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Abstract

Background: Traditional risk models for immunoglobulin A nephropathy (IgAN), which primarily rely on renal indicators,
lack comprehensive assessment and therapeutic guidance, necessitating more refined and integrative approaches.

Objective: This study integrated network biomarkers with unsupervised learning clustering (k-means clustering based on
network biomarkers [KMN]) to refine risk stratification in IgAN and explore its clinical value.

Methods: Involving a multicenter prospective cohort, we analyzed 1460 patients and validated the approach externally with
200 additional patients. Deeper metabolic and microbiomic insights were gained from 2 distinct cohorts: 63 patients underwent
ultraperformance liquid chromatography–mass spectrometry, while another 45 underwent fecal 16S RNA sequencing. Our
approach used hierarchical clustering and k-means methods, using 3 sets of indicators: demographic and renal indicators, renal
and extrarenal indicators, and network biomarkers derived from all indicators.

Results: Among 6 clustering methods tested, the KMN scheme was the most effective, accurately reflecting patient severity
and prognosis with a prognostic accuracy area under the curve (AUC) of 0.77, achieved solely through cluster grouping without
additional indicators. The KMN stratification significantly outperformed the existing International IgA Nephropathy Prediction
Tool (AUC of 0.72) and renal function-renal histology grading schemes (AUC of 0.69). Clinically, this stratification facilitated
personalized treatment, recommending angiotensin-converting enzyme inhibitors or angiotensin receptor blockers for lower-risk
groups and considering immunosuppressive therapy for higher-risk groups. Preliminary findings also indicated a correlation
between IgAN progression and alterations in serum metabolites and gut microbiota, although further research is needed to establish
causality.

Conclusions: The effectiveness and applicability of the KMN scheme indicate its substantial potential for clinical application
in IgAN management.

(J Med Internet Res 2025;27:e65563) doi: 10.2196/65563
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Introduction

Immunoglobulin A nephropathy (IgAN) is the predominant
primary glomerular disorder globally, presenting across diverse
demographics. The prognosis of IgAN shows notable
heterogeneity, with approximately 40% of patients progressing
to end-stage renal disease, posing challenges for clinical
judgment and management [1]. Hence, investigating risk factors
for IgAN has been a recent research hotspot. Alongside
traditional kidney-related markers such as proteinuria [2],
hematuria [3], estimated glomerular filtration rate (eGFR) slope
[4], uric acid [5,6] and Oxford classification [7], emerging
extrarenal indicators like smoking status [8], bilirubin [9],
platelet-albumin index [10], and triglyceride-glucose index [11]
are increasingly explored for their prognostic value in IgAN.
This suggests that clinicians should assess IgAN holistically,
not just focusing on the renal biomarkers.

To assess IgAN’s prognosis, several stratification models have
emerged, with the International Immunoglobulin A Nephropathy
Prediction Tool (IIgAN-PT) by Barbour et al [12] being the
most widely accepted. This model primarily focuses on
traditional kidney-related indicators, such as the Oxford
classification, treatment regimens, proteinuria, and blood
pressure, and has been validated for prognostic accuracy by
other research groups [13,14]. Recently, a Japanese cohort led
by Koike et al [15] proposed the renal function–renal histology
grading (RF-RG) stratification scheme for IgAN, primarily
referencing the clinical grade (proteinuria and eGFR) and
histological lesions to predict renal failure risk accurately,
making it clinically promising due to its simplicity. Regrettably,
these studies, while advancing IgAN risk stratification, are
primarily retrospective, focusing mainly on traditional renal
markers and often neglecting crucial extrarenal indicators.
Consequently, these tools fail to differentiate prognosis among
patients with similar renal damage who also have conditions
like hepatitis B or diabetes—comorbidities that can impact
outcomes. Moreover, while the classification schemes forecast

prognosis risks, they provide minimal guidance for treatment,
with IgAN guidelines largely relying on proteinuria, renal
function, and limited histological data [16]. Therefore, current
classification models for patients with IgAN are effective but
need improvement.

Recent advancements in artificial intelligence, especially in
unsupervised learning, have notably influenced various fields.
This technique autonomously uncovers patterns and latent
information within datasets, showing early successes in projects
like gut microbiota classification and autism spectrum disorder
stratification [17,18]. However, these applications often focus
narrowly on isolated clinical metrics, missing broader
interconnections. Simultaneously, the emergence of network
biomarkers in precision medicine provides a deeper
understanding of biological systems through the analysis of
complex molecular interactions. This advanced approach
improves our understanding of disease mechanisms, enhances
prognostic accuracy, facilitates personalized treatments, and
identifies critical stages in disease progression [19]. Yet, the
potential of network biomarkers for clustering in biomedical
research remains largely untapped, indicating a significant
opportunity for further exploration and application in the field.

