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Abstract

Background: Torsades de pointes (TdP) is a rare yet potentially fatal cardiac arrhythmia that is often drug-induced. Drug-drug
interactions (DDIs) are a major risk factor for TdP development, but the specific drug combinations that increase this risk have
not been extensively studied.

Objective: This study aims to identify clinically significant, high-priority DDIs to provide a foundation to minimize the risk of
TdP and effectively manage DDI risks in the future.

Methods: We used the following 4 frequency statistical models to detect DDI signals using the Food and Drug Administration
Adverse Event Reporting System (FAERS) database: Ω shrinkage measure, combination risk ratio, chi-square statistic, and
additive model. The adverse event of interest was TdP, and the drugs targeted were all registered and classified as “suspect,”
“interacting,” or “concomitant drugs” in FAERS. The DDI signals were identified and evaluated using the Lexicomp and Drugs.com
databases, supplemented with real-world data from the literature.

Results: As of September 2023, this study included 4313 TdP cases, with 721 drugs and 4230 drug combinations that were
reported for at least 3 cases. The Ω shrinkage measure model demonstrated the most conservative signal detection, whereas the
chi-square statistic model exhibited the closest similarity in signal detection tendency to the Ω shrinkage measure model. The κ
value was 0.972 (95% CI 0.942-1.002), and the Ppositive and Pnegative values were 0.987 and 0.985, respectively. We detected 2158
combinations using the 4 frequency statistical models, of which 241 combinations were indexed by Drugs.com or Lexicomp and
105 were indexed by both. The most commonly interacting drugs were amiodarone, citalopram, quetiapine, ondansetron,
ciprofloxacin, methadone, escitalopram, sotalol, and voriconazole. The most common combinations were citalopram and quetiapine,
amiodarone and ciprofloxacin, amiodarone and escitalopram, amiodarone and fluoxetine, ciprofloxacin and sotalol, and amiodarone
and citalopram. Although 38 DDIs were indexed by Drugs.com and Lexicomp, they were not detected by any of the 4 models.
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Conclusions: Clinical evidence on DDIs is limited, and not all combinations of heart rate–corrected QT interval (QTc)–prolonging
drugs result in TdP, even when involving high-risk drugs or those with known risk of TdP. This study provides a comprehensive
real-world overview of drug-induced TdP, delimiting both clinically significant DDIs and negative DDIs, providing valuable
insights into the safety profiles of various drugs, and informing the optimization of clinical practice.

(J Med Internet Res 2025;27:e65872) doi: 10.2196/65872
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Introduction

Torsades de pointes (TdP) is a rare but life-threatening cardiac
arrhythmia characterized by a prolonged heart rate–corrected
QT interval (QTc) on an electrocardiogram. TdP is often induced
by QTc-prolonging drugs, which can further increase the risk
when used in combination. According to the Arizona Center
for Education and Research on Therapeutics, 268 drugs are
known to be QTc-prolonging drugs, including antiarrhythmics,
antibiotics, antipsychotics, antidepressants, and antineoplastic
drugs. These drugs are classified into 3 categories: 68 drugs
with a known risk of TdP, 148 drugs with a possible risk of
TdP, and 52 drugs with a conditional risk of TdP [1]. Chien et
al [2] conducted a large-scale, case-crossover study
demonstrating that QT-prolonging drug use and related
drug-drug interactions (DDIs), particularly “known risk” or
“conditional risk” drugs, are significantly associated with QTc
prolongation. This risk is further exacerbated by the concurrent
administration of these drugs with other QT-prolonging agents
or potent cytochrome P450 inhibitors. The resulting exponential
increase in potential DDIs is considerable and warrants careful
consideration when these medications are used concurrently.
In clinical settings, DDI alerts are implemented to warn of
potential QTc DDI risks. However, their unclear clinical
relevance often leads to indiscriminate alerts, resulting in over
90% being ignored, limiting the effectiveness of QTc DDI alerts
[3,4]. Wasserman et al [4] found an average of 3 unique QTc
DDI alerts presented per patient admission (range 1-44), with
an average of 6 overridden QTc DDI alerts (range 1-432),
ultimately resulting in 29% of admissions experiencing a
drug-induced QTc prolongation with a ≥60-point increase in
QTc value from baseline or a post-QTc value of ≥500 ms,
representing a significant increase in TdP risk. Although DDIs
are recognized as a significant risk factor for TdP development,
the specific drug combinations contributing to this risk remain
poorly characterized.

