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Abstract

Background: A substantially lower proportion of female individuals participate in sufficient daily activity compared to male
individuals despite the known health benefits of exercise. Investment in female sports and exercise medicine research may help
close this gap; however, female individuals are underrepresented in this research. Hesitancy to include female participants is
partly due to assumptions that biological rhythms driven by menstrual cycles and occurring on the timescale of approximately
28 days increase intraindividual biological variability and weaken statistical power. An analysis of continuous skin temperature
data measured using a commercial wearable device found that temperature cycles indicative of menstrual cycles did not substantially
increase variability in female individuals’ skin temperature. In this study, we explore physical activity (PA) data as a variable
more related to behavior, whereas temperature is more reflective of physiological changes.

Objective: We aimed to determine whether intraindividual variability of PA is affected by biological sex, and if so, whether
having menstrual cycles (as indicated by temperature rhythms) contributes to increased female intraindividual PA variability.
We then sought to compare the effect of sex and menstrual cycles on PA variability to the effect of PA rhythms on the timescales
of days and weeks and to the effect of nonrhythmic temporal structure in PA on the timescale of decades of life (age).

Methods: We used minute-level metabolic equivalent of task data collected using a wearable device across a 206-day study
period for each of 596 individuals as an index of PA to assess the magnitudes of variability in PA accounted for by biological
sex and temporal structure on different timescales. Intraindividual variability in PA was represented by the consecutive disparity
index.

Results: Female individuals (regardless of whether they had menstrual cycles) demonstrated lower intraindividual variability
in PA than male individuals (Kruskal-Wallis H=29.51; P<.001). Furthermore, individuals with menstrual cycles did not have
greater intraindividual variability than those without menstrual cycles (Kruskal-Wallis H=0.54; P=.46). PA rhythms differed at
the weekly timescale: individuals with increased or decreased PA on weekends had larger intraindividual variability (Kruskal-Wallis
H=10.13; P=.001). In addition, intraindividual variability differed by decade of life, with older age groups tending to have less

J Med Internet Res 2025 | vol. 27 | e66231 | p. 1https://www.jmir.org/2025/1/e66231
(page number not for citation purposes)

Varner et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

mailto:bsmarr@ucsd.edu
http://www.w3.org/Style/XSL
http://www.renderx.com/


variability in PA (Kruskal-Wallis H=40.55; P<.001; Bonferroni-corrected significance threshold for 15 comparisons: P=.003).
A generalized additive model predicting the consecutive disparity index of 24-hour metabolic equivalent of task sums
(intraindividual variability of PA) showed that sex, age, and weekly rhythm accounted for only 11% of the population variability
in intraindividual PA variability.

Conclusions: The exclusion of people from PA research based on their biological sex, age, the presence of menstrual cycles,
or the presence of weekly rhythms in PA is not supported by our analysis.

(J Med Internet Res 2025;27:e66231) doi: 10.2196/66231
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Introduction

Background
Regular physical activity (PA) compared to inactivity is
associated with a lower risk of all-cause mortality in both male
and female individuals [1]. Nevertheless, a meta-analysis
reported that PA decreased in several countries between 1995
and 2017 [2]. While this decrease has occurred equally in both
male and female individuals, female individuals are less likely
to participate in sufficient exercise [3-5]. An evaluation of
insufficient activity (defined as participating in <150 min of
moderate-intensity or <75 min of vigorous-intensity PA per wk)
among 1.9 million participants found that 27.5% did not
participate in sufficient activity; moreover, women had
significantly higher rates of inactivity than men (31.7% vs
23.4%) [3]. As female individuals have been shown to derive
greater risk reduction than male individuals for an equivalent
increase in exercise [1], it is important to identify the causes of
the sex or gender gap in PA. While the reasons for this gap are
not well understood [5], it has been attributed to many factors,
including children’s exposure to rigid gender norms; women’s
concerns about stereotypes; a lack of leisure time; and,
importantly, a lack of investment in women’s and girls’ sports
[4]. These knowledge gaps pervade sports and exercise science
research. An analysis of 3 major sports and exercise medicine
journals over 3 years (2011-2013) found that just 39% of
participants in 1382 original research articles were female [6].
A subsequent analysis of 5621 studies from 6 sports and exercise
journals (including the 3 journals in the previous study)
examined research published over the next 7 years (2014-2020)
and reported a lower proportion of total female participants
(34%) and a significantly higher number of studies including
only male (1631/5261, 31%) versus only female (328/5261,
6.23%) participants [7]. The exclusion of female participants
from sports and exercise medicine studies is partly attributed
to the assumption that ovarian hormones (or menstrual cycles)
increase intraindividual PA variability in female individuals,
thereby increasing the difficulty in interpreting the results (due
to increased intraindividual variability contributing to greater
interindividual variability) or complicating methodology to
account for changes in ovarian hormones [8-11]. This
assumption further suggests that the results obtained from male
participants are generalizable to female participants: if male
and female baseline physiology is the same but female
participants exhibit greater intraindividual variability, their

inclusion would merely increase population-level
(interindividual) variability, reduce statistical power, and offer
no benefit to the study. However, the hypothesis that the results
obtained from male participants are generalizable to female
participants (or that they have the same baseline physiology)
has repeatedly been shown to be false [1,12-14]. This in itself
should motivate the inclusion of female participants, but as
female participation in sports and exercise research is still low
compared to male participation [6,7], it is important to assess
the extent to which menstrual cycles and other biological and
social rhythms interfere with researchers’ ability to analyze PA.
Building on previous work exploring physiological variability
from distal skin temperature measured by a commercial
wearable device [15], in this study, we explore the
intraindividual variability in PA between the sexes using
longitudinal PA measurements from 596 individuals (male:
n=298, 50%; female: n=298, 50%) who were using Oura Rings
in 2020.

Numerous animal studies have rejected the hypothesis that
female animals are more variable in both physiology and
behavior [16-19], but far fewer studies have examined whether
this pattern holds in humans [15,20]. This is in part due to
historical difficulty in generating longitudinal datasets that are
sufficiently large to be representative of both sexes broadly.
The emergence of digital tools such as wearable devices in daily
life has led to a rapid change in the amount of longitudinal data
that can be easily collected from individual study participants.
Data from wearables provide unique opportunities to explore
physiological and behavioral variability between sexes both
across populations and within individual time series data [21].

In our previous work, we used continuous longitudinal distal
skin temperature data generated by Oura Ring users in situ to
test the hypothesis that female individuals are statistically more
physiologically variable than male individuals [15]. Temperature
was chosen because prior work indicates that skin temperature
can be used to identify physiological changes, such as a 28-day
oscillating skin temperature pattern generated by menstrual
cycles [22,23]. Using a dataset of minute-level skin temperature
data from 600 individuals (male: n=300, 50%; female: n=300,
50%) over 6 months, we developed a tool capable of determining
cyclic status, where female individuals’ data that showed an
approximately 28-day pattern in nightly maximum temperature
were labeled as cyclic, and those without were labeled as
acyclic. We also found that cyclic individuals and acyclic
individuals of either sex, showed substantially different patterns
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of change over time such that cyclic status was a more
informative label than sex when predicting the structure of
variability in an individual’s skin temperature over time. Our
analyses led us to reject the hypothesis that female individuals,
whether cyclic or acyclic, should be excluded due to concerns
over statistical power, although our findings also supported the
use of sex as a biological variable (SABV) in analyses (ie, body
temperature changes linked to menstrual cycles [24] were
present in a subset of individuals who self-reported as
biologically female). While the variability was not substantially
greater at multiple timescales in any of these groups, the means
and temporal structure of temperature predictably differed by
biological sex and cyclic status. In this study, we seek to
recapitulate these analyses on the same population but focus on
PA because it is less closely tied to hormonal changes
physiologically and instead more reflective of behavioral
changes.

Previous studies have demonstrated that multiple timescales of
change can interact to give rise to nonrandom structure in
intraindividual variability of human time series data [15,20,25].
This temporal structure arises specifically from interactions
between physiological rhythms such as menstrual and circadian
rhythms, societal phenomena such as the 7-day work week, and
nonrhythmic temporal scales such as aging. To the extent that
variability is nonrandom, it is by definition at least partially
predictable. If not accounted for in experimental design, then
nonrandom (unaccounted) variability will be combined with
random (unaccountable) variability to the effect that statistical
tests—by treating all sources of variability as equivalent—will
yield reduced power for detecting real effects. By contrast, when
nonrandom variability is accounted for, residual variability is
by definition lower, and statistical power is improved for the
same analysis. Although the sources and structures of male
variability are not well characterized [13], the impact of these
other timescales of change on variability is not often considered;
without a direct comparison, we cannot know how these other
timescales of change influence PA analyses compared to the
effects of menstrual cycles.