To address these issues, our study used a multicenter,
prospective, observational cohort design to not only focus on
traditional renal damage indicators but also incorporate
extrarenal markers closely linked to the disease’s progression.
By leveraging interdisciplinary techniques such as unsupervised
learning and network biomarkers, we derived and externally
validated optimal classification models for IgAN risk
stratification. Additionally, we investigated whether these
models could be used for long-term follow-up and to guide
treatment decisions in IgAN. Furthermore, we examined
significant differences in the metabolomics and gut microbiota
under this stratification model, both of which have been
documented in literature as closely related to the onset and
progression of IgAN [20-26], aiming to provide preliminary
clues into the mechanisms of IgAN progression (Figure 1).
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Figure 1. A comprehensive process for developing and applying clustering models. IgA: immunoglobulin A.

Methods

Participant Recruitment
This multicenter, prospective cohort study included 1768 cases
of IgAN diagnosed via renal biopsy between 2009 and 2021 at
4 nephrology centers: West China Hospital of Sichuan
University, the Affiliated Hospital of Zunyi Medical University,
Zigong Third People’s Hospital, and People’s Hospital of
Mianzhu City. Follow-up data were last updated in October
2023 and are maintained by specialized technicians. The study
included patients with a confirmed IgAN diagnosis and complete
biopsy and clinical data, with IgAN identified as the primary
disease. We excluded patients with insufficient pathological
data, biopsies containing fewer than 8 glomeruli, incomplete
follow-up data, or diagnosed with secondary IgAN. A total of
1460 patients from West China Hospital of Sichuan University
meeting the inclusion criteria underwent unsupervised clustering,
with the resulting algorithm subsequently validated on an
independent cohort of 200 patients from other centers.

To assess the potential clinical meanings of this clustering, we
analyzed separate groups of 63 and 45 patients who met our
study criteria. These participants underwent ultraperformance
liquid chromatography-mass spectrometry for serum

metabolomic profiling and 16S RNA sequencing to identify
differences in gut microbiota. Participants were free from
metabolic diseases, such as hyperthyroidism and diabetes, and
had no history of smoking, alcohol misuse, drug abuse, or
infectious diseases. They had not received steroids or
immunosuppressants in the past 6 months nor had they taken
any lipid-lowering, uric acid–lowering, or metabolism-impacting
drugs in the previous week. Additionally, they had not ingested
probiotics, antibiotics, or gastrointestinal motility drugs in the
last month and showed no significant digestive symptoms or
diseases. The study adhered to the STROBE (Strengthening the
Reporting of Observational Studies in Epidemiology) guidelines
for observational studies, ensuring comprehensive and
transparent reporting of methods and results.

Ethical Considerations
Ethics approval for this study was obtained from the Ethics
Committee of West China Hospital, Sichuan University
(approval 2019-33), and all procedures strictly followed relevant
ethical guidelines and regulations. Written informed consent
was obtained from all participants, who were fully informed of
their rights. Participant data were anonymized to ensure privacy
and confidentiality, with securely stored, deidentified datasets
accessible only to authorized researchers. No financial or
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material compensation was provided to participants. The study
did not involve the inclusion of any identifiable individuals in
images or Multimedia Appendix 1.

Therapeutic Approaches and End Point
Adhering to KDIGO (Kidney Disease: Improving Global
Outcomes) guidelines, our collaborative treatment approach
between physicians and patients consists of 3 main protocols:
supportive care with angiotensin-converting enzyme inhibitors
(ACEIs) or angiotensin receptor blockers (ARBs), glucocorticoid
administration starting at 0.5-1 mg/kg of prednisone with
subsequent tapering, and a regimen of immunosuppressive
agents, used with or without additional glucocorticoids [16].
Considering medication effects on the immune system, we
merged glucocorticoid administration and immunosuppressive
agents into immunosuppressive therapy (IST). The study aimed
to evaluate composite outcomes, including end-stage renal
disease, kidney transplantation, mortality, or significant declines
in eGFR exceeding 50%.

Data Processing and Unsupervised Clustering
We conducted our analysis using k-means and hierarchical
clustering, following data preprocessing that involved imputing
missing values with a multilinear interpolation algorithm,
standardizing data to zero mean and unit variance, and reducing
dimensionality with uniform manifold approximation and
projection [27,28]. The k-means algorithm clusters data by first
randomly assigning centroids and then iteratively relocating
them to minimize intracluster variance, stabilizing when centroid
movement ceases. Hierarchical clustering generates a
dendrogram through agglomerative or divisive strategies:
agglomerative starts with individual points as clusters, merging
the most similar until one remains, while divisive begins with
a single cluster that is continually split until each data point is
isolated.