In clinical practice, the assessment of DDI risks often relies on
multiple information sources, such as Micromedex, UpToDate,
Drugs.com, and Medscape.com. However, significant variability
exists among these resources, as demonstrated by Shariff et al
[5], who reported poor intersource reliability scores (κ<0.20,
P<.05) [5]. This inconsistency complicates decision-making
for health care professionals and underscores the importance of
using real-world data to detect clinically significant DDIs. The
challenge is particularly acute with older adults, patients with
cancer, and critically ill patients with multiple comorbidities,
who often receive complex drug regimens that extend beyond

the 2-drug combinations typically considered in DDI reports
[6-8].

Literature data serve as valuable real-world evidence, with
numerous cases of drug-induced TdP documented. However,
there is a notable paucity of evidence concerning DDIs in these
reports. Krumpholz et al [9] conducted a comprehensive review
of literature-reported cases of drug-induced TdP from 1980 to
2021, encompassing 424 papers of 634 case reports, which
primarily documented suspected and concomitant drugs without
adequately considering interacting drugs. This highlights the
need for studies focusing on identifying clinically significant
DDIs.

The Food and Drug Administration Adverse Event Reporting
System (FAERS) database is a spontaneous reporting system
that provides information about adverse events (AEs) in clinical
settings and has emerged as a valuable resource for
pharmacovigilance research. Although the database has
limitations, including potential inaccuracies, underreporting,
and missing data, it provides unique insights into postmarketing
drug safety. In the FAERS database, 2 or more suspected,
interacting, or concomitant drugs for each event can be given,
which is particularly useful for identifying DDIs that result in
severe or fatal AEs. However, significant uncertainty exists
regarding the association between drugs and AEs in the given
report, as these reports encompass all potential drugs and AEs
for a patient. Recent methodological advances have enhanced
the utility of FAERS for DDI detection, particularly through
the application of multiple statistical models that can improve
signal detection reliability [10,11]. This study aimed to integrate
multiple data sources, including the FAERS database, DDI
information resources, and relevant literature, to detect clinically
significant DDIs associated with TdP risk. By using advanced
analytical methods and cross-validating findings across multiple
sources, we sought to provide more reliable and actionable
insights for clinical decision-making.

Methods

Data Sources
A retrospective, disproportionality, pharmacovigilance study
was conducted from the first quarter of 2004 to the second
quarter of 2023 using the FAERS database to detect potential
DDIs that increase the incidence of TdP in a large-scale
population. In the FAERS database, each report is coded using
the preferred terms (PTs) provided by the Medical Dictionary
for Regulatory Activities (MedDRA), and each drug is assigned
a code according to its association with AEs: suspect drugs,
concomitant drugs, or interacting drugs. OpenVigil
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2.1-MedDRA-v24 [12], an open tool for data mining and
analysis of pharmacovigilance data using cleansed FDA AE
reporting data, was used to detect DDIs.

Definition of AE
In this study, the targeted AE was TdP, which was extracted
from FAERS using the PT of TdP (PT code: 10044066). In
these cases, all drugs classified as suspected drugs, interacting
drugs, and concomitant drugs were included in the process to
investigate DDIs. For signal detection, we focused only on
combinations of 2 drugs with 3 or more cases.

Suspect Drugs of TdP Cases
Single-drug TdP signals were assessed for disproportionality
using the established pharmacovigilance index, the reporting
odds ratio (ROR). ROR values were calculated as (a × d)/(b ×
c) and expressed as point estimates with a 95% CI. In our study,
an event was considered significant when the ROR value was
greater than 2 and the lower limit of the 95% CI of the ROR
was greater than 1, and at least 3 cases were required to define
a positive signal for the ROR.

DDI Signal Detection Statistical Models and Standards
Several statistical algorithms have been developed for exploring
DDI signals, yet no de facto standard exists for DDI signal
detection in spontaneous reporting systems [10,11]. Each method
has inherent advantages and limitations. Among them, the Ω
shrinkage measure model, proposed by Norén et al [13] and
used by the World Health Organization Uppsala Monitoring
Center, calculates an observed-to-expected ratio for
disproportionality measurement of potential DDIs. This method
demonstrates a conservative signal detection trend among
frequentist-based approaches, effectively minimizing false
positives by handling sparse data, adjusting for deviations in
expected frequencies, and shrinking the extreme ratios toward
the overall mean. It is particularly well-suited for monitoring

rare AEs (eg, TdP) in noisy databases like FAERS but requires
clinical validation to confirm associations between drug
combinations and adverse reactions. The additive model, as
described by Thakrar et al [14], estimates co-medication risks
by evaluating target AE incidences across different exposure
scenarios. Although highly sensitive for detecting potential drug
synergies, it is prone to spurious associations due to noise and
biases in spontaneous reporting systems. Similarly, the
chi-square statistic model with Yates correction, proposed by
Gosho et al [15], is widely used but vulnerable to false negatives
or false positives when applied to sparse data, limiting its utility
for rare events like TdP. The combination risk ratio model,
proposed by Noguchi et al [16], offers a theoretical framework
for assessing the joint risk of co-medicated drugs by assuming
that the occurrence of AEs represents a combined risk of both
drugs. This approach is valuable for exploring potential
interactions but relies heavily on sufficient co-medication
frequency, limiting its effectiveness with rare drug combinations.