Objectives
In this study, we used the same cohort of participants as in our
previous analysis of temperature [15] to assess the effect of sex,
cyclic status, and temporal structures in PA on other timescales
of change on intraindividual PA variability. Specifically, we
sought to determine whether the presence of approximately
28-day cyclic temperature patterns we previously identified
correlates with increased intraindividual variability in PA
measurements and to quantify the extent that these
approximately 28-day cycles affect statistical analysis of PA.
In addition, we sought to ascertain whether temporal structure
occurring on other timescales besides menstrual cycles (eg,
weeks and decades) contribute to intraindividual PA variability.
The Oura Ring reports activity in the form of metabolic
equivalents of tasks (METs) [26], where METs express the
intensity of an activity as multiples of the MET recorded at rest
[27]. Using these measurements, we quantified individual daily
PA and intraindividual variability in PA and found that
biological sex, cyclic status, and weekly and decadal temporal

structures in PA do not explain most of the intraindividual
variability in PA.

Methods

Data Source
Data originated from the TemPredict Study [26]. Physiological
data were collected using the Oura Ring (Oura Health Oy, Oulu,
Finland), and self-reported demographic information such as
sex and age were collected via survey.

Participants
Participants were identified by using the filtering methods
described in the study by Bruce et al [15]. Briefly, 62,653
participants were determined to have suitable physiological and
demographic data. Responses to the survey question “What is
your biological sex? Male, Female, Other (please describe)”
were used to determine participants’ sex.

Filtering for participants with data files for all data types and
for whom temperature data were available for all months
between January and November 2020 led to the exclusion of
54,738 (87.37%) of the 62,653 participants, leaving 7915
(12.63%) participants. Next, participants who had <70% average
daily completeness in temperature data were excluded. We
chose to filter out participants with <70% average daily
completeness in temperature data to increase the likelihood that
both sleep and wake states were captured in the data (sleep
usually covers approximately 33% of a day). A cohort of 600
individuals (female: n=300, 50%; male: n=300, 50%) was
chosen from the final list such that 50 (16.7%) of the 300
individuals of each sex were present in six 10-year age bins
spanning 20 to 79 years.

Additional filtering of the participants was performed for this
analysis. The lower limit for real MET recordings is 0.9, which
corresponds to a person being asleep [28]. All MET values of
<0.9 were dropped (due to non–wear time artifacts), and
participants were evaluated for missingness over 206 days
between April and October 2020. In total, 4 participants, 2 (50%)
of each sex, with a percentage missingness of MET data of
>29% were removed (Figure S1 in Multimedia Appendix 1).
The final data consisted of 206 consecutive days for 596
individuals (female: n=298, 50%; male: n=298, 50%). Six age
bins were represented equally with 49 (16.4%) to 50 (16.8%)
of the 298 individuals of each sex in each age bin: 20 to 29, 30
to 39, 40 to 49, 50 to 59, 60 to 69, and 70 to 79 years.

Data Preprocessing
High-resolution (per 1 min and per 5 min) and nightly
aggregated data were generated by the Oura Ring. Data were
stored in large parquet files on a server hosted at the San Diego
supercomputer and accessed through the Nautilus portal [29].
We expected METs to vary by sleep state (whether an individual
is awake or asleep); therefore, we labeled minute-level data
with asleep and awake labels. Nightly data, also referred to as
sleep summary data, were stored as a single parquet file for each
participant. These data contained sleep-related information such
as sleep time start and sleep time end. The longest sleep duration
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for each day was used to label measurements as asleep. All
other times were labeled as awake.

High-resolution distal body temperature and MET data were
recorded at 1-minute intervals for 24 hours per day. These data
were date-time indexed and normalized to participants’ local
time. Duplicate time points were removed, and the remaining
time points were annotated as awake or asleep.

METs were calculated by Oura Ring before data were
transferred to us for analysis. Triaxial accelerometers were used
to estimate METs at 1-minute resolution during both sleep and
wake periods [26]. The exact MET calculation used by the Oura
Ring is proprietary and not disclosed to us; however, Oura Ring
(Gen 2) activity measurements displayed high correlation when
validated against multiple accelerometers [30].

Data Filling
Missing sleep state data and MET data were filled for all 596
participants. Sleep state data described the sleep state (awake
or asleep) at every minute for every participant. MET data
contained the MET value at every minute for every participant.

To limit the artifacts resulting from data filling, we assessed
the accuracy of 4 filling methods on several intervals of
missingness. An interval of missingness describes the number
of consecutive minutes for which there are missing values (ie,
an interval of 1440 describes a full missing day). The intervals
tested were 5, 10, 20, 40, 80, 160, 320, 640, 1280, and 1440
minutes. The filling methods tested were (1) a phase-dependent
filler, (2) linear interpolation, (3) global personal median filling,
and (4) zero filling (or “not a number” filling). A detailed
description of each method is provided in the following list:

1. The phase-dependent filler constructs a “median week”
from the median value of each minute on each day of the
week across half of the dataset (103 d) for each participant
(2 median wk per participant). If no median value exists
for a minute in the constructed median week, a value was
forward-filled from the median value of the preceding
minute. The minutes without data in the 103-day period
from which the week of median values was constructed
were filled based on the minute and day of the week in
which they occurred.

2. Linear interpolation was achieved with the interpolate
method from the Python package pandas
(pandas.DataFrame.interpolate, version 2.2.1 [31]). A
2-way limit direction was used such that missing data from
the first minute in the data could be filled.

3. The global personal median filling finds the median value
for each person across the entire dataset and fills the missing
values with this median value.

4. The zero-filling method fills all missing values with 0. This
method was included because the sum of MET values was
used to summarize daily activity. Zero fill equates to the
effect of not filling these values because “not a number” is
treated as 0 during daily summation.

To test the accuracy of the filling methods for each interval
length, a test data frame was constructed. For each participant,
simulated missing data were constructed by inserting intervals
of missingness starting at randomly chosen minutes. Each

participant had 3995 extra missing data points composed of
intervals of 5, 10, 20, 40, 80, 160, 320, 640, 1280, and 1440
minutes of missingness. The intervals were allowed to overlap
and occur on the same day. The simulated intervals of
missingness were then filled using each of the 4 filling methods.
After filling, the predicted values in the sleep state data frame
were rounded to 0 or 1 to reflect a prediction of being asleep or
awake, respectively.

The performance of each method for each person on each
interval size was evaluated by the sum of the absolute
differences between the predicted and actual values of the test
indexes. As some participants did not have enough data, some
simulated missing data had indeterminate error (the “actual”
value was missing): 0.25% of the simulated missing data in the
MET filling test had indeterminate error, and 0.49% of the
simulated missing data in the sleep state filling test had
indeterminate error. The best method for each interval size was
determined by the smallest sum of absolute differences across
all individuals. In the MET dataset, the best method for filling
intervals of missingness of ≤40 minutes was linear interpolation,
and for intervals of >40 minutes, the best method was
phase-dependent filler (error data shown in Figure S2 in
Multimedia Appendix 1). In the sleep state dataset, the best
method for intervals of missingness of ≤320 minutes was linear
interpolation, and for intervals of missingness of >320 minutes,
the best method was phase-dependent filler (error data shown
in Figure S3 in Multimedia Appendix 1). The best filling method
for each interval of missingness was applied to each dataset
before any analyses were performed.

The sum of absolute differences across all test intervals (filling
error) was not significantly different between male participants,
cyclic female participants, and acyclic female participants in
the sleep state and MET data tests (Kruskal-Wallis test, MET
data: H=1.97; P=.37; Figure S4 in Multimedia Appendix 1;
sleep state: H=0.26; P=.88; Figure S5 in Multimedia Appendix
1).

Filled data were used for every analysis described herein, except
where explicitly stated otherwise (refer to the Analysis by
Weekend Rhythm in PA subsection).

Statistical Methods

Kruskal-Wallis H Tests, Bonferroni Correction, and Post
Hoc Dunn Tests
Population differences were determined using a Kruskal-Wallis
H test between population distributions of the relevant metric
(mean, SD, etc). Python was used to carry out all Kruskal-Wallis
tests (SciPy library: scipy.stats.kruskal, version 1.11.2 [32]). In
the case that ≥3 populations were compared, a Bonferroni
correction was manually applied to all analyses that compared
>2 groups such that the threshold for significance (P=.05) was
divided by the number of comparisons made. If the significance
threshold was met, and groups were compared with a single
Kruskal-Wallis test, a post hoc Dunn test was performed using
Python (scikit_posthocs.posthoc_dunn, version 0.9.0 [33]) to
identify the pair-wise population comparisons that met the
significance threshold. Although the shape of distributions for
male participants tended to be wider than that of distributions
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for female participants, median values were used to determine
the population with the larger metric. The results from these
tests and the distributions compared with these tests are shown
in most of the figures and tables (Figures 1C-E, 2A-D, 3D, and
4A and 4B; Figures S2-S5 in Multimedia Appendix 1).
Population SDs of the subpopulations described were calculated
for their relevance to power analysis (Tables S1 and S2 in
Multimedia Appendix 1).

