of the
collected information. The EHRs were converted to the OMOP
CDM, and source codes were mapped to standard vocabularies,
including the Systematized Nomenclature Of Medicine Clinical
Terms (SNOMEDCT) [19,20]. Data analysis was conducted
using the observational health data sciences and informatics
(OHDSI) open-source patient-level prediction (PLP) package,
which was purposefully designed for standardized analysis and
harmonization with the OMOP CDM. These specialized tools
have facilitated efficient data processing and analysis across
different datasets within the OHDSI data network, and our study
strictly follows the guidelines about machine learning predictive
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models in biomedical research [21]. This collaborative aspect
enhances the comparability and generalizability of the prediction
models, making them applicable to diverse health care settings.
To address potential data loss or variation during the conversion
and mapping process, the PLP package uses a systematic
approach to generate training data. Covariates that could not be
mapped (concept_ID = 0) are excluded from the input data.
Subsequently, a sparse matrix is initialized to represent
patient-level covariates and infrequently observed
covariates—those with a nonzero frequency below a predefined
threshold (default 0.1%)—are excluded to reduce noise.
Normalization is then performed by scaling covariates to their
maximum observed values, and feature selection techniques are
applied to retain only meaningful variables for model training.
These steps minimize the impact of unconverted or missing
data, ensuring the robustness and reliability of the models.

To develop and evaluate our prediction models, we
retrospectively used patient data from 2 tertiary hospitals, Seoul
National University Bundang Hospital (SNUBH) and Asan
Medical Center (AMC), which are recognized for their
substantial CDM datasets. The SNUBH dataset contains data
from 46,225 patients who underwent noncardiac surgery
between January 2003 and December 2020, and the AMC
dataset includes data from 396,424 patients who underwent
noncardiac surgery between January 2010 and December 2020.
This extensive dataset included a comprehensive array of
demographic information and detailed preoperative baseline
characteristics, including diagnosis codes, underlying diseases,
laboratory test results, medications, type of surgery, and clinical
outcomes from the EHR system (Table 1).
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Table 1. Baseline characteristics.

P valueAMCbSNUBHaCharacteristics

396,42446,225Number of populations, N

.0172.9 (6.08)72.9 (5.35)Age, years, mean (SD)

<.001Sex, n (%)

232,522 (58.7)25,573 (55.3)Male

163,902 (41.3)20,652 (44.7)Female

<.00123.3 (3.70)23.7 (3.39)BMI (kg/m2), mean (SD)

Underlying disease, n (%)

<.001216,440 (54.6)28,641 (62)Hypertension

<.001104,269 (26.3)12,815 (27.7)Diabetes

<.001129,601 (32.7)12,078 (26.1)Dyslipidemia

<.00119,613 (4.9)961 (2.1)Congestive heart failure

<.00145,095 (11.4)2588 (5.6)Chronic kidney disease

<.00140,628 (10.2)7363 (15.9)Cerebrovascular disease

<.00143,302 (10.9)3939 (8.5)Ischemic heart disease

Preoperative lab results

<.0017.5 (3.56)7.0 (2.64)White blood cell (103/μL), mean (SD)

<.00111.5 (2.24)12.8 (1.89)Hemoglobin (g/dL), mean (SD)

<.001214.9 (91.24)233.9 (75.86)Platelet (103/μL), mean (SD)

<.001138.2 (4.45)139.9 (3.42)Sodium (mmol/L), mean (SD)

<.0014.2 (0.52)4.3 (0.46)Potassium (mmol/L), mean (SD)

<.00123.1 (17.06)18.3 (9.67)BUNc (mg/dL), mean (SD)

<.0011.3 (1.43)1.1 (0.95)Creatinine (mg/dL), mean (SD)

<.00174,594 (18.8)3434 (7.4)Creatinine level (≥2 mg/Dl), n (%)

<.001146.2 (45.78)169.0 (41.55)Total cholesterol (mg/dL), mean (SD)

.1791.3 (36.14)92.2 (30.90)LDLd (mg/dL), mean (SD)

<.0013.2 (0.71)4.0 (0.53)Albumin (g/dL), mean (SD)

<.00131.7 (30.72)27.7 (20.58)ASTe (IU/L), mean (SD)

<.00125.4 (28.08)24.1 (21.70)ALTf (IU/L), mean (SD)