To address these limitations, a multimethod cross-validation
approach was used, integrating the Ω shrinkage measure model,
additive model, chi-square statistic model, and the combination
risk ratio model (calculation methods are detailed in Multimedia
Appendix 1). This ensures that signals detected by multiple
methods are less likely to be statistical artifacts. Ω shrinkage
was prioritized as the baseline model due to its robustness at
handling sparse data and its ability to minimize false positives.
Additive models were further screened using Ω shrinkage to
reduce spurious associations. For signal confirmation, all 4
statistical models were applied, with a positive signal defined
as one consistently detected by all 4 methods. We constructed
2 contingency tables—a 4-by-2 table and a 2-by-2 table—to
facilitate the analysis (detailed in Multimedia Appendix 1).
Additionally, the specific criteria for signal detection applied
to each model are detailed in Table 1.

Table 1. The signal detection criteria for each statistical model.

Criteria for positive signalsStatistical models

Ω025 > 0, n111 ≥ 3Ω shrinkage measure model

χ > 2, n111 ≥ 3Chi-square statistic model

PRRa
drug D1 ∩drug D2 > 2, χ2

drug D1 ∩drug D2 > 4, CRRb > 2, n111 ≥ 3Combination risk ratio model

P11 – P10 –P01 + P00 >0, n111 ≥ 3Additive model

aPRR: proportional reporting ratio.
bCRR: combination risk ratio.

To ensure robustness and minimize false positives, positive
DDI signals underwent external validation by cross-referencing
with established DDI databases and a comprehensive literature
review of relevant case reports to verify their clinical
significance.

Evaluation of Commonality of Signals Detected
The commonality of the signals detected by each statistical
model was evaluated using the Cohen kappa coefficient (κ), the
proportionate agreement for positive rating (Ppositive), and the

proportionate agreement for negative rating (Pnegative), as
reported in a previous study (calculation methods are detailed
in Multimedia Appendix 1). The κ provides a measure that
adjusts the observed agreement for the chance agreement, which
ranges from –1 to 1, and indicates the level of agreement
between observed and expected values [16]. A κ value of 0 to
0.20 indicates slight agreement, 0.21 to 0.4 indicates fair
agreement, 0.41 to 0.60 indicates moderate agreement, 0.61 to
0.80 indicates substantial agreement, 0.81 indicates upward
excellent agreement, and the absolute agreement is 1 [17].
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Conversely, κ<0 means that the observed agreement rate is less
than the chance agreement rate, which rarely occurs in practical
research.

Signal Verification
As positive controls, we downloaded a list of 268 drugs with
known (n=68), possible (n=148), and conditional (n=52) risks
of TdP from CredibleMed, an online compendium of QTc drugs
[1], and 217 drugs with the highest (n=32), moderate (n=70),
and low (n=115) risks of interacting from UpToDate [18].

To ensure the accuracy and reliability of DDI results, the
Lexicomp point-of-care database, known for its comprehensive
scope, was used to validate DDI signals. Additionally, the
open-access online drug interaction checker Drugs.com was
used to cross-validate the DDI signals. The severity
classifications of DDIs in the 2 drug databases are detailed in
Multimedia Appendix 1 [18,19]. Subsequently, a search was
conducted in the PubMed database for literature pertaining to
drug-induced TdP, and an open-access database of
literature-derived drug-related TdP cases, containing 624 TdP
cases from 424 papers, was used to further evaluate the clinical
relevance of the DDIs [9].

Sensitivity Analyses
Given that nonprofessional reporters may not have the expertise
to accurately distinguish between AEs and the symptoms of the
disease itself, this could potentially affect the interpretability
of aggregated results, particularly in large-scale data sets like
FAERS. To improve the clarity and reliability of the findings,

we excluded data reported by nonprofessionals from the
validated positive signal data, and conducted sensitivity analysis
to assess robustness.

Ethical Considerations
This study uses the publicly accessible and anonymized FAERS
database, which contains no personally identifiable information
and does not involve human subject experimentation. As a result,
it is exempt from review and approval by an institutional review
board.