Modified Cohen d Effect Size
As the distributions in these analyses were nonnormal, a
modified Cohen d effect size (Cohen dm) was used to describe
the magnitude of the difference between 2 significantly different
populations (shown as P1 and P2 here) [34]:

dm = (|median(P1) – median(P2)|) / (mean(IQR(P1),
IQR(P2))) (1)

where IQR(P1) and IQR(P2) represent the IQRs of the
populations (IQR=the difference between the 75th and 25th
percentile values). This modification to the Cohen d effect size
compares medians instead of means and IQRs instead of SDs
to accommodate calculations appropriate for skewed
distributions.

The Cohen dm effect size approximates the proportion of
population variability accounted for by a characteristic (sex,
age, etc); for example, if Cohen dm=1, the difference in the
medians is equal to the mean of the 2 population IQRs, which
means that there is little overlap of values, and the characteristic
accounts for a substantial proportion of the variability between
these populations. Cohen dm was calculated between
subpopulations that were significantly different by either a
Kruskal-Wallis or a post hoc Dunn test (Figures 1C, 2C and
2D, 3D, and 4B).

Effect of Subpopulations
To determine whether a subpopulation contributes a significant
amount of variability to a whole population, we first identified
2 groups of participants: the whole population and the whole
population excluding the subpopulation of interest. The second
group is itself a subset of the whole population, which makes
statistical comparisons problematic: the whole population
contains every value in the subset. To avoid making comparisons
between identical values, we calculated the IQRs of the 24-hour
MET sums for each day for each group. This generated 2 lists
of 206 IQRs representing each group’s variability across the
206 days in this study. The 2 lists were compared with a
Kruskal-Wallis test to evaluate whether a whole population
changed when a subpopulation was excluded. If the whole
population had significantly larger IQRs than the whole
population with the subpopulation of interest excluded, then
the subpopulation was considered to have imparted a significant
amount of variability on the whole population. This test was
performed on the distributions shown in Figures 2D and 3D. If
a subpopulation did impart a significant amount of variability
on the whole population, we used the rule formulated by Lehr
[35] to calculate the difference in sample size required to detect
the same effect (with 80% power and a significance level of
.05) when the group was included or excluded:

n = 16(s2) / (µ1 − µ2)
2(2)

where n is the sample size required, s2 is the variance of the
population tested, and (µ1 − µ2) is the difference in means
between each population. We used the median IQR across all
206 days as a proxy for s and tested multiple values for (µ1 −
µ2): 40 (approximately the difference in 24-hour MET sums
resulting from a 20-min walk), 100 (approximately the
difference in 24-hour MET sums resulting from 20 min of
moderate-intensity activity), and 180 (approximately the
difference in 24-hour MET sums resulting from 20 min of
high-intensity activity). We chose these values to represent a
difference that may be significant to health.

Kernel Density Estimate Plots
Kernel density estimate plots were used to ensure that
distributions were visually comparable despite differences in
group size and to enable comparisons of idealized distributions.
Plotting was performed in Python using the seaborn library
(seaborn.kdeplot, version 0.12.2 [36]) with the default kernel
(Gaussian) and bandwidth smoothing method (the Scott rule).
The bandwidth scaling parameter (bw_adjust) was adjusted per
distribution to create visually smoother plots, and estimation
ranges were limited to real values. Kernel density estimate plots
are displayed in Figures 2D, 3D, and 4B.

Cohort and MET Data Foundational Analysis
To visually inspect the effect of time of day on activity, a
random subset of 20 consecutive days of data from 2 randomly
selected individuals of each sex was chosen to represent a MET
value time series and distribution (Figures 1A and B). Finding
that MET values were highly dependent on awake or asleep
state as expected, we summed MET values for each day (206
d in total) over 24 hours, awake time states, and asleep time
states to summarize the total daily PA for each person in each
state. These states were considered separately in subsequent
analyses because the source of the variability of daily MET
sums is different in each state. We considered 5 drivers of
variability: awake movement, intentional exercise, sleep
movement, time spent asleep, and time spent awake. The first
3 drivers of variability are associated with a state (awake or
asleep) and a MET range. Sleep movement occurs while asleep
and at a MET value of >0.9 (sleep results in a MET value of
0.9 [28]), awake movement occurs while awake and at a MET
value of between 1.0 and 1.5 (resting while awake results in a
MET value of 1.0, and intentional exercise results in a MET
value of >1.5 [28]), and intentional exercise occurs while awake
and at a MET value of >1.5. Time spent awake and time spent
asleep refer to the number of minutes per day that a person
spends awake and asleep. In contrast to 24-hour MET sums,
where the number of values being summed is always 1440 (24
h × 60 min), awake and asleep daily MET sums vary by the
number of values being summed per day due to varying amounts
of time spent in these states each day. The possible sources of
variability in 24-hour sums are sleep movement, awake
movement, and intentional exercise. The possible sources of
variability in awake daily sums are time spent awake, intentional
exercise, and awake movement. The possible sources of
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variability in asleep daily sums are sleep duration and movement
while asleep.

A PA summary of all participants across all 206 days was
constructed from the means and SDs of the 206 daily 24-hour
MET sums. Individuals in each sex population were sorted by
the mean of 24-hour MET sums and represented as a point and
line representing +1 or −1 intraindividual SD such that
individuals at the same rank in each population could be
compared. Noticing a divergence between the populations in
the individuals with the largest means, we performed a
Kruskal-Wallis test between the top 60 male participants and
the top 60 female participants (Figure 1C).

Whole-population distributions of mean and SD values for male
and female participants across all 206 days for 24-hour, awake,
and asleep MET sums were compared using a Kruskal-Wallis
test with a Bonferroni correction for 3 comparisons (3 MET
sum metrics each for mean and SD; Figures 1D and E).

Variability Metrics of MET Sums

Overview
In addition to SD, we used 3 other metrics to analyze
intraindividual variability: coefficient of variation (CV),
proportional variability index (PV), and consecutive disparity
index (CDI). In prior work, we used CV and PV as controls to
validate the statistical findings from the CDI analyses [15]. We
included CV and PV in this study for the same validation and
focused on CDI because it is the most appropriate metric of
intraindividual variability for these data because it accounts for
chronological order and is not dependent on the mean for its
calculation. Further analyses used only CDI as a variability
metric. Whole-population distributions of CV, PV, and CDI
values for male and female participants across all 206 days for
24-hour, awake, and asleep MET sums were compared using a
Kruskal-Wallis test with a Bonferroni correction for 3
comparisons (3 MET sum metrics each for CV, PV, and CDI).

CV Metric
CV is a common metric for describing temporal variability [37].
In this study, it describes a participant’s SD (σ) across all 206
days compared to their mean across all 206 days:

CV = σ / mean (3)

CV is limited by its sensitivity to rare events and its dependence
on the mean [37] (Figure 2A).

PV Metric
The PV was developed to solve some of the limitations of CV.
The PV quantifies variability by calculating the average
percentage difference between all combinations of
measurements [37-40]:

PV = 2(Σ(1-(min(zi, zj) / max(zi, zj))) / n(n-1) (4)

where n is the total number of values, z is a list of values on
which pair-wise comparisons are calculated, and i and j are
indices of any 2 different values. The PV improves upon CV
because it is not mean dependent, and it is less sensitive to rare
events [37] (Figure 2B).

CDI Metric
The CDI was developed to improve upon the PV by accounting
for the chronological order of measurements in a time series
[37]. The CDI describes time series variability through the
average rate of change between consecutive values:

CDI = (1 / (n-1)) Σn-1
i=1 |ln(pi+1 / pi)| (5)

where n is the length of the time series and pi is the value in the
series at time i [37] (Figures 2C and 2D, 3D, 4A and 4B, and
5A-5E).

Analysis of PA by Cyclic Status
Every participant’s cyclic status (the label cyclic describes the
presence of an approximately 28-day temperature rhythm
generated by menstrual cycles) was determined through methods
described in the study by Bruce et al [15]. Briefly,
autocorrelation profiles were generated from nightly maximum
temperature recordings (not shown). Only cyclic individuals’
temperature trend deviation autocorrelation signals show a
wave-like structure. Profiles were classified as cyclic or acyclic
by hierarchical clustering of pair-wise distances between signals
(pair-wise distances calculated with dynamic time warping; not
shown). Of the 298 female participants in this cohort,
hierarchical clustering classified 193 (64.8%) as acyclic and
105 (35.2%) as cyclic; moreover, 297 (99.7%) of the 298 male
participants were classified as acyclic. The temperature trend
deviation autocorrelation signal for the male participant
classified as cyclic did not show a wave-like structure; therefore,
the male participant was manually reclassified as acyclic. Of
the 105 female participants classified as cyclic, 102 (97.1%)
were aged between 20 and 49 years, and 3 (2.9%) were aged
between 50 and 59 years. Of the 193 female participants
classified as acyclic, 48 (24.9%) were aged <50 years and 145
(75.1%) were aged >= 50 years.

Analysis of PA by cyclic status focused on the CDI variability
metric and daily 24-hour MET sum metric. We chose 24-hour
MET sums for analysis to focus on the overall variability due
to PA in contrast to asleep or awake sums that vary with time
spent in the state, as described in the Cohort and MET Data
Foundational Analysis subsection. The CDI variability metric
was chosen due to its accounting for chronological order, as
described in the Variability Metrics of MET Sums subsection.

