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Abstract

Background: Named entity recognition (NER) plays a vital role in extracting critical medical entities from health care records,
facilitating applications such as clinical decision support and data mining. Developing robust NER models for low-resource
languages, such as Estonian, remains a challenge due to the scarcity of annotated data and domain-specific pretrained models.
Large language models (LLMs) have proven to be promising in understanding text from any language or domain.

Objective: This study addresses the development of medical NER models for low-resource languages, specifically Estonian.
We propose a novel approach by generating synthetic health care data and using LLMs to annotate them. These synthetic data
are then used to train a high-performing NER model, which is applied to real-world medical texts, preserving patient data privacy.

Methods: Our approach to overcoming the shortage of annotated Estonian health care texts involves a three-step pipeline: (1)
synthetic health care data are generated using a locally trained GPT-2 model on Estonian medical records, (2) the synthetic data
are annotated with LLMs, specifically GPT-3.5-Turbo and GPT-4, and (3) the annotated synthetic data are then used to fine-tune
an NER model, which is later tested on real-world medical data. This paper compares the performance of different prompts;
assesses the impact of GPT-3.5-Turbo, GPT-4, and a local LLM; and explores the relationship between the amount of annotated
synthetic data and model performance.

Results: The proposed methodology demonstrates significant potential in extracting named entities from real-world medical
texts. Our top-performing setup achieved an F1-score of 0.69 for drug extraction and 0.38 for procedure extraction. These results
indicate a strong performance in recognizing certain entity types while highlighting the complexity of extracting procedures.

Conclusions: This paper demonstrates a successful approach to leveraging LLMs for training NER models using synthetic data,
effectively preserving patient privacy. By avoiding reliance on human-annotated data, our method shows promise in developing
models for low-resource languages, such as Estonian. Future work will focus on refining the synthetic data generation and
expanding the method’s applicability to other domains and languages.
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Introduction

In the era of data-driven health care, the effective extraction of
valuable information from electronic health records (EHRs) has
become increasingly vital for informed decision-making,
medical research, and public health initiatives. Named entity
recognition (NER) stands as a cornerstone in the realm of natural
language processing, playing a pivotal role in the automated
extraction of named entities, such as diseases, medications,
symptoms, and medical procedures, from unstructured text [1].
NER facilitates the transformation of text data into structured
information, enabling health care professionals and researchers
to carry out statistical analyses on the data.

While NER has achieved remarkable success in several
languages and domains, the journey to attain proficient NER
models for low-resource languages presents intricate challenges
[1-3]. Estonian, a Finno-Ugric language spoken by
approximately 1.1 million people, is one such language that
grapples with limited linguistic resources, especially in
specialized domains such as health care, largely because health
records are sensitive, personalized data, which makes sharing
them for labeling very difficult [4] in addition to the task being
already time-consuming and expensive. The same challenges
are faced with storing and sharing the annotated data. To tackle
this, attempts have been made at removing or masking
personally identifiable information [5,6]; however, this can still
leave the data vulnerable to reconstruction attacks [6]. Despite
its importance, the scarcity of annotated Estonian health care
text data has hindered the development of robust NER models
tailored to the unique linguistic features and domain-specific
nuances of the language. At the same time, large language
models (LLMs) such as GPT-4 have been shown to provide
impressive results in tasks related to understanding different
languages [7].

Many approaches using transformer-based models have been
applied to EHRs to extract medical named entities [8-10];
however, these approaches primarily rely on human-annotated
data for the training data, which we do not use for training. Most
transformer-based approaches rely on using a model pretrained
on a large corpus of text and fine-tuning it with the annotated
data.

To tackle the problem of low-resource languages lacking
annotation data, attempts have been made to improve the model
using data from other languages via transfer learning [11,12],
which has been shown to improve the model’s performance by
adding resources from languages with more data.

With the rapid increase in the performance of LLMs, attempts
have also been made to leverage these models to extract named
entities from texts. It has been shown that using GPT-3 for
annotating the texts can be much cheaper and faster than using
humans; however, there is room for improvements in the quality
of the annotations made by the model [13].