<.001133.0 (55.15)122.2 (43.59)Glucose (mg/dL), mean (SD)

<.0011.1 (0.31)1.0 (0.19)PTg (INRh), mean (SD)

<.00131.1 (8.13)36.6 (5.83)aPTTi (s), mean (SD)

Medications, n (%)

<.001139,029 (35.1)11,900 (25.7)Aspirin

<.00171,436 (18)6263 (13.5)P2Y12 inhibitor

<.001179,264 (45.2)9678 (20.9)β-blocker

<.001161,016 (40.6)12,357 (26.7)RASj inhibitor

<.001227,915 (57.5)15,771 (34.1)Calcium channel blocker

<.001129,236 (32.6)11,734 (25.4)Statin

<.001138,392 (34.9)8603 (18.6)Insulin treatment

Type of surgeryk
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P valueAMCbSNUBHaCharacteristics

Intermediate risk (1%-5%), n (%)

<.00129,072 (7.3)1429 (3.1)Intraperitoneal: splenectomy, hiatal hernia repair,
cholecystectomy

<.001655 (0.2)17 (0)Carotid symptomatic (CEAl or CASm)

<.00124,861 (6.3)12 (0)Peripheral arterial angioplasty

<.00160,919 (15.4)2090 (4.5)Head and neck surgery

<.00116,878 (4.3)3309 (7.2)Neurological or orthopedic: major (hip and spine
surgery)

<.0015350 (1.3)243 (0.5)Urological or gynecological: major

<.0012684 (0.7)23 (0)Renal transplant

<.00150,247 (12.7)1596 (3.5)Intrathoracic: nonmajor

High risk (>5%), n (%)

<.00153,886 (13.6)2028 (4.4)Aortic and major vascular surgery

<.0017786 (2)250 (0.5)Open lower limb revascularization or amputation
or thromboembolectomy

<.0017216 (1.8)247 (0.5)Duodeno-pancreatic surgery

<.00119,183 (4.8)373 (0.8)Liver section, bile duct surgery

<.0017795 (2)75 (0.2)Esophagectomy

<.001105,525 (26.6)1557 (3.4)Repair of perforated bowel

<.0011191 (0.3)66 (0.1)Adrenal resection

<.00113,751 (3.5)1026 (2.2)Pneumonectomy

<.0018656 (2.2)27 (0.1)Pulmonary or liver transplant

<.00174,067 (18.7)494 (1.1)Unspecified

Outcome

<.0015603 (1.4)907 (2)Myocardial infarction

.002168 (0)35 (0.1)Cardiac arrest or shock

.032310 (0.6)308 (0.7)Heart failure

.0016017 (1.5)799 (1.7)Stroke

<.00111,875 (3)419 (0.9)Death (in-hospital)

aSNUBH: Seoul National University Bundang Hospital.
bAMC: Asan Medical Center.
cBlood urea nitrogen.
dLow density lipoprotein.
eAST: aspartate aminotransferase.
fALT: alanine aminotransferase.
gPT: prothrombin time.
hINR: international normalized ratio.
iaPTT: activated partial thromboplastin time.
jRAS: renin-angiotensin system.
kThe surgery risk type was classified into two types: (1) intermediate and (2) high.
lCEA: carotid endarterectomy.
mCAS: carotid artery stenting.

Ethical Considerations
This retrospective, observational network study was conducted
by a multidisciplinary team comprising cardiologists, medical
informatics specialists, and data scientists. The study received

approval from the institutional review boards (IRBs) of SNUBH
(IRB number 2208-772-906) and AMC (IRB number
2022-1547). Due to the retrospective study design and the use

J Med Internet Res 2025 | vol. 27 | e66366 | p. 5https://www.jmir.org/2025/1/e66366
(page number not for citation purposes)

Kwun et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


of deidentified data, the requirement for written informed
consent was waived.

Study Design and Target Cohort
We conducted a retrospective analysis of patients aged 65 years
and older who underwent noncardiac surgeries at 2 independent
tertiary hospitals. Age was determined at the time of surgery.
We excluded patients who had undergone cardiac or emergency
surgery within 3 days of a hospital visit and those who did not
have a sufficient observation period of less than 30 days (Figure
1). The prediction time (t=0) and start date of the time-at-risk

window for prediction were set as surgery dates. The end date
of the time-at-risk window for clinical outcomes was 30 days
after surgery. The data collection period for the predictors was
defined as 3-365 days before the start date of the time-at-risk
window (Figure 2). We adjusted the observational time frame
to collect baseline characteristics and preoperative laboratory
measurements within a narrower window of 3-30 days before
the onset of the time-at-risk period. This adjustment ensured
that the data accurately represented the patient's condition at
the beginning of the time-at-risk period.