The autocorrelation and clustering techniques used to classify
participants as cyclic or acyclic were also used to determine
whether cyclic individuals had unique structures in daily 24-hour
MET sums, such as a 28-day structure.

The means and CDIs of 24-hour MET sums were calculated for
each individual over all 206 days present in the data and
compared across cyclic status (cyclic female individuals vs all
acyclic individuals of either sex; Kruskal-Wallis test). The CDIs
of 24-hour MET sums were also compared across groups of
individuals with unique combinations of sex and cyclic status
(acyclic male individual, cyclic female individual, and acyclic
female individual; Kruskal-Wallis test with Bonferroni
correction for 3 comparisons and post hoc Dunn test [Figure
2D]). Cyclic and acyclic female individuals of the same age
were compared to control for the uneven age distributions

J Med Internet Res 2025 | vol. 27 | e66231 | p. 6https://www.jmir.org/2025/1/e66231
(page number not for citation purposes)

Varner et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


between the 2 groups (cyclic female individuals aged 20-59 y
vs acyclic female individuals aged 20-59 y and cyclic female
individuals aged 20-49 y vs acyclic female individuals aged
20-49 y; Kruskal-Wallis test). The effect of cyclic female
individuals on the variability of the whole female population
was calculated using IQR distributions, as described in the
Statistical Methods subsection.

Analysis by Weekend Rhythm in PA
Analysis by weekend rhythm in PA focused on the CDI
variability metric and daily 24-hour MET sum metric. We chose
24-hour MET sums for analysis to focus on the overall
variability due to PA in contrast to asleep or awake sums that
vary with time spent in the state, as described in the Cohort and
MET Data Foundational Analysis subsection. The CDI
variability metric was chosen due to its accounting for
chronological order, as described in the Variability Metrics of
MET Sums subsection.

To determine whether PA rhythms existed on a weekly
timescale, we examined a hierarchically clustered heat map
(seaborn Python library: seaborn.clustermap, version 0.12.2
[36]) of unfilled and intraindividual z scored 24-hour MET sum
data (not shown). Hierarchical clustering of unfilled
(nonimputed) data ensured that clustered structures were not
artifacts of data filling (eg, the median week imputation in the
phase-dependent filling method may introduce weekly rhythms),
and z scoring highlighted groups with similar patterns of change
regardless of their baseline PA. Hierarchical clustering was
performed on 4 consecutive months of data. The same 4 months
were chosen for every individual to avoid days with larger
proportions of missing data at the beginning and end of the
study period. We observed 2 groups with different weekly PA
rhythms on the heat map: 1 group with high 24-hour MET sums
on weekends relative to their own weekday MET sums and 1
group with low 24-hour MET sums on weekends relative to
their own weekday MET sums. These rhythms were defined as
weekend rhythms, where the group with relatively high 24-hour
MET sums on weekends was further identified as the weekend
high PA rhythm group, and the second group was identified as
the weekend low PA rhythm group.

Convinced that weekend rhythms were not artifacts of data
filling, we performed agglomerative clustering on filled MET
data (filling methods are described in the Data Filling
subsection) to identify individuals with weekend high and
weekend low PA rhythms. Agglomerative clustering was
performed on 4 consecutive months (the same months used in
the hierarchical clustering) of the filled and intraindividual z
scored 24-hour MET sum data using the scikit-learn Python
package (sklearn.cluster.AgglomerativeClustering, version 1.1.3
[41]). Clustering into 5 groups (Figure 3A) allowed for the
identification of both the weekend high PA rhythm group
(Figure 3B) and the weekend low PA rhythm group (Figure
3C), hereinafter referred to as the weekend high cluster and the
weekend low cluster.

To confirm the presence of the weekend rhythms observed on
the heat map (Figures 3A-C, top), we calculated the average
24-hour MET sum for each day in the consecutive 4 months
across all participants (Figure 3A, bottom), across only

participants in the weekend high cluster (Figure 3B, bottom),
and across only participants in the weekend low cluster (Figure
3C, bottom). These averages were visualized as a line plot with
the mean across all days in that group layered on top (Figures
3A-C, bottom).

To assess the differences between individuals with different
weekend rhythms and those without weekend rhythms
(patternless), the mean and CDI of 24-hour MET sums were
calculated for each individual over the 4 consecutive months
used to cluster the individuals by PA rhythm. The means were
compared across weekend high, weekend low, and patternless
clusters (Kruskal-Wallis test, Bonferroni correction for 3
comparisons, and post hoc Dunn test) while the CDIs were only
compared across weekend rhythm (the aggregated group of
individuals with either weekend high or weekend low PA
rhythm) and patternless clusters (Kruskal-Wallis test between
2 groups). The CDIs were only compared across the presence
or absence of a weekend rhythm because the direction of change
in 24-hour MET sums on the weekend does not affect the CDI.

The CDI of 24-hour MET sums were also compared across
groups of individuals with unique combinations of sex and PA
rhythm (male individuals with weekend patterns, female
individuals with weekend patterns, patternless male individuals,
and patternless female individuals; Kruskal-Wallis test,
Bonferroni correction for 6 comparisons, and post hoc Dunn
test; Figure 3D). The effect of weekend rhythms on the
variability of the whole male and female population was
calculated using IQR distributions as described in the Statistical
Methods subsection.

Analysis of PA by Age
Analysis of PA by age focused on the CDI variability metric
and daily 24-hour MET sum metric. We chose 24-hour MET
sums for analysis to focus on the overall variability due to PA
in contrast to asleep or awake sums that vary with time spent
in the state, as described in the Cohort and MET Data
Foundational Analysis subsection. The CDI variability metric
was chosen due to its accounting for chronological order, as
described in the Variability Metrics of MET Sums subsection.

The means and CDIs of 24-hour MET sums were calculated for
each individual over all 206 days and compared across age
categories (Kruskal-Wallis test, Bonferroni correction for 15
comparisons, and post hoc Dunn test). The CDIs of 24-hour
MET sums were also compared across sex groups in the same
age category (Kruskal-Wallis test, Bonferroni correction for 6
comparisons, 6 age groups; and post hoc Dunn test; Figure 4A)
and across age categories within the same sex group
(Kruskal-Wallis test, Bonferroni correction for 15 comparisons,
and post hoc Dunn test; Figure 4B). A boxen plot (seaborn
Python library: seaborn.boxenplot, version 0.12.2 [36]), also
known as a letter-value plot, was used to visually compare male
and female individuals within age groups (Figure 4A). A boxen
plot is similar to a box plot but represents the whiskers as a
variable number of quantiles. If the quantiles are sufficiently
unique, meaning that they do not include values from other
quantiles, they are represented as a box. This leaves 5 to 8
outliers on each side.
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The effect of each age group on the variability of the whole
male or female population was calculated using IQR
distributions as described in the Statistical Methods subsection.

Generalized Additive Model of the Features Found to
Have Significant Impact on 24-Hour MET Sum CDIs
Across Individuals: Sex, Age, and Weekend Rhythm
Previous studies have used generalized additive models (GAMs)
to predict health outcomes using sex and age as features [42,43].
In this study, a GAM was used to rank the effect of variables
on 24-hour MET sum CDIs and detect groups with outlier
intraindividual variability (Figures 5A-E). A GAM was built
in Python using the package pyGAM (pygam.LinearGAM,
version 0.9.1 [44]).

Three initial models were tested: a model with an identity link
and a factor term for all variables analyzed in this paper (sex,
age, weekend rhythm, and cyclic status), all variables and all
2-way interactions (sex-age, age–weekend rhythm, etc), and all
variables with all 2-way and all 3-way interactions
(sex-age–cyclic status, etc). Model performance was assessed

using the likelihood ratio pseudo-R2 metric, which represents
the proportional reduction in the deviance and was reported as
a percentage. The final model does not include cyclic status
because its effects were not significant (refer to the Results
section); thus, the factor terms were fit to sex, age, and weekend
rhythm categories (sex: female or male; age: 20-29, 30-39,
40-49, 50-59, 60-69, or 70-79 y; weekend rhythm: weekend
rhythm or patternless; Figures 5A-C). This resulted in the
following GAM structure:

G(E(CDI)) = β0 + fsex(sex) + fWR(WR) + fage(age) (6)

where g is an identity link function, E(CDI) denotes the expected
CDI value, β0 is the intercept of the model, and WR represents
weekend rhythm. Individual feature importance was determined
by the magnitude of the coefficients in each level of the factor
terms and by the change in null deviance when each feature was
left out.

Ethical Considerations
The University of California San Francisco (UCSF) Institutional
Review Board (IRB, IRB# 20-30408) and the U.S. DOD Human
Research Protections Office (HRPO, HRPO# E01877.1a)
approved of all study activities, and all research was performed
in accordance with relevant guidelines and regulations and the
Declaration of Helsinki. All participants provided informed
electronic consent. We did not pay participants for participation
and all participant data were de-identified by Oura prior to data
transfer.