Tang et al [14] used ChatGPT (OpenAI) [15] to generate
synthetic medical texts with annotations to train a downstream
model for different applications including NER. The
performance of the resulting models was promising, considering
the approach of using synthetic data. Their approach uses
ChatGPT directly to generate the synthetic texts, meaning there
is no potential for possible data leakage from the synthetic texts.
However, because the GPT models were trained on data that
are publicly available, they are not trained to understand the
nuances of a specific medical domain in a low-resource
language, and the synthetic data can be very different from real
EHRs, possibly causing poor performance for the downstream
model.

This study introduces a comprehensive pipeline using LLMs to
train an NER model, enabling the annotation of targeted entities
within health care texts. First, synthetic Estonian EHRs are
generated by GPT-2 [16] trained locally on real data. We
generate the synthetic data to avoid sharing sensitive information
with third-party applications. These are passed to
GPT-3.5-Turbo and GPT-4 as payload in a prompt, instructing
the model to annotate the text with entities specified by the user.
The responses are parsed and converted into training data for
token classification with XLM-RoBERTa [17], which can be
used on the downstream task of annotating real data. This
approach ensures that sensitive data do not get passed to
third-party LLM hosts via their application programming
interface (API) calls and enables all the training to be carried
out on-site.

We showcase the differences in performance between the
selected prompts. We then compare the performance of
GPT-3.5-Turbo, GPT-4, and a local Llama-based model for the
best prompt. We continue with using the best prompt with
GPT-4 to annotate generated synthetic data in batches,
showcasing the improvement of the model based on the amount
of training data. Finally, we discuss the performance of this
method and possible room for improvements and conclude the
results of this paper.

With this paper, we aim to show how we take advantage of
powerful LLMs for training locally usable NER models without
risking the privacy of patient records by using synthetically
generated data.

Methods

Study Design
Our work follows the pipeline depicted in Figure 1. OpenAI
models were selected for annotating the synthetic data due to
their availability and their existing wide use in research. The
clinical corpus was used for training the GPT-2 model, which
we used to generate synthetic data. We then passed the synthetic
data to GPT-4 through an API, asking it to annotate the data.
The results were parsed and converted into training data for a
downstream model, which we used to annotate real-world data.
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Figure 1. Illustration of pipeline.

Generating Synthetic Data With GPT-2
As health care data are very sensitive, sharing them with
third-party LLM hosts such as OpenAI or Azure (Microsoft
Corp) is not possible. For this reason, we used synthetic data
for the annotating process, generated by a GPT-2 small model.
The dataset we used for training the model consists of around
10 million texts from 200,000 Estonians collected between 2010
and 2020 [18]. The texts are from a national registry of discharge
reports covering both primary and secondary care contacts. The
documents include anamnesis, summary, test results, objective
findings, and procedures. During training, each medical
document was prefaced with the document type, patient’s age
group, patient’s gender, and diagnosis code, a similar idea to
that used by Keskar et al [19], to generate synthetic health care
records based on our specifications.

As the model can generate exact copies of the text it was trained
on, it is important to ensure that no generated texts are identical
to the training data. One way to verify this is by comparing the
generated text directly against all training data. However, this
method is unreliable because it fails to detect copies when even
a single token differs. Some works [20,21] check if n-grams
with a length of 13 in the generated texts are present in the
training data, and if there is a match, then the generated texts
are considered unoriginal. The problem with such an approach
is that it can consider the training text with a length of 13
originals if we switch 1 word in it with a synonym. To address

this, we considered using the longest common subsequence
(LCS). For each generated text, we calculated the LCS with
each training text, selected the longest, and divided by the
generated text length, producing a score between 0 (unique)
and 1 (identical).