Figure 1. Two tertiary hospital cohort designs. AMC: Asan Medical Center; MACCE: major adverse cardiac and cerebrovascular events; SNUBH:
Seoul National University Bundang Hospital.

Figure 2. Data collection for predictors.

Clinical Outcomes
The clinical outcome of this study was MACCE within 30 days
of noncardiac surgery. The individual components of MACCE
include myocardial infarction, cardiac arrest or shock, heart
failure, stroke, and death. All clinical events were identified
and extracted from CDM data using standardized concept IDs
(Table S1 in Multimedia Appendix 1). To ensure comprehensive
coverage of relevant events, our approach included a broad
spectrum of concepts for each MACCE component, ranging
from higher-level descriptors to more specific descriptors. Death

analysis was based on records from the EHR data within 30
days after noncardiac surgery.

Prediction Model Development and Validation
Using observational health care data, we used the standardized,
open-source OHDSI PLP package within R (version 4.1.0; R
Foundation for Statistical Computing) to develop and validate
our prediction model. We developed a prediction model by
integrating data from preoperative laboratory measurements 16
routinely measured basic parameters: white blood cell,
hemoglobin, platelet count, aspartate aminotransferase, alanine
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aminotransferase, blood urea nitrogen, creatinine, albumin,
calcium, sodium, phosphate, total bilirubin, c-reactive protein,
cholesterol, hemoglobin A1c, and prothrombin time), previous
diagnosis, medication records, and surgical type from the
SNUBH CDM development dataset. This dataset was divided
into a training set (34,670/46,225, 75%) and a testing set
(11,555/46,225, 25%) for internal validation of the developed
model. For the training dataset, we used a 3-fold cross-validation
for hyperparameter optimization. Cross-validation was used to
minimize overfitting and optimize the model’s generalization
capabilities by evaluating its performance on different data
splits.

With the OHDSI PLP framework, the least absolute shrinkage
and selection operator, logistic regression, gradient boosting
machines, AdaBoost, random forest (RF), and decision trees
were developed. Model discrimination was assessed using the
areas under the receiver operating characteristic curve (AUROC)
and areas under the precision-recall curve. In addition, a
calibration plot analysis was used to gauge the reliability of the
model’s predictions and to confirm that the predicted
probabilities matched the actual occurrence probabilities.
Finally, the model’s generalizability is evaluated by performing
external validation using the AMC CDM dataset. The external
validation results demonstrated minimal differences in AUROC
values compared to internal validation, confirming the model's
ability to generalize effectively to unseen data and supporting
the robustness of overfitting prevention strategies such as feature
selection, regularization, and cross-validation. To evaluate the
relative importance of covariates in developing the prediction
model, feature importance was calculated and sorted in
descending order based on the most effective machine learning
algorithm contributing to the prediction. In addition, we
attempted to develop prediction models by recombining
variables based on covariate grouping. These recombination
models were developed by excluding certain covariate groups
with the expectation that this selective process may enhance
prediction accuracy by reducing noise and focusing on the most
significant factors.

Results

Study Population
A total of 46,225 patients were enrolled at SNUBH, and 396,424
were enrolled at AMC, with an average age of 72.9 (SD 5.35)
years at both hospitals (Table 1). More male than female patients
were enrolled at both institutions, with 25,573/46,225 males
(55.3%) at SNUBH and 232,522/396,424 males (58.7%) at
AMC. Hypertension was the most common comorbidity,
affecting 28,641/46,225 (62%) and 216,440/396,424 (54.6%)

of patients at SNUBH and AMC, respectively. At SNUBH,
cerebrovascular disease was more common (7363/46,225;
15.9%) compared with 40,628 of 396,424 (10.2%) at AMC. By
contrast, congestive heart failure was more common at AMC
(19,613/396,424, 4.9%) than at SNUBH (961/46,225, 2.1%).
Similarly, ischemic heart disease had a higher representation at
AMC (43,302/396,424, 10.9%) than at SNUBH (3939/46,225,
8.5%). Preoperative laboratory results were within normal
ranges, with patients with a creatinine level of 2 mg/dL or higher
accounting for 3434 of 46,225 (7.4%) at SNUBH and 74,594
of 396,424 (18.8%) at AMC. Regarding medications, the AMC
data showed a higher proportion of patients registered with
aspirin, P2Y12 inhibitors, beta-blockers, renin-angiotensin
system inhibitors, calcium channel blockers, statins, and insulin
treatment.