Network Biomarkers
We conducted a perturbation analysis using a single
sample-specific network approach to analyze individual samples,
comparing their attributes with a reference group of 50 healthy
individuals to identify distinctive features. Using graph feature
engineering techniques, we extracted attributes at 3 network
levels: node, subgraph, and global graph, to gain comprehensive
insights. Node-level analysis included degree analysis to assess
connectivity. At the subgraph level, we evaluated significant
features like diameter and average clustering coefficient to
identify disease-relevant patterns. At the global level, we
analyzed node and edge counts and the number of connected
components. Using the Networkx package (version 2.2) in
Python (version 3.1.2; Python Software Foundation), we
extracted 46 attributes for each sample’s network, which were
used for clustering analysis [19,29,30].

Interpretability Assessment of Unsupervised Clustering
Algorithms
Unsupervised clustering algorithms, while powerful in detecting
latent patterns, often lack interpretability. To address this issue,
the subgroups identified by these algorithms were used as
surrogate labels to develop a predictive framework through
machine learning. This framework was refined using 10-fold

cross-validation. An interpretability analysis was subsequently
conducted on the proficient machine learning models using the
Shapley Additive Explanations method, aiming to elucidate key
indicators influencing classification outcomes [31].

External Validation and Subsequent Omics Validation
Labels
We applied data standardization and uniform manifold
approximation and projection dimensionality reduction to the
entire dataset rather than individual data points, using the patient
cohort from the cluster set as the reference dataset. Each new
patient was then processed sequentially using the standardization
and dimensionality reduction models that were initially trained
on this cluster set. After dimensionality reduction, the clustering
model—previously trained on the cluster set—was used to
assign a corresponding cluster label to each patient. This
methodology ensures consistent treatment of new data within
the established framework.

Processing for Metabolomics Analysis
After fasting for at least 8 hours, about 5 mL of blood was drawn
into anticoagulant-free vacutainers in the morning. These were
left at room temperature to clot for 30 minutes before
centrifuging at 3000 rpm for 10 minutes. The supernatant was
then transferred to 1.5-mL Eppendorf tubes and stored at –80
°C for analysis.

Samples were thawed and prepared for ultraperformance liquid
chromatography-mass spectrometry analysis, involving protein
removal and reconstitution in a specific solvent. Hydrophilic
interaction liquid chromatography was performed using a precise
column and electrospray ionization for detection in both
ionization modes. Mass spectrometry data were processed to
identify peaks and extract ion features, with quality control
measures to assess the variability of each metabolite, excluding
those with a coefficient of variation over 20%. After sum
normalization, data analysis included partial least-squares
discrimination (PLS-DA) and calculation of variable importance
in projection (VIP) values for each metabolite, considering VIP
values >1 as statistically significant.

Processing of Gut Microbiota Data
Approximately 4 g of fresh fecal samples were collected in
sterile containers and stored at –80 °C for high-throughput
sequencing. DNA was extracted from the samples, and its
quantity and purity were assessed. The 16S ribosomal
ribonucleic acid (rRNA) V3-V4 hypervariable regions were
then amplified using specific primers and sequenced on the
Illumina MiSeq platform. Raw sequencing reads were
quality-filtered and clustered into operational taxonomic units
at a 97% similarity threshold using UPARSE. The 16S rRNA
sequences were classified using the ribosomal database project
classifier algorithm against the Silva (SSU123) 16S rRNA
database. Quality-controlled and standardized abundance data
were used for subsequent analysis at the genus level.

Statistical Analysis
Survival curves were generated using the Kaplan-Meier method,
and differences between groups were assessed using the log-rank
test. To estimate hazard ratios (HRs) and their 95% CIs, Cox
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proportional hazards models were used, with P values less than
.05 indicating statistical significance. Additionally, extreme
gradient boosting models were used to explore the associations
between cluster labels and primary outcomes, with model
performance evaluated by the area under the receiver operating
characteristic curves. The standardized effect size differences
among subtypes were quantified using Cohen d. Correlation
network figures were constructed based on Spearman or Pearson
correlation analyses to examine interactions between various
metabolites and gut microbiota; edges were added to the network
for any correlation with a P value below .05. Furthermore,
Mantel tests were applied to analyze the associations between
groups of clinical indicators and either metabolites or gut
microbiota.