The advantage of LCS is its ability to classify a generated text
as a copy of the training data, even if some words have been
replaced, deleted, or added. While calculating the LCS for every
training instance is computationally expensive, with a training
dataset of 10 million texts, we felt it was feasible and critical
to ensure that no training text (real medical texts) copies were
present in subsequent steps. However, with longer texts, the
LCS elements were scattered across hundreds of tokens in the
training text not representing continuous expressions. To
mitigate this issue, we explored using a penalized LCS, which
factors in the distances between matched tokens within the
sequence. Given a penalty length k, we subtracted a penalty
term distance/k for each consecutive LCS element, where the
distance between LCS elements is the maximum of distances
in x and yi. If the distance is larger than k, we would subtract 1.
If k is 1, then this is the same as finding the longest n-gram. For
larger k values, the penalty would be smaller and we would
match more texts. We experimented with various penalties and
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found 20 to be effective in removing scattered matches without
being overly restrictive.

Using LLMs for Annotations
The synthetic texts generated by our custom GPT-2 were passed
as payloads into a prompt for Azure Cognitive Services GPT
models via their API, which were instructed to annotate the
data. We opted out of human review of data in Azure to further
ensure the privacy of even the synthetic EHRs. For all
experiments, we use the default parameters for the models. Our
goal was to find the corresponding text spans for each annotation
class; however, LLMs have been shown to make errors when
prompted to return indexes for text spans [22], and our
experiments showed that both the GPT-3.5-Turbo and GPT-4
models gave us incorrect spans when asked. Therefore, we only
asked it to give us the text and the annotation class and map it
to the text, finding the spans manually. To make the results as
easy to parse as possible, we asked it to return the results in a
JSON format, with each annotation class as an element and each
text as a value of the corresponding element.

Prompt engineering has been shown to largely influence the
quality of the output of the models [23]. This led us to select 4
different prompts to test how well they performed so we could
choose the best one to annotate the data with. The prompts are
listed in Table 1.

First, we used a zero-shot prompt because it is the most
simplistic way to ask a model to complete a task. Our zero-shot
prompt includes a description of the task, the wanted output
format, and the input text.

The second prompt consists of instructions in Estonian to test
if the accuracy of the annotations improves if the language of
the prompt matches the language of the data. It is the zero-shot
prompt translated into Estonian.

As human annotators have annotation guidelines as their
instructions, we decided to explore whether adding definitions
of entities in the prompts would increase the accuracy of the
annotations. By providing definitions, we can specify what
counts as an entity in our domain rather than relying on the
model’s understanding of the terms. The definitions for the
classes were written by the same medical expert who annotated
the synthetic data against which we tested the accuracy of the
GPT model’s annotations. Our prompt with definitions was
inspired by Li et al [24] because they had promising results
using prompts with additional annotation guidelines for NER
with a BERT model.

As GPT models have been shown to perform better when
provided with examples of task completion [20], we also tried
a few-shot prompt. It consists of 5 pairs of example inputs and
the expected JSON outputs. Few-shot prompts are particularly
effective in low-resource settings, as they provide semantically
relevant context that helps bridge the language gap between the
target language and the high-resource language the model is
proficient in [23].

The resulting responses were parsed in Python (Python Software
Foundation) to convert them into .tsv format for training the
downstream model. It was carried out by searching for the
annotation entities from the original text, mapping them to spans,
and finally aligning the spans into tokens.
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Table 1. Contents of prompts.

PromptPrompt name

In the text below, give the list of:

drug named entity, procedure named entity, disease named entity, smoking named entity.

Words need to be in exactly the same format as in input text.

Format the output in JSON with the following keys:

DRUG for drug named entity,

PROCEDURE for procedure named entity,

DISEASE for disease named entity,

SMOKING for smoking named entity.

Text below:

Zero-shot

Loetle järgnevas tekstis järgmiseid nimeolemeid:

ravimite nimeolemid, protseduuride nimeolemid, haiguste nimeolemid, suitsetamiste nimeolemid.

Sõnad päevad olema täpselt samal kujul kui sisendtekstis.

Vorminda väljund JSON kujul järgnevate võtmetega:

RAVIM ravimite nimeolemite jaoks,

PROTSEDUUR protseduuride nimeolemite jaoks,

HAIGUS haiguste nimeolemite jaoks,

SUITS suitsetamiste nimeolemite jaoks.