Results

Basic Information on TdP Cases
As of September 2023, a total of 4313 TdP cases from
11,439,756 AE cases were included in this study. Of the 4313
TdP cases, 2403 (55.7%) were female, and 1398 (32.4%) were
male. The average age was 55.5 (range 0-97) years, and 1653
(38.3%) were older than 60 years. TdP is serious and fatal, with
many of the reported cases leading to hospitalization (initial or
prolonged; n=1310, 30.4%), life-threatening events (n=1705,
39.5%), or death (n=363, 8.4%). Notably, reports submitted by
nonprofessionals, such as consumers and lawyers, accounted
for only 290 (6.7%) of the total. This proportion is significantly
lower than the 20% to 30% typically reported, likely due to the
rarity and severity of TdP, which often requires hospitalization,
thereby limiting the likelihood of reports from consumers.
Geographically, 1784 (41.4%) of these 4313 cases originated
from the United States (Table 2).

J Med Internet Res 2025 | vol. 27 | e65872 | p. 4https://www.jmir.org/2025/1/e65872
(page number not for citation purposes)

Ji et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 2. Characteristics of patients with torsades de pointes in the Food and Drug Administration Adverse Event Reporting System database (n=4313).

Patients, n (%)Characteristic

Gender

1398 (32.4)Male

2403 (55.7)Female

512 (11.9)Unknown

Age (years)

180 (4.2)0-19

625 (14.5)20-39

1011 (23.4)40-59

1196 (27.7)60-79

457 (10.6)≥80

844 (19.6)Unknown

Severity

363 (8.4)Died

1705 (39.5)Life threatening

6 (0.1)Disabled

1310 (30.4)Hospitalized: initial or prolonged

19 (0.4)Required intervention

882 (20.4)Other outcomes

28 (0.6)Unknown

Reporter

1638 (38)Other health professionalsa

1585 (36.7)Medical doctor

467 (10.8)Pharmacist

333 (7.7)Not obtained

218 (5.1)Consumer

72 (1.7)Lawyer

Reporter country

1784 (41.4)United States

201 (4.7)Japan

80 (1.9)China

1923 (44.6)Other countries

325 (7.5)Unknown

aOther health professionals included 1 registered nurse and 396 health professionals.

Figure 1 depicts a cocurrent network of AEs associated with
TdP, providing a comprehensive overview of the patterns of
TdP occurrence. The size of a node is proportional to the number
of neighboring AEs, while the width of an edge is proportional
to the number of unique AEs. Among the 4313 TdP cases
analyzed, the most common presentations were
electrocardiogram QT prolonged (n=1736), long QT syndrome
(n=298), electrocardiogram QT-corrected interval prolonged
(n=61), cardiac arrest (n=892), ventricular tachycardia (n=738),
ventricular fibrillation (n=622), syncope (n=492), ventricular
extrasystoles (n=224), loss of consciousness (n=214),

cardiorespiratory arrest (n=205), atrial fibrillation (n=144),
arrhythmia (n=140), ventricular arrhythmia (n=135), tachycardia
(n=115), palpitations (n=114), and dizziness (n=109). The risk
factors of hypokalemia, hypomagnesemia, bradycardia,
electrolyte imbalance, decreased blood magnesium, and
hypocalcemia were observed in 524, 235, 225, 65, 63, and 50
cases, respectively. The drug-related risk factors of drug
interactions, overdose, drug abuse, intentional overdose, and
toxicity to various agents were present for 513, 271, 168, 164,
and 162 cases, respectively.
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Figure 1. Cocurrent network diagram of adverse events related to torsades de pointes.

Figure 2. Distribution of torsades de pointes–related drug classes.

Suspect Drugs of TdP Cases
Of the 4313 analyzed TdP cases, 721 drugs, including 136
QT-prolonging drugs, were implicated in 3 or more cases. The
most reported drugs were antiarrhythmics, antidepressants,
antibacterials, antipsychotics, analgesics, antineoplastics, and
others (Figure 2). Amiodarone had the most reports (n=524),
followed by furosemide (n=448), methadone (n=312),
loperamide (n=301), and citalopram (n=299). However,
loperamide (n=260; ROR 53.19, 95% CI 46.87-60.36) was the
most frequently reported primary suspect drug, followed by
amiodarone (n=233; ROR 58.48, 95% CI 51.18-66.82),