There was a significant difference between the 2 hospitals
regarding the type of surgery and post-noncardiac surgery
MACCE within 30 days across all categories. Surgeries with a
risk exceeding 1% are presented in Table 1; those with
unmapped names were classified as unspecified. Post-noncardiac
surgery MACCE within 30 days included myocardial infarction,
which occurred in 907 of 46,225 (2%) patients at SNUBH and
5603 of 396,424 (1.4%) at AMC, heart failure in 308 of 46,225
(0.7%) and 2310 of 396,424 (0.6%), and strokes in 799 of
46,225 (1.7%) and 6017 of 396,424 (1.5%), respectively.
In-hospital deaths accounted for 419 of 46,225 (0.9%) and
11,875 of 396,424 (3%) deaths at SNUBH and AMC,
respectively.

Prediction Model Performance
The predictability of prediction models for internal and external
validation is presented in Table 2. The numbers of patients
included in the training, test, and external validation sets of the
SNUBH model who met the inclusion criteria are presented in
Table S2 (Multimedia Appendix 1). When assessed using the
RCRI score and compared with 5 other machine learning
prediction models, all machine learning models outperformed
the RCRI model with a higher AUROC for MACCE prediction
than the RCRI score (AUROC 0.704; Figure 3A). The RF
generally showed the best overall performance in internal and
external validations across outcomes with moderate calibration
among the 5 predictive models. The AUROC of this model was
0.897 (0.883-0.911) and 0.817 (0.815-0.819) for internal and
external validations, respectively (Figure 3A and Table 2), and
the area under the precision-recall curve was 0.095 (Figure 3B).
In addition, it demonstrated outstanding calibration, showing
strong alignment with the average predicted probability on the
calibration plot (Figure 3C).
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Table 2. Predictability of 5 machine learning prediction models.

AMCbSNUBHaPrediction model

External validationTestTrainAUROCc (95% CI)

MACCEd

0.817 (0.815-0.819)0.897 (0.883-0.911)0.985 (0.982-0.989)Random forest

0.826 (0.823-0.828)0.898 (0.885-0.912)0.935 (0.928-0.941)Gradient boosting machine

0.813 (0.810-0.815)0.892 (0.878-0.906)0.906 (0.899-0.914)Lasso logistic regression

0.786 (0.782-0.788)0.887 (0.873-0.902)0.907 (0.901-0.914)AdaBoost

0.663 (0.659-0.667)0.776 (0.750-0803)0.895 (0.885-0.904)Decision tree

aSNUBH: Seoul National University Bundang Hospital.
bAMC: Asan Medical Center.
cAUROC: area under the receiver operating characteristic curve.
dMACCE: major adverse cardiac and cerebrovascular events.

Figure 3. Seoul National University Bundang Hospital (SNUBH) prediction model based on validation data. AUC: area under the curve; RCRI: Revised
Cardiac Risk Index.

The superior performance of the RF model can be attributed to
its unique horizontal ensemble structure that uses bagging to
construct decision trees based on randomly selected subsets of
features at each split. This structure minimizes tree correlation,
reduces overfitting, and handles high-dimensional low-sample
size datasets, which are characteristic of electronic medical
record data. Furthermore, RF is robust to imbalanced data,
outperforming models like gradient boosting machines in
scenarios with severe class imbalance. Gradient boosting
machines, in contrast, use a boosting structure that sequentially
trains weak learners, making them sensitive to noise and rare
events and highly dependent on optimal hyperparameter tuning.
Compared with simpler models like logistic regression and
LASSO, RF excels in capturing complex patterns in
high-dimensional data with many irrelevant or noisy features,
making it particularly suitable for electronic medical record
datasets [13,22-24].