Tekst on järgmine:

Estonian

In the text below, give the list of

drug named entity, procedure named entity, disease named entity, smoking named entity.

Words need to be in exactly the same format as in input text.

The annotation guidelines are the following:

DRUG - any names or active ingredients of drugs, including abbreviations; no quantities

PROCEDURE - any mentions of procedures, analyses etc, including also cites

(e.g. “ajupiirkonna mrt”);

no single blood analyses, only overall mentions of blood analyses

DISEASE - names of diseases, ICD-10 codes

SMOKING - any mentions of smoking, smoking status, both negative and positive

Format the output in JSON with the following keys:

DRUG for drug named entity,

PROCEDURE for procedure named entity,

DISEASE for disease named entity,

SMOKING for smoking named entity.

Text below:

Definitions

In the text below, give the list of:

drug named entity, procedure named entity, disease named entity, smoking named entity.

Words need to be in exactly the same format as in input text.

Format the output in JSON with the following keys:

DRUG for drug named entity,

PROCEDURE for procedure named entity,

DISEASE for disease named entity,

SMOKING for smoking named entity.

Here are a few examples:

<Example input 1>

<Example output 1>

<Example input 5>

<Example output 5>

Text below:

Few-shot
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Evaluating the Performance of the GPT Models’
Annotations
To evaluate which prompt to use for annotating the data, we
generated 500 synthetic texts with 5 of the most frequent
International Classification of Diseases, Tenth Revision
(ICD-10) codes in our dataset. For each code, we generated 67
patient summaries and 33 procedures ranging from all age
groups and both genders. This dataset was then annotated by a
medical expert for drugs, procedures, diseases, and smoking
entities to compare the LLM annotations with human
annotations. The numbers of entities for each class are depicted
in Table 2.

We compared the annotations made by the LLM word level by
taking the human annotations as the ground truth and measuring

precision, recall, and F1-score (harmonic mean of precision and
recall) of the annotations. We do this using the seqeval [25]
library to obtain the classification reports with the default
options from the annotations.

After determining the most effective prompt for all the
annotation classes, we used the prompt with 3 different
models—GPT-3.5-Turbo; GPT-4; and Llammas [26], a
Llama-2-7B–based [27], instruction-tuned model adapted to
Estonian.

This gave us an estimation of how well the different models
annotate the data and which prompt to use for annotating the
data that are used for training the downstream model.

Table 2. Entity counts.

Entity count, nAnnotation class

219Drug

643Procedure

58Smoking

322Disease

Training Downstream XLM-RoBERTa Model
Once the responses from the GPT models were parsed into
training data format, we used this as data for fine-tuning a
BERT-based model. We chose the XLM-RoBERTa base with
125M parameters as its pretraining data includes Estonian and
other languages similar to Estonian. Additionally, because it is
multilingual, we could later add annotations from other
languages to further improve its performance. For each model
we trained, we used 15% of the training data for the validation
set.

The parameters for fine-tuning the model were the following:

• batch_size=16
• evaluation_strategy=“epoch”
• learning_rate=“2e-5”
• per_device_train_batch_size=16
• per_device_eval_batch_size=16
• num_train_epochs=8
• weight_decay=0.01

All the trained models were evaluated at the token level with
seqeval default settings using 300 documents from real-world
data as the test set. We chose 150 texts from patient medical
histories and 150 texts from patient procedure texts to make
sure we had enough test data for all the annotation classes. We
had 2 medical experts annotate these texts for drugs and
procedures. The instructions given to the annotators were only
the names of the entity classes to ensure that the instructions
were similar to the ones given to the models annotating the data.
We used one set of annotations as ground truth for our
experiments and the second set to calculate the pairwise
interannotator agreement [28], which was an F1-score of 0.73
for drugs and 0.48 for procedures. Once the models were trained
on the synthetic data annotated by the GPT models, we could

use the models on the test data in a secure local environment
and retrieve the results.