Results

Cohort and MET Data Foundational Analysis
As an initial comparison of MET values between the sexes, we
visually assessed minute-level MET value time series and
distributions for 2 representative individuals (Figures 1A and
B). We observed a variation in MET values between awake and
asleep states, with increased MET values during awake time
periods, as expected (Figures 1A and B, left). In addition, we
found that the distribution of MET values seemed highly
dependent on asleep or awake state (Figures 1A and B, right);
therefore, further comparisons used daily aggregated MET
values separated into sums over 24 hours, only awake time
periods, or only asleep time periods. The distributions of mean
24-hour, awake, and asleep daily MET sums for female and
male individuals over the 206 days overall were not significantly
different (Table 1; Figures 1C and D). However, we observed
an apparent increase in the mean of 24-hour MET sums for male
individuals at the upper extreme (Figure 1C). Consistent with
this observation, a comparison of the individuals’ mean of
24-hour MET values (Figure 1C, right) revealed that the 60
male individuals with the largest average 24-hour MET sum
had a significantly higher average than the top 60 female
individuals (Kruskal-Wallis H=10.25; P=.001; Cohen dm=0.34).
We also observed differences between male and female
intraindividual variability: male individuals had significantly
larger SDs than female individuals for both awake and 24-hour
MET sums (Table 1; Figure 1E).
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Figure 1. Longitudinal plot of a representative 3-week interval of minute-level metabolic equivalent of task (MET) data (left) from (A) 1 female
individual (F, blue) and (B) 1 male individual (M, red), with the histogram of the MET values for each separated by awake (light) and asleep (dark)
values (right). MET values were examined at minute-level resolution. Histograms show the percentage time (percentage time is shown on a log scale
and referenced in the figure as “Proportion of total time”) spent in 37 bins of MET values while awake or asleep. MET values range from 0.9 to 16.1,
and each bin is 0.4 METs in size. (C) Plot of all individuals’ (n=596) mean (dot) and SD (vertical line) of 24-hour daily MET sums, sorted by mean.
The dashed line separates the 60 individuals in each sex with the largest means from the rest of the population. The top 60 were subsequently compared
across sex (Kruskal-Wallis test). (D) Violin plots of male and female individuals’ means and (E) SDs for 24-hour MET sums, awake time state MET
sums, and asleep time state MET sums (Kruskal-Wallis test; Bonferroni-corrected significance threshold for 3 comparisons: P=.02). PA: physical
activity.
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Table 1. Mean and SD statistics by time state: Kruskal-Wallis test across the sexes for the mean and SD of each time state (Bonferroni-corrected
significance threshold for 3 comparisons: P=.02).

Sex with larger medianP valueKruskal-Wallis H statisticStatistic and METa sum

Mean

Male.550.3624 h

Male.530.40Awake

Female.311.01Asleep

SD

Male<.00138.5424 h

Male<.00111.60Awake

Female.850.03Asleep

aMET: metabolic equivalent of task.

Variability Metrics of MET Sums
In total, 4 intraindividual variability metrics were calculated:
SD, CV, PV, and CDI. The most appropriate metric of
variability for our analyses was the CDI because of its
accounting for chronological order and nondependence on the
mean for calculation. Other metrics were included as controls
to validate the statistical findings from CDI analyses. Further
analyses used only the CDI as a variability metric.

The CV and PV of male individuals were significantly larger
than those of female individuals for awake and 24-hour MET
sums (Figures 2A and B; Table 2), while the CDI for 24-hour
MET sums was significantly larger for male individuals than
for female individuals (Figure 2C; Table 2; Cohen dm=0.35).
In all 3 metrics, asleep MET sum intraindividual variability was
not significantly different across the sexes (Figure 1D; Table
1; Figures 2A and C; Table 2).

Figure 2. Violin plots showing the distributions of (A) coefficient of variation (CV), (B) proportional variability index (PV), and (C) consecutive
disparity index (CDI) for 24-hour metabolic equivalent of task (MET) sums, awake time state MET sums, and asleep time state MET sums for female
(blue) and male (red) individuals (Kruskal-Wallis test, Bonferroni-corrected significance threshold for 3 comparisons: P=.02). (D) Kernel density
estimate plots of sex-cyclic, sex, and cyclic groups. Group median CDI values are indicated by dashed vertical lines.
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Table 2. Variability metrics by time state: Kruskal-Wallis test across the sexes for coefficient of variation (CV), proportional variability index (PV),
and consecutive disparity index (CDI) of each time state (Bonferroni-corrected significance threshold for 3 comparisons: P=.02).

Sex with larger medianP valueKruskal-Wallis H statisticStatistic and METa sum

CV

Male<.00143.7024 h

Male.0029.36Awake

Male.680.17Asleep

PV

Male<.00137.9024 h

Male<.00110.97Awake

Male.083.12Asleep

CDI

Male<.00129.5124 h

Male.340.90Awake

Male.330.96Asleep

aMET: metabolic equivalent of task.

Analysis of PA by Cyclic Status
Neither 28-day (or near 28-d) temporal structures nor any unique
temporal structure in daily 24-hour MET sums were identified
in cyclic individuals. Cyclic female participants and all acyclic
participants (male or female) did not have significantly different
mean 24-hour MET sums (Kruskal-Wallis H=0.46; P=.50; data
not shown) or significantly different 24-hour MET sum CDIs
(Kruskal-Wallis H=1.03; P=.31; Figure 2D). However, we found
a significant difference between the CDI values of 24-hour MET
sums for male participants, cyclic female participants, and
acyclic female participants (Kruskal-Wallis H=32.36; P<.001;
Figure 2D). A Dunn test revealed that female participants
exhibited lower intraindividual variability than male participants,
regardless of cyclic status (male participants vs cyclic female
participants: P=.006; Cohen dm=0.27; male participants vs
acyclic female participants: P<.001; Cohen dm=0.41), and that
cyclic female participants and acyclic female participants were
not significantly different (P=.09). Cyclic female participants
and acyclic female participants of the same age were also
compared to confirm that the uneven age distribution between
the 2 groups did not contribute to there being no statistical
difference between the groups (Kruskal-Wallis test, cyclic
female participants aged 20-59 y [n=105] vs acyclic female
participants aged 20-59 y [n=94]: H=2.30; P=.13; cyclic female
participants aged 20-49 y [n=102] vs acyclic female participants
aged 20-49 y [n=48]: H=0.53; P=.47). We then compared the
population variability of the whole female population and the
female population excluding cyclic female participants, as
described in the Effect of Subpopulations subsection. Removing
cyclic female participants from the female population did not
significantly reduce the whole female population variability
24-hour MET sums (Kruskal-Wallis H=0.12; P=.73).

Analysis by Weekend Rhythm in PA
Agglomerative clustering of 4 months of data per individual
across the whole cohort revealed clusters of individuals sharing
prominent PA rhythms on a weekly timescale (Figure 3A). Two
clusters of individuals with weekend rhythms were identified:
a “weekend high” cluster (labeled the “weekend high PA rhythm
group” in dark green in Figures 3A and B) and a “weekend low”
cluster (labeled the “weekend low PA rhythm group” in purple
in Figures 3A and C). The 3 clusters without weekend rhythms
are referred to as “patternless” clusters (labeled orange, pink,
and light green in Figure 3A).

Significant differences in the means of 24-hour MET sums
existed between individuals in the weekend high cluster,
weekend low cluster, and the patternless clusters
(Kruskal-Wallis H=9.18; P=.01; Bonferroni-corrected
significance threshold: P=.02; data not shown). The weekend
high cluster had significantly larger mean 24-hour MET sums
than the weekend low cluster and the patternless clusters (Dunn
test, weekend high vs weekend low: P=.007; weekend high vs
patternless: P=.01). Cohen dm effect sizes between significantly
different groups were 0.41 (weekend high vs weekend low) and
0.22 (weekend high vs patternless).