citalopram (n=143; ROR 23.72, 95% CI 20.06-28.04),
methadone (n=159; ROR 53.91, 95% CI 45.95-63.26),
furosemide (n=141; ROR 30.93, 95% CI 26.13-36.62), and
sotalol (n=117; ROR 255.06, 95% CI 210.53-309.02). Ibutilide
(n=5; ROR 1206.58, 95% CI 419.04-3474.16) had the strongest
signal for TdP, followed by halofantrine (n=3; ROR 884.41,
95% CI 239.35-3267.99), cisapride (n=69; ROR 325.59, 95%
CI 253.16-418.74), procainamide (n=5; ROR 270.86, 95% CI
107.87-680.12), and sotalol (n=117; ROR 255.06, 95% CI
210.53-309.02), and these drugs had a known TdP risk (Figure
3).
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Figure 3. Scatterplot of the number of reports and reporting odds ratio (ROR) for torsades de pointes–related primary suspect drugs. CR: conditional
risk; KR: known risk; PR: possible risk.

DDI Signals of Statistical Models
We evaluated the reports of TdP for concomitant use of 2 of
the 721 drugs, totaling 8264 drug combinations, of which 4230
combinations were reported for at least 3 cases. The additive
model detected the most signals with 3296 (77.9%) pairs,
followed by the combination risk ratio model with 2574 (60.8%)
pairs, the chi-square statistic model with 2243 (53%) pairs, and
the Ω shrinkage measure model with 2236 (52.9%) pairs.

Commonality of DDI Signals Detected
Table 3 shows the κ coefficients and proportionate agreements
for Ppositive and Pnegative among the 4 frequency statistical models.
The chi-square statistics showed the greatest similarity to the
Ω shrinkage measure, with κ, Ppositive, and Pnegative values of
0.972 (95% CI 0.942-1.002), 0.987, and 0.985, respectively. In
contrast, the κ, Ppositive, and Pnegative values for the Ω shrinkage
measure and additive models were 0.482 (95% CI 0.451-0.513),
0.808, and 0.638, respectively, with moderate similarity.

Table 3. The Cohen kappa coefficient (κ) and proportionate agreements for positive rating (Ppositive) and negative rating (Pnegative) among 4 frequency
statistical models

κ (95% CI)P negativeP positiveModels

0.972 (0.942-1.002)0.9850.987Ω shrinkage measure model vs chi-square statistic
model

0.780 (0.749-0.810)0.8740.904Ω shrinkage measure model vs combination risk ratio
model

0.482 (0.451-0.513)0.6380.808Ω shrinkage measure model vs additive model

0.793 (0.762-0.823)0.8810.910Chi-square statistic model vs combination risk ratio
model

0.485 (0.454-0.516)0.6400.810Chi-square statistic model vs additive model

0.612 (0.578-0.646)0.7210.877Combination risk ratio model vs additive model

DDI Signal Verification
All 4 statistical models detected 2158 combinations (96.2% of
the Ω shrinkage measure model), with 141 combinations indexed
by Lexicomp, 205 combinations indexed by Drugs.com, 241

combinations indexed by either, and 1918 combinations indexed
by neither as of October 8, 2023. In addition, 105 combinations
were indexed by both, with 52 combinations being present in
10 or more cases (Figures 4 and 5).
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Figure 4. Process of drug-drug interaction signal monitoring and verification. TdP: torsades de pointes.

Figure 5. Number of drug-drug interaction signal intersections.

DDI Assessment
Of 2158 combinations, 409 individual drugs were involved.
Categorization in CredibleMeds showed 35 “known risk,” 31
“possible risk,” and 45 “conditional risk” drugs. In Lexicomp,
12 were “high risk,” 29 were “moderate risk,” and 29 were “low
risk.” The drug with the highest number of interactions was
amiodarone, which interacted with 68 other drugs, followed by
methadone (n=51), fluoxetine (n=46), bisoprolol (n=42),
ciprofloxacin (n=41), citalopram (n=37), and lorazepam (n=37).

However, the drugs with the most reported interaction cases
were amiodarone, citalopram, quetiapine, ondansetron,

ciprofloxacin, methadone, escitalopram, sotalol, and
voriconazole. The drug combinations are shown in Figures 6
and 7, with citalopram and quetiapine (n111=86) having the
highest number of cases, followed by amiodarone and
ciprofloxacin (n111=49), amiodarone and escitalopram (n111=34),
amiodarone and fluoxetine (n111=33), ciprofloxacin and sotalol
(n111=31), and amiodarone and citalopram (n111=30). The size
of the nodes is proportional to the number of specific drugs with
TdP, while the width of the extension branch is proportional to
the number of specific combinations with TdP.
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Figure 6. Drug-drug interactions (n=105) for torsades de pointes (detected by 4 models and indexed by Drugs.com and Lexicomp，n111≥3).