Ethical Considerations
The medical texts were accessed according to the Estonian
Committee on Bioethics and Human Research approval
(1.1-12/3797) that waived the requirement of informed consent
for the use of the data. The methodology presented in this study
prioritizes patient privacy by exclusively using synthetic health
care data for model training instead of augmenting original data.
This means there is no direct link between the patients and the
generated texts. We furthermore ensured privacy by removing
verbatim and close-to-verbatim copies of synthetic texts. All
sensitive medical records remain protected, and synthetic data
were generated using local models. This ensures that no actual
patient data are shared with external platforms, in compliance
with privacy laws and ethical standards governing medical data
use.

Results

Overview
To test the performance of the pipeline as a whole, we chose 4
annotation classes that we wanted to extract from the
texts—drugs, procedures, smoking, and disease. Extracting
drugs and smoking is a simple task with relatively fixed
vocabularies that we hypothesized would be easy to learn for
the model. Procedures and diseases are slightly trickier, as they
are often written in shorthand and their representation may vary,
making context very important.

Generating the Data
Based on the annotation classes for the experiment, we chose
procedures and patient medical history for the types of EHRs
we wished to generate. We also added specifications for 13 age
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groups, ranging from 15 to 80 years, to generate data for more
diverse patients. We chose C50 as the ICD-10 diagnosis code,
generating the texts for patients with malignant neoplasms of
the breast. We started with 10,000 generated texts and used our
LCS algorithm to filter out texts that were too close to the
original data. We ended up with around 4100 documents we
could use for annotating with LLMs, out of which 2700 were
of medical history and 1400 of procedures.

Prompt Selection
We used all the selected prompts for annotating the 500
synthetically generated texts with GPT-3.5-Turbo to compare
their performance. For each prompt, we compared the
annotations made by the GPT-3.5-Turbo model with the human
annotations. The results for each prompt are depicted in Table
3. For precision and recall, 95% CIs were calculated using the
Wilson score method [29]. The parsed responses column
displays how many of the responses contained a valid JSON
element containing the annotation classes.

For drugs, procedures, and smoking, the highest F1-score was
reached by using the few-shot prompt on GPT-3.5-Turbo. In
the case of diseases, using the definitions prompt resulted in
the highest F1-score of 0.44, although the Estonian prompt had
a higher recall of 0.52 versus 0.43. For smoking, the definitions
prompt gave the highest precision of 1 versus 0.92 for the
few-shot prompt; however, its recall and F1-score were lower
than those of the few-shot prompt.

We selected the prompt with the highest combined F1-score for
all the classes, which was the few-shot prompt, to continue
annotating the rest of the synthetic data. We first used the same
training data that GPT-3.5-Turbo annotated and redid it both
with GPT-4 and a locally hosted Llammas model to compare
the differences in performance. The results are depicted in Table
4.

In all instances, GPT-4 had a higher F1-score than the
GPT-3.5-Turbo and Llammas models; however, for procedure
and smoking, GPT-3.5-Turbo had the highest precision.

Table 3. GPT-3.5-Turbo annotation performance compared to human expert annotations.

Parsed responses, nF1-scoreRecall (95% CI)Precision (95% CI)Annotation class and prompt