Next, we grouped the individuals with any weekend rhythm
(weekend high or weekend low) to examine intraindividual
variability. The cluster of individuals with either weekend
rhythm had significantly larger 24-hour MET sum CDIs than
individuals in the patternless clusters (Kruskal-Wallis H=10.13;
P=.001; Cohen dm=0.20; data not shown). The Cohen dm effect
size between the CDIs of 24-hour MET sums for male and
female individuals was 0.35, suggesting that sex explained more
intraindividual variability than PA rhythms on the weekly
timescale.
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Figure 3. (A) Heat map of relative activity, expressed using the daily 24-hour metabolic equivalent of task (MET), for every individual across 4
consecutive months. Relative activity was defined as arctan (2 × intraindividual z score of daily 24-h MET sums). Relative activity values of >2 and
<−1.5 are shown in the lightest and darkest colors, respectively. Individuals are sorted by agglomerative cluster number, and clusters are demarcated
by the colors in the bar to the left of the heat map. The line and layered bar plot below each heat map shows the daily mean 24-hour MET sum across
all individuals in the connected heat map (solid black line), the mean 24-hour MET sum across all days in the 4-month period (dashed black line), and
the daily 24-hour MET sum mean of the male (red) and female (blue) individuals where the sex with the lower mean for each day was layered on top.
(B) Magnified heat map of the dark green cluster: weekend high physical activity (PA) rhythm group. (C) Magnified heat map of the dark purple cluster:
weekend low PA rhythm group. Heat map rows, representing 1 individual each, are all of equal size so that the height of the heat map is representative
of the number of people in the cluster. Individuals are labeled and sorted by sex (blue box on the left of the heat map for female individuals and red box
for male individuals). (D) Kernel density estimate plot of consecutive disparity index (CDI) calculated from 4 consecutive months for the female and
male whole population, the weekend cluster population, and other clusters. Vertical dashed lines represent the population median CDI.
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We found significant effects of sex and weekend rhythm on
24-hour MET sum CDIs (Kruskal-Wallis test,
Bonferroni-corrected significance threshold: P=.008; H=34.60;
P<.001; Figure 3D). Male individuals had larger 24-hour MET
sum CDIs than female individuals in the same cluster (Dunn
test, patternless cluster: P<.001; Cohen dm=0.32; weekend
rhythm cluster: P=.003; Cohen dm=0.51). In addition, male
individuals in the weekend rhythm cluster had significantly
larger 24-hour MET sum CDIs than female individuals from
the patternless clusters (Dunn test, P<.001; Cohen dm=0.49);
however, female individuals in the weekend rhythm cluster did
not have significantly larger 24-hour MET sum CDIs than male
individuals in the patternless clusters (Dunn test: P=.24). We
found no significant effect between clusters within sex on
24-hour MET sum CDIs: male individuals in the weekend
rhythm cluster did not differ from those in the patternless
clusters (Dunn test, P=.02), and nor did female individuals in
the weekend rhythm cluster differ from those in the patternless
clusters (Dunn test, P=.06).

We compared the variability of the whole male and female
populations to the populations excluding individuals with
weekend rhythms using the strategy described in the Effect of
Subpopulations subsection. Excluding individuals with weekend
rhythms did not reduce the population variability of 24-hour
MET sums of either the whole male or female population
(Kruskal-Wallis test, Bonferroni-corrected significance
threshold: P=.025; all female individuals vs female individuals
without weekend rhythm clusters: H=2.62; P=.11; all male
individuals vs male individuals without weekend rhythm
clusters: H=4.46; P=.03).

Analysis of PA by Age
We found significant differences in mean 24-hour MET sums
across age groups (Kruskal-Wallis H=24.30; P<.001;
Bonferroni-corrected significance threshold for 15 comparisons:
P=.003; data not shown). Individuals aged 70 to 79 years had
significantly smaller mean 24-hour daily MET sums than those
aged 30 to 39 and 50 to 59 years (Dunn test, 70-79 y vs 30-39
y: P<.001; Cohen dm=0.54; 70-79 y vs 50-59 y: P<.001; Cohen
dm=0.39), and individuals aged 60 to 69 years had significantly
smaller mean 24-hour daily MET sums than those aged 30 to
39 years (Dunn test, 60-69 y vs 30-39 y: P=.003; Cohen
dm=0.28). Other comparisons of mean 24-hour MET sums
between age groups were not statistically significant (data not
shown).

Differences in 24-hour MET sum CDIs existed across age
groups (Kruskal-Wallis H=40.55; P<.001; Bonferroni-corrected
significance threshold for 15 comparisons: P=.003; Table 3).
Individuals aged 70 to 79 years had significantly smaller 24-hour
MET sum CDIs than those aged 20 to 29, 30 to 39, 40 to 49,
and 50 to 59 years (Table 3). Individuals aged 60 to 69 years
had significantly smaller 24-hour MET sum CDIs than those
aged 30 to 39 and 50 to 59 years (Table 3). The Cohen dm effect
sizes between the groups that were significantly different ranged
from 0.36 to 0.56, suggesting that age explained more
intraindividual variability than sex (Cohen dm=0.35) and weekly
rhythm (Cohen dm=0.20).

Having found a significant effect of sex and age bin, we carried
out pair-wise comparisons of sex within each age bin and found
that male individuals aged 30 to 39 years and 40 to 49 years
had significantly higher 24-hour MET sum CDIs than female
individuals in the same age groups (Kruskal-Wallis test,
Bonferroni-corrected significance threshold for 6 comparisons:
P=.008; male individuals aged 30-39 y vs female individuals
aged 30-39 y: H=8.62; P=.003; Cohen dm=0.37; male individuals
aged 40-49 y vs female individuals aged 40-49 y: H=8.64;
P=.003; Cohen dm=0.33; Figure 4A). We further note that while
the remaining comparisons were not significant, the trend in
every age group was toward the same direction of difference,
with male individuals having higher median CDI at all ages
(Kruskal-Wallis test, Bonferroni-corrected significance threshold
for 6 comparisons: P=.008; male individuals aged 20-29 y vs
female individuals aged 20-29 y: H=0.96; P=.33; male
individuals aged 50-59 y vs female individuals aged 50-59 y:
H=0.78; P=.38; male individuals aged 60-69 y vs female
individuals aged 60-69 y: H=6.58; P=.01; male individuals aged
70-79 y vs female individuals aged 70-79 y: H=6.38; P=.01;
Figure 4A).

Female individuals aged 70 to 79 years were significantly less
variable than those aged 20 to 29, 30 to 39, and 50 to 59 years;
and female individuals aged 60 to 69 years were significantly
less variable than those aged 50 to 59 years (Figure 4B; Table
4). Cohen dm effect sizes for these differences were between
0.50 and 0.69 (Table 4). Male individuals aged 70 to 79 years
were significantly less variable than those aged 30 to 39 years,
with a Cohen dm effect size of 0.40 (Figure 4B; Table 5).

We compared the variability of the whole male and female
populations excluding each single age group using the strategy
described in the Effects of Subpopulations subsection. The IQR
distributions composed of the daily IQRs of population 24-hour
MET sums were not significantly different between (1) the
whole population and (2) the population without any single age
group, except in 1 comparison (Table 6). The whole female
population and the female population without individuals aged
60 to 69 years had significantly different IQRs of 24-hour MET
sums such that the female population variability was increased
by the presence of female individuals aged 60 to 69 years (Table
6; Cohen dm=0.18). Using the rule formulated by Lehr [35], we
calculated the effect of the increased population variability
caused by female individuals aged 60 to 69 years on the
approximate required sample size to detect a statistically
significant difference. We found that to detect a difference of
40 (approximately the difference in 24-hour MET sums resulting
from a 20-minute walk), the exclusion of female individuals
aged 60 to 69 years results in a sample size reduction from 1088
to 1047 (a reduction of 3.8%). For a difference of 100
(approximately the difference in 24-hour MET sums resulting
from 20 minutes of moderate-intensity activity), the exclusion
results in a sample size reduction from 174 to 167 (a reduction
of 4%); and for a difference of 180 (approximately the difference
in 24-hour MET sums resulting from 20 minutes of
high-intensity activity), the exclusion results in a sample size
reduction from 54 to 52 (a reduction of 3.7%).
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Table 3. Age bin statistics. The diagonal shows the median consecutive disparity index for each age bin. Below and to the left of the diagonal are the
P values from the post hoc Dunn tests comparing each age group (significant comparisons are italicized). Above and to the right of the diagonal are the
modified Cohen d effect sizes of the comparisons that were significantly different (Kruskal-Wallis test, Bonferroni-corrected significance threshold for
15 comparisons: P=.003).

70-79 y60-69 y50-59 y40-49 y30-39 y20-29 y

0.38————a0.08220-29 y

0.560.47——0.087.3830-39 y

0.36——0.081.20.6840-49 y

0.500.430.089.38.67.6450-59 y

—0.07.001.02<.001 b.00560-69 y

0.065.18<.001<.001<.001<.00170-79 y

aNot applicable.
bItalicized values indicate significance.

Figure 4. (A) Boxen plot of consecutive disparity indices (CDIs) for each sex (F: Female individuals; M: Male individuals) and age bin (year range)
(Kruskal-Wallis test, Bonferroni-corrected significance threshold for 6 comparisons: P=.008). (B) Kernel density estimate plots of CDI in each age bin
for female and male individuals. Dashed lines indicate the median CDI of the sex-age population. MET: metabolic equivalent of task.
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Table 4. Age bin statistics for female individuals. The diagonal shows the median consecutive disparity index for each age bin. Below and to the left
of the diagonal are the P values from the post hoc Dunn tests comparing each age group (significant comparisons are italicized). Above and to the right
of the diagonal are the modified Cohen d effect sizes of the comparisons that were significantly different (Kruskal-Wallis test, Bonferroni-corrected
significance threshold for 30 comparisons: P=.002).