Figure 7. Drug-drug interactions (n=52) for torsades de pointes (detected by 4 models and indexed by Drugs.com and Lexicomp, n111≥10).

Multimedia Appendix 2 presents the characteristics of 105 drug
combinations. Lexicomp classified 20 combinations as “X,” 25
as “D,” 42 as “C,” and 18 as “B.” In contrast, Drugs.com
categorized 27 combinations as “Moderate risk” and 78 as
“Major risk.” Additionally, 25 combinations were recorded in

the literature-derived database of drug-related TdPs with
enhanced clinical relevance.

Regrettably, 38 drug combinations indexed in both databases
were not detected by any of the 4 models. These included 2 “X”
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class (methadone and quetiapine, quetiapine and ziprasidone),
11 “D” class, 14 “C” class, and 9 “B” class drug combinations,
with amiodarone and sotalol, chlorpromazine and haloperidol,

and amiodarone and dronedarone being the high-risk
QT-prolonging drug combinations (Multimedia Appendix 2;
Figure 8).

Figure 8. Drug-drug interactions (n=38) for torsades de pointes (indexed by Drugs.com and Lexicomp, n111≥3, but not detected by any of the 4
models).

Among the 4313 cases analyzed, 513 involved drug interaction
events, with 984 interacting drugs reported for 460 cases. The
most commonly interacting drugs were amiodarone, citalopram,
fluoxetine, furosemide, escitalopram, ondansetron, omeprazole,
moxifloxacin, and metoprolol. By matching the results of signal
detection and validation of drug combinations, a total of 189
drug combinations were identified by the 4 models. Of these,
65 combinations were indexed by Lexicomp, 74 were indexed
by Drugs.com, 84 were indexed by either, and 55 were indexed
by both. Figure 9 illustrates the 55 DDIs classified as
“interacting drugs” in FAERS that were detected by the 4
models and indexed by Drugs.com and Lexicomp. These include

combinations like amiodarone and fluoxetine (n=25), loperamide
and cimetidine (n=23), escitalopram and omeprazole (n=10),
and moxifloxacin and ondansetron (n=10). Some combinations,
although reported more frequently, were excluded from the
analysis as they were either not detected by the model or not
indexed in the database. For example, venlafaxine and
quetiapine (n=17) and furosemide and metoprolol (n=17) were
only detected by the additive model. Additionally, combinations
like fluoxetine and fluphenazine (n=16) and fluconazole and
ritonavir (n=13) were not indexed either Drugs.com or
Lexicomp.
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Figure 9. Drug-drug interactions (n=55) for torsades de pointes (drugs classified as “interacting drugs” in the Food and Drug Administration Adverse
Event Reporting System, detected by the 4 models, and indexed by Drugs.com and Lexicomp).

Sensitivity Analyses
Despite the relatively low proportion of reports from
nonprofessionals, we conducted an analysis of TdP cases
reported by nonprofessionals, such as consumers and lawyers.
We evaluated TdP by nonprofessionals for concomitant use of
2 of the drugs, totaling 1862 drug combinations, with 89
combinations reported for at least 3 cases. Among these, 49
combinations were detected by all 4 statistical models, and only
5 combinations were indexed by Lexicomp and Drugs.com
when considering all data, including reports from
nonprofessionals. Sensitivity analyses revealed that the inclusion
of nonprofessional reports did not alter the final determination
of the signal detection (Multimedia Appendix 2).

Discussion

Main Findings
This study presents the initial comparative safety evaluation of
FAERS data aimed at assessing clinically significant DDIs
triggering fatal TdP. Clinical evidence regarding DDIs remains
limited, and not all combinations of QTc-prolonging drugs lead
to TdP, even when high-risk drugs or those with established
TdP risks are involved. This study offers a comprehensive
real-world analysis of drug-induced TdP, identifying both
clinically significant and nonsignificant DDIs. These findings
contribute valuable insights into the safety profiles of various
drugs, aiding in the optimization of clinical practice.

Matsuo and Yamaori [20] attempted to use the Japanese Adverse
Drug Event Report database to identify and summarize potential
DDIs associated with an increased risk of drug-induced long
QT syndrome. However, their methodology relied on the ROR,
which is typically used for assessing safety signals of individual

drugs that may not be appropriate for detecting safety signals
of DDIs, potentially leading to false positive signals. To address
this limitation, 4 frequency statistical models—namely, the Ω
shrinkage measure, combination risk ratio, chi-square statistic,
and additive model—were used to detect DDI signals in our
study, thereby greatly enhancing the validity and
comprehensiveness of the identified signals. Furthermore, the
verification of these signals was conducted using the Drugs.com,
Lexicomp, and literature databases, thereby ensuring the
credibility and reliability of the DDI data.