Drug

4950.670.75 (0.69-0.80)0.61 (0.55-0.67)Prompt 1: zero-shot

4870.410.63 (0.56-0.69)0.3 (0.26-0.34)Prompt 2: Estonian

5000.70.82 (0.76-0.87)0.6 (0.54-0.65)Prompt 3: definitions

4950.740.88 (0.83-0.92)0.63 (0.57-0.68)Prompt 4: few-shot

Procedure

4950.190.15 (0.12-0.18)0.25 (0.21-0.3)Prompt 1: zero-shot

4870.230.22 (0.19-0.25)0.24 (0.21-0.28)Prompt 2: Estonian

5000.260.26 (0.23-0.3)0.25 (0.22-0.28)Prompt 3: definitions

4950.30.26 (0.23-0.3)0.34 (0.3-0.38)Prompt 4: few-shot

Smoking

4950.220.12 (0.06-0.23)1 (0.65-1)Prompt 1: zero-shot

4870.240.29 (0.19-0.42)0.21 (0.14-0.31)Prompt 2: Estonian

5000.530.36 (0.25-0.49)1 (0.85-1)Prompt 3: definitions

4950.570.41 (0.29-0.54)0.92 (0.75-0.98)Prompt 4: few-shot

Disease

4950.320.5 (0.45-0.55)0.24 (0.21-0.27)Prompt 1: zero-shot

4870.20.52 (0.47-0.57)0.12 (0.1-0.14)Prompt 2: Estonian

5000.440.43 (0.38-0.48)0.44 (0.39-0.5)Prompt 3: definitions

4950.440.5 (0.45-0.55)0.4 (0.35-0.45)Prompt 4: few-shot
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Table 4. Few-shot annotation performance of different models compared to human annotations.

F1-scoreRecall (95% CI)Precision (95% CI)Annotation class and model

Drug

0.740.88 (0.83-0.92)0.63 (0.57-0.68)GPT-3.5-Turbo

0.750.88 (0.83-0.92)0.66 (0.6-0.71)GPT-4

0.650.67 (0.61-0.73)0.63 (0.57-0.69)Llammas

Procedure

0.30.26 (0.23-0.3)0.34 (0.3-0.38)GPT-3.5-Turbo

0.370.42 (0.38-0.46)0.33 (0.3-0.36)GPT-4

0.250.22 (0.19-0.25)0.28 (0.24-0.32)Llammas

Smoking

0.570.41 (0.29-0.54)0.92 (0.75-0.98)GPT-3.5-Turbo

0.610.55 (0.42-0.67)0.69 (0.55-0.8)GPT-4

0.260.16 (0.09-0.27)0.75 (0.47-0.91)Llammas

Disease

0.440.5 (0.45-0.55)0.4 (0.35-0.45)GPT-3.5-Turbo

0.510.7 (0.65-0.75)0.4 (0.36-0.44)GPT-4

0.260.35 (0.3-0.4)0.21 (0.18-0.25)Llammas

Training the Downstream Model
We used the 2700 medical history texts and 1400 procedure
texts resulting from LCS filtering to create batches of training
data to see how well the model performs with additional training
data. For each batch, we selected two-thirds of the texts from
medical history and one-third from procedures, to fully use all
the training data. Each model was then validated on 300
real-world documents annotated by a medical expert for drugs
and procedures.

Figure 2 shows the performance of the model on the drug and
procedure annotation classes. For every amount of data depicted
on the x-axis, a downstream model was trained and evaluated
on the test data.

For drugs, the performance of the model increased until 750
texts, lowered slightly for 1000 texts, and reached the peak at
2000 texts, achieving a precision of 0.75, a recall of 0.64, and
an F1-score of 0.69. In the case of procedures, the model peaked
at 1000 synthetic annotated texts, achieving a precision of 0.47,
a recall of 0.32, and an F1-score of 0.38. For 2000 texts, the
F1-score remained the same; however, the precision increased
by 0.04 whereas the recall dropped by 0.01.

We have used the annotations made by the second medical
expert as validation data to show how the metrics vary with
annotation variability. The results showed similar dynamics to
the scores shown in Figure 2, although the absolute F1-scores
were slightly lower for procedures (Multimedia Appendix 1).

Figure 2. Annotation scores on validation data (N=300) for models of different amounts of training data.
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Discussion

Principal Findings
For the final model trained on different batches of data with
annotations made by GPT-4, we found that the best-performing
model achieved an F1-score of 0.69 for the drug and an F1-score
of 0.38 for procedures. The result was achieved with 2000
annotated synthetic texts for drugs and 1000 for procedures.
Training the models on more texts did not improve the results.
Based on these results, it seems there is a cap on how much one
can gain from synthetic data using this method. The downstream
model seems to learn the task after 2000 texts, and afterward,
adding more data just creates more noise and possibly makes
the model overfit on similar synthetic texts.