70-79 y60-69 y50-59 y40-49 y30-39 y20-29 y

0.60————a0.08220-29 y

0.64———0.080.8830-39 y

———0.074.22.1740-49 y

0.690.500.084.10.66.7750-59 y

—0.068.001 b.10.004.00360-69 y

0.062.22<.001.005<.001<.00170-79 y

aNot applicable.
bItalicized values indicate significance.

Table 5. Age bin statistics for male individuals. The diagonal shows the median consecutive disparity index for each age bin. Below and to the left of
the diagonal are the P values from the post hoc Dunn test comparing each age group (significant comparisons are italicized). Above and to the right of
the diagonal is the modified Cohen d effect size of the comparison that was significantly different (Kruskal-Wallis test, Bonferroni-corrected significance
threshold for 30 comparisons: P=.002).

70-79 y60-69 y50-59 y40-49 y30-39 y20-29 y

—————a0.08720-29 y

0.40———0.096.1830-39 y

———0.091.45.5640-49 y

——0.100.81.32.7250-59 y

—0.081.16.10.02.2960-69 y

0.076.36.02.01<.001 b.0570-79 y

aNot applicable.
bItalicized values indicate significance.

Table 6. Kruskal-Wallis test of daily IQRs (n=206) between the whole female or male population and the whole female or male population with 1 age
group removed (Bonferroni-corrected significance threshold for 12 comparisons: P=.004).

P valueKruskal-Wallis H statisticSex and removed age group (y)

Male

.570.3220-29

.570.3330-39

.063.5740-49

.750.1050-59

.034.7560-69

.0077.4070-79

Female

.680.1720-29

.201.6530-39

.034.8140-49

.092.8950-59

<.00111.1160-69

.0077.1770-79
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GAM of the Features Found to Have Significant
Impact on 24-Hour MET Sum CDIs Across
Individuals: Sex, Age, and Weekend Rhythm
A GAM was used to summarize the contributions of sex, age,
cyclic status, and weekend rhythm to 24-hour MET sum CDIs
across individuals. Three initial models were tested to find the
best model for explaining population variability in CDI while
retaining interpretability: (1) a model with an identity link and
a factor term for all variables analyzed in this paper (sex, age,
weekend rhythm, and cyclic status), (2) all variables and all
2-way interactions (sex-age, age–weekend rhythm, etc), and (3)
all variables with all 2-way and all 3-way interactions
(sex-age–cyclic status, etc). The first model explained 11.5%
of the null deviance, but the cyclic status term was not
significantly different from 0 (P=.17). The last 2 models
explained 1.6% and 2.8% more of the null deviance than the
first model, where again cyclic status was not significant (second
model: P=.63; third model: P=.84). These analyses support our
finding that acyclic and cyclic individuals did not have
significantly different CDI values. Given the marginal increase
in null deviance explained for the substantial increase in model
complexity (6 and 10 additional relational features in the second
and third models, respectively) and the increased difficulty of
interpreting the models with multiple interaction terms (4 terms
in the first model vs 10 and 14 in the second and third models,
respectively), the first model was chosen for further analysis.
To construct the final model, the cyclic status variable was
removed from the first model because the term was not
significantly different from 0, leaving the final variables as sex,
age, and weekend rhythm.

Unique combinations of the categories (physiological
phenotypes) across the final variables resulted in 24 phenotype
groups (eg, female, 20-29 y, and weekend rhythm) for which
the model predicted a CDI value. Each of the variables had a

significant effect on the model prediction (sex: P<.001; weekend
rhythm: P=.01; and age: P<.001). The null deviance explained
by the final model decreased by 4.9% when sex was excluded
as a feature, by 4.7% when age was excluded as a feature, and
by 0.92% when weekend rhythm was excluded as a feature,
indicating that sex and age were the most important features in
this model for predicting CDI. Coefficient magnitudes indicated
that sex and specific age bins had the greatest effect on CDI out
of these categories: sex (Figure 5A) had an overall effect of
−0.0091 for female individuals 0.0091 for male individuals,
weekend rhythm (Figure 5B) had an overall effect of −0.0043
for patternless individuals and 0.0043 for those with weekend
rhythms, and age bin (Figure 5C) had an overall effect of −0.015
to 0.0093 (20-29 y: 0.0055, 30-39 y: 0.0093, 40-49 y: 0.0011,
50-59 y: 0.0075, 60-69 y: −0.0082, and 70-79 y: −0.015).
However, the overall deviance explained by the final model
was 11.3%, indicating a low proportion of null deviance
explained by the model. This is consistent with our Cohen dm

analyses that found the difference in median CDI between
categories to be smaller than the size of the IQRs of the
categories themselves (refer to our discussion of sex, weekly
rhythms, and age in the Variability Metrics of MET Sums,
Analysis of Weekend Rhythm in PA, and Analysis of PA by
Age sections; Cohen dm=0.35, 0.20, and 0.36-0.56, respectively).
Together, both these analyses indicated that even timescales of
change that were significant sources of variability in CDI were
not substantial sources of variability that would likely weaken
statistical power. GAM analysis further showed that the
intersection of sex with specific age bins (30-39 y, 50-59 y,
60-69 y, and 70-79 y) had the greatest impact on GAM
predictions. However, it also confirmed that no single category
was in itself a substantial source of variability in the population.
Model predictions did not align with unique values for each
phenotype group, and there was significant overlap between the
groups in CDI range (Figures 5D and E).

J Med Internet Res 2025 | vol. 27 | e66231 | p. 16https://www.jmir.org/2025/1/e66231
(page number not for citation purposes)

Varner et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 5. Generalized additive model–fitted factor functions for (A) sex, (B) weekend rhythm (WR), and (C) age with CIs. (D) Box plot of consecutive
disparity index (CDI) of 24-hour metabolic equivalent of task (MET) sums for each unique phenotype group in order of the model prediction (green
line) for that phenotype group. Weekend-Age-sex categories (P: patternless, W: weekend rhythm, Decade: age by decade, eg “70” is individuals in their
70s; F: Female individuals; M: Male individuals) are colored as in Figure 4A, and hatching indicates the presence of a WR in individuals in the labeled
group. (E) Stacked histogram (ordered for visual clarity) of the number of individuals in CDI bins labeled by phenotype group, highlighting the overlap
of each group in most bins.

Discussion

Principal Findings
In this work, we found evidence to reject the hypothesis that it
is necessary to exclude women as research participants when
assessing PA-related behaviors. Sex and cyclic status were found
to represent different populations, and neither sex nor menstrual
cycles substantially increased the intraindividual variability of
PA. Rather, we found that female individuals exhibit
significantly less intraindividual variability than male
individuals, regardless of their cyclic status. This study also
demonstrates that the exclusion of either sex is unwarranted
because the overall difference in intraindividual PA variability
was small. However, this work did reinforce the utility of SABV
because we found differences by sex in the contributions of
different timescales (weekends and age) to the patterns of change
in PA over time.

Male and female individuals showed no significant differences
between mean 24-hour MET sums, but the 60 most active male
individuals were significantly more active than the 60 most
active female individuals. The SD, CV, PV, and CDI values of
24-hour MET sums were all significantly different by sex. As
the CDI captures local changes instead of only global structure,
we deemed the CDI the best indicator of continuous

intraindividual variability for time series data. Cyclic status had
no effect on 24-hour MET sum CDIs, and no temporal structures
on the timescales of menstrual cycles were found in cyclic
individuals (ie, the approximately 28-day rhythms in these
individuals’ temperature data [15] were not reflected in their
PA).

We did find that some participants in the dataset had temporal
structure on the timescales of weeks. Participants with weekend
rhythms were found to have higher intraindividual variability
(24-hour MET sum CDI) than those without weekend rhythms
(patternless), regardless of sex. However, within each sex,
participants with weekend rhythms did not have significantly
different intraindividual variability compared to those without
weekend rhythms, nor did their inclusion increase the population
variability of the whole population of male or female
individuals. Male individuals were more intraindividually
variable than female individuals, regardless of weekend rhythm.
Without an SABV analysis, we may have concluded that the
CDI was significantly different between individuals with
weekend patterns and those without when the actual cause of
this deviation seems to be due to the fact that male PA is more
variable within individuals than female PA.

We also found that sex differences existed in the presence of
weekend rhythms. Interestingly, those with weekend effects
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were more likely to be male, although both sexes were
represented in this category (182 individuals had weekend
rhythms, n=85, 46.7% were female individuals and n=97, 53.3%
were male individuals). This may be because weekends play a
large role in modulating behavior; for example, work schedules
may inhibit PA during weekdays, leading some individuals to
make up their PA debt on weekends. Others may have active
work schedules and seek to rest and recuperate on weekends.
One study found that individuals who were more active on
weekdays than on weekends had lower education and were more
likely to work manual occupations than those who were
consistently inactive [45]. A higher group membership of male
individuals (female individuals: 55/133, 41.4%; male
individuals: 78/133, 58.6%) in the weekend high group may
also support the finding that female individuals have higher
rates of inactivity [3] if increased activity on the weekend is
due to participation in exercise.