Predictors
In the prediction model, we assessed the relative importance of
various covariates based on their values (Figure 4). Rather than
identifying a single outstanding covariate, the analysis grouped
covariates into similar thematic clusters. Predominantly,
predictors associated with the patient’s underlying medical
history were relatively high in the developed prediction model.
These include ischemic heart disease, traumatic and
nontraumatic brain injury, heart failure, heart disease, and
cerebral infarction. The model highlights the importance of the
measurement predictors. Preoperative laboratory measurements
revealed that hemoglobin, creatinine, albumin, CK-MB, and
erythrocyte sedimentation rates played crucial roles. Among
the medication predictors, antithrombotic agents and
beta-blockers were notably prominent, whereas the significance
of the others was less pronounced. Furthermore, although
important, the significance of the type of surgery did not appear
to be as substantial as expected when compared with other
factors in the model.
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Figure 4. Importance of covariates in the prediction model. CK-MB: creatine kinase-MB; ESR: erythrocyte sedimentation rate.

In addition, we developed prediction models by recombining
the data and considering previous diagnoses, medication, type
of surgery, and measurement data in various combinations
(Table S3 in Multimedia Appendix 1). However, none of the
additional recombination models outperformed the original
models. Nevertheless, these models generally exhibited superior
predictability compared with RCRI, except for the
recombination model that excluded the previous diagnosis
group, which yielded results comparable to or slightly inferior
to those of RCRI (Figure S1A-C in Multimedia Appendix 1).

Discussion

Principal Findings
In this study, we developed and evaluated an advanced
perioperative risk prediction model using a CDM-based machine
learning approach. The results demonstrated that machine
learning models consistently outperformed traditional methods,
such as the RCRI score, in predictive accuracy. For instance,
the RCRI score achieved an AUROC of 0.704, whereas the RF
model, among 5 tested machine learning models, showed the
best overall performance with an AUROC of 0.897 for internal
validation and 0.817 for external validation. These findings
highlight the robustness and generalizability of the model across
diverse datasets and outcomes.

This study provides key insights into the potential of
CDM-based machine learning to enhance clinical predictive
modeling. By achieving superior predictive accuracy and
scalability, especially in external validation, our approach
demonstrates a promising pathway for developing reliable tools
for perioperative risk prediction across institutions. Advances
in machine learning for extensive dataset analysis have led to
increased interest in applying PLP and offer the potential for
medical practice to consider personalized risks as part of clinical
decision-making [25]. The adoption of the OMOP CDM has
streamlined the transformation of diverse concept domains,

encompassing medical conditions, drugs, procedures, and
measurements derived from health record systems or reported
information into labeled analytic data. This transformation
ensures semantic and syntactic interoperability, enhancing the
extraction of prediction variables and facilitating seamless
integration across various health care data sources [19,26]. The
expanding adoption of the OMOP CDM across health care
institutions globally further strengthens the transferability of
predictive models. For example, over 60 databases in South
Korea, covering approximately 73 million patients, have been
converted to the OMOP CDM format. This widespread
implementation promotes interoperability, cross-institutional
research, and scalability of predictive models in diverse health
care environments. In addition, the standardized data across
different institutions allowed a fair evaluation of the predictive
performance of the models by extensive external validation
[18]. To implement this framework, we used the OHDSI
“Patient-Level Prediction” package, which integrates seamlessly
with the OMOP CDM and offers significant advantages. This
package not only ensures model reproducibility and transparency
through its open-source nature but also provides flexibility in
choosing machine learning algorithms and feature engineering
techniques. Furthermore, its capability for internal and external
validation aligns with best practices, promoting robust
performance evaluation and generalizability [20]. Therefore,
our model supports existing preoperative evaluation guidelines
and enables open dissemination that can be extensively validated
across OHDSI collaborator networks.

The well-structured and labeled dataset improves algorithms in
supervised machine learning but sometimes leads to overfitting,
which prevents the model’s generalization to fit the observed
data well [27,28]. To overcome the challenge of overfitting, we
used a feature selection method as one of several techniques to
identify and prioritize factors essential for the learning process
[29,30]. In addition, we used a feature selection method to create
new combinations of thematic clusters, including medical
conditions, drugs, types of procedures, and measurements, to
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assess their relative importance in predicting adverse outcomes
following surgery. The recombination model, which included
past medical conditions and previous laboratory data, exhibited
a notably high predictive accuracy. Our model’s ability to
discern the varying importance of these factors in real clinical
contexts underscores the importance of focusing on patient
histories and prior laboratory results during preoperative
evaluations [31]. This approach aligns with physicians’
subjective assessments in clinical settings and provides a flexible
alternative to traditional methods that may not fully
accommodate each patient’s unique circumstances [32].