Consistent with previous studies, the Ω shrinkage measure
model demonstrated the most conservative signal detection,
while the chi-square statistic model exhibited the closest
similarity in signal detection tendency to the Ω shrinkage
measure model [16]. In contrast, the additive model detected
considerably more signals [5] and had less similarity in signal
detection tendency with the other models; therefore, care must
be taken when interpreting the signals. For a specific positive
signal result, the more models that detected it, the more reliable
the result is. In this study, 2158 combinations were detected by
the 4 frequency statistical models, of which 241 combinations
were indexed by Drugs.com or Lexicomp and 105 were indexed
by both. In addition, 171 combinations were indexed by only
1 of the databases, which was related to the poor consistency
between the 2 databases [11] due to the various rating criteria
and procedures and definitions of different levels of acceptable
risk. Drugs.com validated more interactions than Lexicomp,
which may be related to the fact that Drugs.com can recognize
brand names. Despite using an open-access database of
literature-derived, drug-related TdP cases containing 624 TdP
cases from 424 papers to evaluate the clinical relevance of DDIs,
only concomitant drugs were documented in all cases except
for suspected drugs, with no recorded interacting drugs [9].
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Unsurprisingly, limited clinical evidence on DDIs is available,
owing to the inherent difficulty of judging when interactions
lead to AEs. However, DDIs do exist, which highlights the value
of detecting clinically significant DDIs based on real-world
data.

In our study, a list containing all potential DDIs related to TdP
from FAERS was provided. To the best of our knowledge, this
is the most comprehensive list derived from a pharmacovigilance
database so far. Consistent with the results of existing studies,
antiarrhythmics, antidepressants, antipsychotics, antibacterials,
analgesics, and antineoplastics drugs, such as amiodarone,
citalopram, quetiapine, ondansetron, ciprofloxacin, methadone,
escitalopram, sotalol, and voriconazole, were the most common
interacting drugs causing TdP [20,21]. Additionally, diuretics
were also common interacting drugs causing TdP, and the
potential mechanism underlying this may be related to
electrolyte disorder caused by diuretics. The most common
combinations were citalopram and quetiapine, amiodarone and
ciprofloxacin, amiodarone and escitalopram, amiodarone and
fluoxetine, ciprofloxacin and sotalol, and amiodarone and
citalopram, and previous studies have proven these DDIs are
closely related to TdP [22-24]. Trazodone may lead to QTc
prolongation and TdP, which is potentially fatal even without
risk factors for QTc prolongation [25]. In addition, co-interaction
with ziprasidone increases the risk of TdP. Therefore, we can
use this report’s findings to quickly understand the DDIs that
commonly result in TdP in the real world. However, it is worth
noting that a high reporting ratio does not always represent a
high risk because, for different combinations, the frequency of
drug use will vary greatly, which will directly affect the
proportion of TdP reports.

The development of TdP in the context of DDIs is likely
attributable to two key mechanisms: altered drug concentrations
due to metabolic inhibition or induction and superimposed
pharmacological effects on cardiac ion channels. For instance,
co-administration of drugs that prolong the QT interval may
synergistically increase the risk of TdP. Moreover, inhibition
of the metabolism of a QT-prolonging drug by a co-administered
agent could lead to elevated plasma concentrations, thereby
exacerbating the risk. Amiodarone is the most widely interacting
drug, with interactions with other 68 drugs, followed by
methadone, fluoxetine, bisoprolol, ciprofloxacin, and citalopram
[26-28], which interact with 51, 46, 42, 41, and 37 other drugs,
respectively. Therefore, additional caution and increased
electrocardiogram monitoring may be still warranted when these
drugs are combined, especially for patients with risk factors
such as increasing age, female sex, bradycardia, heart failure,
history of ventricular arrhythmias, use of diuretics,
hypothyroidism, hypokalemia, hypomagnesemia, and
hypocalcemia.