Results

Enhanced Performance of K-Means Clustering With
Network Biomarkers in IgAN Stratification Over
Other Unsupervised Learning Approaches
We curated a cohort of 1460 patients from West China Hospital
of Sichuan University, strictly adhering to stringent inclusion
criteria for our clustering set. The average follow-up period was
58.8 (SD 28.8) months. Our comprehensive dataset included
demographics, clinical records, pathology, and treatment details
such as age, blood pressure, serum creatinine, eGFR, 24-hour
urine protein, urine red blood cell count, uric acid, renal

immunofluorescence markers, Oxford MESTC classification
(M, S, E, T, C), global and arteriolar sclerosis, lifestyle factors
(smoking and drinking), liver function, comorbidities (diabetes
and hepatitis B), and lipid metabolism markers.

We used hierarchical clustering and k-means methods, which
are widely used in the medical field for unsupervised clustering
[17,32,33]. These methods used 3 sets of indicators: the first
set included demographic and renal indicators, the second set
combined renal and extrarenal indicators, and the third set
comprised network biomarkers derived from all indicators. The
objective was to explore whether classifications based on a
broader range of systemic markers could outperform those
focusing solely on renal indicators, aiming to address potential
shortcomings in existing stratification schemes and guidelines.
Network biomarker construction was based on references from
our prior research [29]. All 6 clustering methods successfully
categorized all patients with IgAN into 4 groups, as
demonstrated in Figure 2 and Figures S1-S4 in Multimedia
Appendix 1. As cluster numbers rose from 1 to 4, symptom
severity increased, reflecting closely with clinical evaluations,
as evidenced by declining mean eGFR values and rising mean
proteinuria values. Although clinical intuition enabled physicians
to categorize patients using all indicators, this experience-based
and direct judgment alone was not consistently accurate in
dividing patients into 4 groups, especially regarding cluster 2
and cluster 3.
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Figure 2. Clustering based on unsupervised learning with renal and extrarenal indicators and network biomarkers. (A) Visual representation of
UMAP-reduced datasets integrated with k-means clustering, focusing on renal and extrarenal indicators. Each individual is stratified by subtype and
depicted through density plots, highlighting the distribution within each group. (B) Analysis of the subtypes derived from the methodologies described
in (A), presented using scatter boxplots and heatmaps. These illustrate the pairwise standardized effect size differences (Cohen d) between subtypes,
facilitating a clear comparison of indicator levels across groups. (C) Visual representation of UMAP-reduced datasets combined with k-means clustering,
focusing on network biomarkers. Individuals are stratified by subtype and depicted through density plots to showcase the clustering outcome. (D)
Analysis of the subtypes derived from the methodologies described in (C), presented using scatter boxplots and heatmaps. These visualizations detail
the pairwise standardized effect size differences (Cohen d) between subtypes, providing insights into the variation of network biomarkers across different
groups. eGFR: estimated glomerular filtration rate; UMAP: uniform manifold approximation and projection; uPro: urine protein; uRBC: urine red blood
cell count.

Unsupervised clustering not only accurately differentiated
patients but also proved highly effective in evaluating IgAN
prognosis. Among the 6 methods used, 3 stood out for
effectively reflecting IgAN prognosis: hierarchical clustering
based on renal indicators, k-means clustering based on all
indicators, and k-means clustering based on network biomarkers
(KMN). Kaplan-Meier curves for the 4 clusters showed
significant differences (P<.0001; Figure 3A and Figure S5A
and B in Multimedia Appendix 1), indicating their prognostic

relevance, as supported by a multivariable Cox regression model
adjusted for age, gender, urine protein, urine red blood cells,
renal function, and blood pressure (P<.0001; Figure 3B and
Figure S3C and D in Multimedia Appendix 1). Figure S6 in
Multimedia Appendix 1 presents further prognostic parameters,
reinforcing previous findings: notably, cluster 1 has the best
prognosis, whereas cluster 4 has the worst, consistent with
clinical categorizations.
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Figure 3. Survival analysis comparisons across different classification methods for IgAN. (A) Kaplan-Meier curves illustrating mortality rates in IgAN,
stratified by KMN grouping. (B) Forest plot illustrating the results of a multifactor Cox regression analysis, stratified by KMN grouping. (C). Kaplan-Meier
curves showing IgAN mortality rates, stratified by IIGAN grouping. (D) Kaplan-Meier curves detailing IgAN mortality rates, stratified by RF-RG
grouping. (E) ROC curve for the KMN grouping, with an AUC value of 0.77. (F) ROC curve for the IIGAN grouping, featuring an AUC value of 0.72.
(G) ROC curve for the RF-RG grouping, with an AUC value of 0.69. (H) Comparison of AUCs for classification schemes in IgAN risk stratification.
*P<.05, **P<.01, ***P<.001. AIC: Akaike information criterion; AUC: area under the curve; DBP: diastolic blood pressure; IgAN: immunoglobulin
A nephropathy; IIGAN: International Risk-Prediction Tool in Immunoglobulin A Nephropathy; KMN: k-means clustering based on network biomarkers;
RF-RG: renal function–renal histology grading; ROC: receiver operating characteristic; SBP: systolic blood pressure; uPro: urine protein; uRBC: urine
red blood cell count; XGBoost: extreme gradient boosting.