Age did not have a consistent effect on intraindividual
variability. When the data were sex disaggregated, female
individuals aged 70 to 79 and 60 to 69 years were less variable
than a few of the younger age groups; however, among male
individuals, only 1 difference was observed: male individuals
aged 70 to 79 years were less variable than those aged 30 to 39
years. This decrease in intraindividual variability in the oldest
age groups is likely caused by increased sedentary behavior
with increased age [46]. In addition, male individuals aged 40
to 49 and 30 to 39 years were more intraindividually variable
than female individuals in the same age groups. This, again, is
in contrast to the results when all individuals of both sexes were
considered in statistical tests. If the data had not been sex
disaggregated, we may have concluded that male intraindividual
variability across age bins looks similar to female intraindividual
variability when it evidently does not. The lack of difference
across age bins in male individuals seems to be caused by
increased population variability of 24-hour MET sum CDIs
within each age bin when compared to female individuals. We
note that female individuals aged 60 to 69 years were the only
group to significantly increase the population variability of the
whole female population. We used this group to test the
hypothesis that excluding subgroups that significantly increased
whole-population variability would meaningfully improve
statistical power for the included groups. We found a change
in sample size of <5% for computed comparisons. We argue
that the benefits from reducing, for example, a 200-person study
to a 192-person study are likely minimal compared to the value
of including a whole other group so that the findings apply
broadly to more people.

The effects of weekend rhythms and age, along with the lack
of effects due to cyclic status, on intraindividual variability all
suggest that sex alone is not an effective proxy for the presence
of temporal structure or the intraindividual variability that may
affect statistical analysis. In our final analysis, we used a
multivariate (GAM) model that determined that while sex,
weekend rhythm, and age have significant effects on
intraindividual PA variability, only 11.3% of the population
variability in 24-hour MET sum CDIs can be explained by these
phenotypes. The analysis showed that age and sex had similar
effects on intraindividual PA variability and that weekend

rhythm had a much smaller effect comparatively. Cyclic status
did not have a significant effect (consistent even in the more
complex models) and in fact had less effect than any other
timescale studied. The analysis also highlights the potential
usefulness of intersectional phenotypes by showing that they
provide more information about an individual than single
phenotypes. Indeed, digital twinning is emerging as a
computational approach for providing precision insights into
health by grouping “similar” individuals (similar based on many
potential features of their data) and then identifying signs or
treatments specific to this group, as opposed to being limited
to more classical demographics such as sex or ethnicity alone
[47,48]. As these approaches mature, timescales of change such
as menstrual cycles, weekend patterns, and circadian rhythms
might prove to be useful features by which to define similarity.
Even when the intraindividual variability is approximately equal
across such groups (we found that only 11.3% of intraindividual
variability can be accounted for by the various timescales in
this work), the behaviors or needs of groups with different
dynamics may still differ due to differing physiology.

Older female individuals with weekend rhythms seem to have
the least intraindividual variability of all participant phenotypes
(Figure 5D), perhaps indicating stronger behavioral routines in
this phenotype group. Ironically, older female individuals, who
are historically even more understudied than female individuals
broadly [49,50], would seem to have mitigated concerns about
increased intraindividual variability eroding statistical
comparisons more than any other group, including the most
historically overrepresented population of middle-aged male
individuals. This is not an argument that men should be
excluded—no group should be excluded from research, and no
groups in our models exhibited an overwhelming amount of
intraindividual variability that would reduce power in statistical
comparison. Rather, this highlights that assumptions about who
should be excluded in the interest of minimizing population
variability and maximizing statistical power may have made
statistical inference harder rather than easier (and may still be
doing so when numerical examinations of these assumptions
are absent in any given field of study). While the multivariate
analysis suggests that, among the 4 variables studied, sex and
age most affect intraindividual variability, none of these
variables alone, nor their intersection, reliably predicted
intraindividual variability. This suggests that no group is so
different from the others as to warrant statistical exclusion.

The key assertion is that in the context of PA, which is the most
commonly available longitudinal physiological measure for
humans, we found no support for the hypothesis that female
individuals broadly are more variable than male individuals.

Limitations
This study aligns with our previous findings about the impacts
of sex and menstrual cycles on variability in continuous
temperature data [15]. As those analyses and the analyses
presented here were conducted on the same cohort, it is possible
that new cohorts would show different distributions. Additional
studies would help identify the stability and context for
variability in different phenotypes and populations; for example,
we do not suggest that all older female individuals are less
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variable than all young male individuals—indeed, the least
variable phenotype across the 3 characteristics of age, sex, and
weekend rhythm had a substantially smaller sample size (Figure
5D) and therefore may well not be reliably representative of the
broader population of older female individuals. Instead, we
suggest that our longitudinal analyses found this to be the case
in this modality (PA) in this dataset.

In addition, it is worth noting that MET is not equivalent to step
count but rather an adjusted measure of activity, conditioned
by the weight of the individual. While MET does not provide
insights into total absolute activity or types of activity, it varies
with activity intensity and thus provides a means of assessing
different timescales of behavioral change across individuals’
data, as analyzed in this study. Although METs have been found
to have systematic inaccuracies in energy expenditure estimates
due to their reliance on body weight for calculation [51], this
does not affect the relative change we analyzed in intraindividual
variability. Furthermore, while the exact MET calculation used
by Oura Ring is proprietary and not disclosed to us, Oura Ring
(Gen 2) activity measurements displayed high correlation when
validated against multiple accelerometers [30]. We encourage
further study using different metrics to more fully describe the
variability landscape from as many angles as might be relevant
to other applications or fields of research.

Comparison With Prior Work
This work joins a growing body of analyses that support the
inclusion of both sexes in biomedical research [13,15-20,52-56].
The persistent sex bias in participant selection for biomedical
research in humans and its detrimental impact on women’s
health care has been thoroughly described previously [52-55].
The harmful exclusion of women and female individuals as
participants has received increased attention in the past decade,
including specific mention as a problem in the 2024 Presidential
State of the Union Address [57]. Public attention to this issue,
along with US [58] and international [59,60] policy changes
affecting the inclusion of female individuals, has led to marked
improvements in cohort equity [13,61]. However, many
researchers still fail to include participants of both sexes in
experiments; and those who do, often fail to perform SABV
analyses [13,16,58]. Researchers’ resistance to include female
individuals in both animal and human studies in biomedical
research stems from the same concerns observed in sports and
exercise medicine: including female individuals will increase
intraindividual measurement variability due to hormone
fluctuations and thus reduce statistical power [56]. Our results
support the inclusion of female participants, consistent with
many other studies that found that female participants do not
reduce the statistical power of experiments due to substantial
variability [16-20]. Both this work and our previous work on
temperature variability found that sex does affect variability,
but cyclic status alone does not account for the difference
between male and female individuals [15]. Neither segregation
by sex nor segregation by cyclic status alone seems to be a
useful control for overall variability in these modalities [15].

As a result, our work suggests that exclusion for the sake of
preserving statistical power is neither necessary nor justified.

While this study is related to sex bias in biomedical research at
large, the findings presented here are most applicable and
comparable to behavioral research (here considered a subset of
biomedical research) and epidemiological research in PA
because the variability metric used (the CDI of daily MET sums)
approximates the amount of total exercise and movement in a
day without consideration for the types of activity or
physiological processes.

In regard to epidemiological research on PA, our findings did
not reflect the general consensus that female individuals are
less active than male individuals [3-5]. However, as discussed
previously, METs have been found to have systematic
inaccuracies in energy expenditure estimates [51] and may
therefore inaccurately measure the amount of PA. Another
potential cause for this discrepancy is that people who use
wearables are more likely to be active than those who do not
[62,63].

The effects of menstrual cycles on exercise performance have
been studied previously, and the results are largely conflicting
and inconclusive [9,10]. While this work does address PA
variability in people with approximately 28-day temperature
cycles, it differs from these studies in terms of metrics: these
studies assess exercise performance metrics such as strength
and endurance, while our analyses examine the intraindividual
variability of a daily summary of behavior or PA. This study
also does not examine specific stages of the menstrual cycle or
exercise performance metrics; however, the absence of 28-day
temporal patterns in 24-hour MET sums at least suggests that
if menstrual cycle–related changes in exercise performance
exist, they do not significantly affect behavior or the total
amount of PA.

Instead of finding temporal structures on menstrual cycle
timescales, we found temporal structures on weekly timescales,
confirming the findings from other recent accelerometry studies
that reported weekly rhythms in PA [45,64]. While this study
did not use raw accelerometer data, it expands on previous
studies in cohort age diversity [45] and the length of the study
period [45,64]. However, these previous studies have focused
on total amounts of activity rather than the presence of rhythms
and are not directly comparable to this work. Weekend rhythms
are not the main thrust of our work, but these findings may be
of interest to those studying activity patterns.

Conclusions
In conclusion, our findings support sex-based and age-based
analyses in biomedical research involving PA, while rejecting
the exclusion of female individuals, male individuals, weekend
rhythm types, or any other specific intersectional phenotype
from biomedical research based on the assumptions of increased
intraindividual variability of PA interfering with statistical
power.
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