In addition to offering a complete list of drugs, our study
provides novel perspectives and opportunities for further
exploration. As real-world negative reporting is missing,
counterexamples that could serve as contradictory evidence
may exist. Therefore, identifying negative DDI pairs shall
enhance the confidence of health care professionals with a level
of certainty on DDIs, which in turn will improve medical
research and decision-making. It is widely accepted that

co-administration of QTc-prolonging drugs, especially those
with a known risk or high risk for TdP, heighten the risk of TdP.
Our research identified 38 DDIs for QTc prolongation indexed
by Drugs.com and Lexicomp but were not detected by any of
the 4 models. This finding supports the notion that not all
combinations of QTc-prolonging drugs result in TdP, even when
involving high-risk drugs or those with a known risk of TdP.
There is only a limited increase in QTc prolongation with
concurrent use of QTc-prolonging drugs, and that magnitude
of TdP risk depends on the specific drugs involved and patient
risk factors. If clinical decision support systems generate alerts
for QTc DDI whenever 2 QTc-prolonging drugs with a known
risk of TdP are combined, irrespective of the clinical relevance
of these interactions, a substantial number of false-positive alerts
may be produced. The rising incidence of false-positive QTc
DDI alerts can contribute to alert fatigue among physicians,
potentially leading to the disregard of important warnings.
Furthermore, these false-positive alerts may prompt unwarranted
discontinuation or substitution of medications, thereby
compromising the efficacy of clinical treatments. Consequently,
identifying negative QTc DDIs is a rational approach to
mitigating the challenge of alert fatigue. Nevertheless, caution
must be exercised even when a signal is identified as negative,
due to the inherent limitations of the FAERS database.

We acknowledge the inherent limitations of our study. First,
our analysis primarily focused on the potential for TdP resulting
from the concomitant use of 2 drugs. However, in patients with
polypharmacy, there are documented cases of concurrent use
of 3 or more suspect drugs. This raises the possibility that a
third drug may act as a confounding factor in the relationship
between coadministration and TdP risk, which was not
accounted for in our analysis. Second, the use of a spontaneous
reporting system inherently introduces various biases into the
signal detection process, thus rendering the obtained signals as
hypotheses rather than definitive conclusions. Moreover, the
absence of a universally accepted gold standard for DDI signal
detection further impacts the reliability of our findings. Although
we devoted significant attention to the interpretation of results
in the context of signal research for DDIs, validation efforts
have been conducted using resources such as Lexicomp and
Drugs.com. Unfortunately, there is a paucity of reliable
information on DDIs, and the available data exhibit substantial
variability across different drug information resources.
Furthermore, there is a scarcity of robust clinical evidence on
DDIs. Consequently, it is challenging to use “real” true data for
signal verification. Third, although 2 databases were used for
signal validation, there exists a risk of overlooking genuine
DDIs due to inconsistencies between the databases; when
considering only the DDIs present in both as true signals, some
valid associations may have been excluded. Fourth, the failure
to convert drug trade names to their generic counterparts prior
to analysis may have resulted in an elevated number of
DDI-positive signals. Nevertheless, this did not substantially
affect the outcomes, as the analysis exclusively included DDIs
validated by Lexicomp and Drugs.com using generic names.
Fifth, we did not initially stratify the analysis based on the
reporter population, as reports from nonprofessionals, such as
lawyers and consumers, made up only 6.7% of the total.
However, despite this small proportion, we could not completely
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rule out the potential influence of these nonprofessional reports
on the signal detection results due to their limited ability to
differentiate between AE symptoms and underlying disease
symptoms. Last, the FAERS database lacks sufficient clinical
details to exclude comorbidities, such as heart-related diseases,
as potential contributing factors to TdP cases. Future research
should integrate more comprehensive clinical data or conduct
prospective studies to better distinguish between
medication-induced and disease-induced TdP, thereby enhancing
the reliability of such analyses.

Conclusion
This study provides a preliminary overview of potential culprit
DDIs, as well as negative DDIs, for TdP in real-world settings.
These findings offer valuable insights for regulators, health care
professionals, and stakeholders involved in DDI management.
However, it is important to acknowledge the limitations inherent
to our study stemming from the reliance on a pharmacovigilance
database. It is crucial to recognize that DDI signals only indicate

a statistical association between drug combinations and AEs
and should not be mistaken for confirmed causal relationships.
Further validation through well-designed clinical studies is
necessary to establish a causal relationship. Although we
validated signals using DDI resources and literature-based
evidence, the available clinical evidence is limited and subject
to significant inconsistencies. Therefore, in clinical practice,
DDI signals should be considered as supplementary evidence
rather than a substitute for the expertise of cardiologists and
clinical pharmacists.

Although our study provides promising initial findings regarding
the identification of high-priority DDIs for TdP, the scalability
of these findings should be framed as hypotheses for future
research. Specifically, the ability to generalize these results for
clinical settings requires further investigation. Future studies
should integrate clinical data from electronic health records or
prospective trials to validate our findings and provide more
actionable insights for clinicians.
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