It is important to note that the interannotator agreement showed
an F1-score of 0.73 for drugs and 0.48 for procedures, which
means there is inherently a lot of room for disagreement and
subjectivity between the entities. In many instances, the
disagreement stemmed from how many prefixes to include for
the entity (eg, location of the procedure). This result tells us
that achieving a perfect F1-score is not realistic, as ground truth
itself can be subjective and depend on the annotators, further
strengthening the achieved result of this paper. The disagreement
between the medical experts and the LLM can be somewhat
mitigated by providing more clear annotation guidelines for
both the medical experts and the LLMs annotating the data.

We found that the most effective prompt for generating accurate
annotations for our downstream model was the few-shot
approach. Notably, while the texts themselves were in Estonian,
prompts provided in English consistently produced more precise
annotations compared to prompts written in Estonian. Openly
available, multilingual LLMs are known to be heavily trained
on English text, as English is vastly overrepresented in publicly
available datasets. As a result, the model’s understanding of
English instructions and its ability to follow them are
significantly more robust than for low-resource languages such
as Estonian [30,31]. The local Llammas model did not perform
as well as the GPT-3.5-Turbo, likely because it is a much smaller
model, and parsed only 454 of the responses, meaning in some
instances it did not return coherent outputs.

We then found that when comparing the performance of the
annotations between GPT-3.5-Turbo, GPT-4, and Llammas,
GPT-4 performed better per F1-score for all cases, which was
to be expected, because it is a larger and more powerful model.
For procedures and smoking, the GPT-3.5-Turbo model
achieved a higher precision; however, in the case of procedure,
it was only by 0.01, and in the case of smoking, even though
the difference was 0.23, there were only 58 entities in the texts,
meaning the difference in results is not very reliable.

Comparison to Prior Work
While our model’s results do not surpass standard
transformer-based models trained on human-annotated data,
which achieve F1-scores of 0.9 for drugs [8,9] and 0.7 for
procedures [8], it is crucial to contextualize this comparison.
These prior results are derived from English, a high-resource
language with abundant training data. In contrast, our approach
demonstrates the efficacy of using synthetically generated data
for low-resource languages such as Estonian, without relying
on human annotations. Considering that our approach does not
use any human-annotated data and the models are all trained
on synthetically generated data, a good starting point is to use
synthetic data for an initial model that can be used to enrich a
model trained on real data or help annotators with their tasks
on real-world data.

Future Directions
The pipeline of the method described in this paper consists of
many pieces, each with room for improvement. First, both the
generation and annotation of synthetic data could be enhanced
by leveraging more advanced models. The synthetic texts were
generated by GPT-2, but newer model architectures with more
parameters could outperform this and generate better data, while
more specialized models for clinical texts, such as Me-LLaMA
[32] and GatorTron [33], could improve annotation
accuracy. Second, we saw a noticeable change in performance
depending on the prompt used, suggesting that further prompt
engineering could lead to more improvements. Third, human
annotators in health care settings typically rely on lengthy
annotation guidelines, while in contrast, our method provided
only 5 examples. A more detailed description of annotation
classes could improve the accuracy of model-generated
annotations.

Conclusion
In this paper, we took advantage of powerful LLMs
GPT-3.5-Turbo and GPT-4 without risking the privacy of the
data by using synthetically generated data. We used these
models to annotate the synthetic texts, on which we locally
trained a BERT-based NER model for use on real-world data.
We obtained an F1-score of 0.69 for drugs and an F1-score of
0.38 for procedures, which are impressive, given that the data
used were synthetic and without human annotations. We then
showcased the difference in performance using GPT-3.5-Turbo
and GPT-4 for the task, finding that GPT-4 is substantially better
for the task. We also showed how the performance of the model
is influenced by the amount of synthetic training data used for
training it. Altogether, the proposed method allows for
developing NER models while removing the bottleneck of using
medical experts for data annotation, automating the process of
extracting facts from unstructured data while preserving patient
privacy.
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