The practical implications of our research extend to potential
time and cost savings in clinical settings. Risk assessments often
lead to unnecessary procedures or examinations, such as
echocardiography, cardiac computed tomography, and cardiac
stress tests, being performed on patients [33]. These tests, even
when not closely associated with the patient’s postsurgical
outcomes, contribute to ongoing wastage in overall medical
costs [34-36]. Several studies have demonstrated that predictive
models can effectively reduce unnecessary preoperative testing
and associated costs. For example, standardized preoperative
models have shown significant reductions in coagulation and
renal panel tests, leading to improved resource use without
compromising patient safety. Similarly, machine learning–based
tools, such as MySurgeryRisk (Azra Bihorac, University of
Florida), have enhanced risk stratification for postoperative
complications, thereby minimizing the need for unnecessary
evaluations. These findings highlight the potential of predictive
models to address inefficiencies and optimize preoperative care.
Our model, with its high predictive accuracy, is poised to reduce
the number of unnecessary tests performed and contribute to
medical cost savings. Furthermore, our model could reduce
waiting times for patients as unnecessary consultations and tests
may be minimized, ultimately mitigating the challenges posed
by health care system congestion and assisting patients in
undergoing surgery at an appropriate time. In the future, with
precise preoperative predictability, we plan to use our model to
proactively identify individuals at risk of postsurgical
complications and ensure appropriate postoperative
management. In an aging population, where surgical mortality
and morbidity rates are increasing [37], this approach can serve
as a viable solution to effectively mitigate these challenges.

Strengths
By using the OMOP CDM framework for data standardization,
we ensured syntactic and semantic interoperability across diverse
datasets. Despite the inherent inconsistencies and missing values
often observed in large health care datasets, we mitigated these
issues by leveraging data from 2 of the largest tertiary hospitals
in South Korea, where the data quality and quantity were
sufficient to minimize noise and missing data. This rich dataset
enabled the development of a robust machine learning model
with high predictive accuracy for perioperative risk assessment.

Furthermore, external validation using datasets from independent
institutions demonstrated minimal performance differences
compared with internal validation, suggesting that the semantic
gap was relatively small. This highlights the model’s strong
generalizability and supports its applicability across multiple
hospitals. These findings align with previous research
emphasizing the importance of model calibration for diverse
clinical settings and the need for strategies that address
cross-institutional variability without requiring site-specific
data harmonization [12,38].

In addition, the model consistently outperformed traditional
tools, such as the RCRI score, achieving high AUROC values
in both internal and external validations. The inclusion of
comprehensive preoperative variables, including laboratory
results, medications, and comorbidities, provided a personalized
approach to risk prediction. This capability has the potential to
reduce unnecessary preoperative testing, streamline clinical
decision-making, and improve resource allocation in real-world
health care settings.

Limitations
This study has several limitations. First, the use of datasets from
2 tertiary hospitals introduced variability in patient populations
and clinical practices, which could have influenced model
performance. However, this diversity reflects real-world
conditions and likely contributed to the model’s robustness, as
demonstrated by consistent results in external validation.
Second, although the model achieved high AUROC values, the
relatively low incidence rate suggests challenges in handling
imbalanced outcomes. Feature selection was used to prioritize
significant predictors, and future studies may incorporate
advanced techniques to address this limitation. Third, the model
has not yet been tested in real-time clinical workflows, where
factors such as delayed data entry could impact performance.
The use of standardized OMOP CDM data ensures scalability
and future studies will focus on prospective validation in live
clinical settings. Finally, the exclusion of certain covariates,
such as frailty scores and socioeconomic status, may have
limited the model’s predictive accuracy. To maintain scalability
across institutions, the study prioritized universally available
predictors, but future work will explore integrating additional
variables to enhance performance.

Conclusions
In this study, we successfully developed a high-performance
machine learning–based preoperative prediction model by using
the standardized data format of the OMOP CDM. This approach
offers the potential for improved clinical decision-making and
extensive external validation across health care institutions. In
the future, our research has practical implications for potential
time and cost savings in clinical settings by reducing
unnecessary procedures, tests, and consultations, ultimately
addressing health care system congestion and improving patient
surgical timing.
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