We evaluated the effectiveness of various clustering methods
in reflecting IgAN prognosis solely by using cluster labels as
input variables and assessing the area under the curve (AUC).
This approach holds significant value in assessing the predictive
performance of the model. Our study found that KMN exhibited
the highest AUC at 0.77 (Figure 3E), outperforming hierarchical
clustering based on renal indicators (0.71; Figure S5E in
Multimedia Appendix 1) and k-means clustering based on all
indicators (0.75; Figure S5F in Multimedia Appendix 1),
indicating superior predictive power for KMN and surpassing

methods that rely solely on renal indicators by 0.6. Therefore,
the k-means clustering approach, based on network biomarkers,
was recommended for stratifying IgAN risk.

To further investigate the impact of the KMN stratification on
the prognosis of IgAN, we assessed the 3-year trajectories of
urinary protein and serum creatinine across different patient
groups. Figure 4A and B and Figures S7 and S8 in Multimedia
Appendix 1 demonstrate that most patients in cluster 1 exhibited
relatively stable average urinary protein levels and normal
fluctuations in creatinine levels. Patients in cluster 2 had higher
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baseline levels of urinary protein and creatinine than those in
cluster 1 but exhibited a declining trend in urinary protein over
time. Meanwhile, their creatinine levels increased slightly, with
most remaining within chronic kidney disease stages 1, 2, or
3a by the third year. In cluster 3, patients experienced a
reduction in urinary protein at the 6-month mark compared to
baseline but maintained higher levels (around or above 1 g in
24 hours) throughout the 3 years, with both creatinine and
urinary protein showing significant increases by the third year,

indicating a potential rapid deterioration of their condition.
Patients in cluster 4, having the most severe prognosis, showed
a consistent yearly increase in creatinine, quickly progressing
toward renal failure, and maintained high levels of urinary
protein. These findings suggested that patients in different KMN
stratifications had distinct trajectories, indicating that KMN
stratification could serve as an effective prognostic marker for
IgAN.

Figure 4. Tracking 3-year renal indicators in immunoglobulin A nephropathy and guiding treatment based on KMN grouping. (A) Line graphs depicting
the average serum Cr levels of patients in each KMN group over time, illustrating changes in kidney function. (B) Line graphs showing the average
uPro levels for each KMN group over time, highlighting trends in proteinuria across different clusters. (C) Kaplan-Meier curves for cluster 1 patients,
stratified by treatment type: SC and IST, which includes steroids and other IIs. (D) Kaplan-Meier curves for cluster 1, detailing survival outcomes under
different treatments: SC, GS, and IIs. (E and F), (H and I), and (J and K) Kaplan-Meier curves representing survival outcomes for clusters 2, 3, and 4,
respectively, under various treatment modalities. (G) A forest plot visualizing the results of a multifactor Cox regression, specifically stratified by the
third KMN grouping. ***P<.001. Cr: creatinine; DBP: diastolic blood pressure; GS: glucocorticoid therapy; II: immunosuppressive agents; IST:
immunosuppressive therapy; k-means clustering based on network biomarkers; SBP: systolic blood pressure; SC: supportive care; uPro: urine protein;
uRBC: urine red blood cell count.
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Superiority of KMN Stratification Over IIgAN-PT and
RF-RG Schemes
To determine if our KMN scheme outperforms the globally
used renal marker–based IIgAN-PT and RF-RG schemes
[12,15], we first assessed the applicability of IIgAN-PT and
RF-RG to our cohort. As shown in Figure 3C and D, the
stratification of our cohort into 4 groups using RF-RG and
IIgAN-PT classification methods clearly demonstrates
significant disparities in the Kaplan-Meier curves (P<.0001),
confirming the prognostic utility of these schemes for our cohort.
Multivariable Cox regression analysis (Figure S9 in Multimedia
Appendix 1) revealed that in IIgAN-PT, compared to cluster 1,
the HRs for clusters 2, 3, and 4 were 0.79 (95% CI 0.35-1.79),
1.69 (95% CI 0.80-3.59), and 3.03 (95% CI 1.41-6.53),
respectively. Similarly, for RF-RG, the HRs for clusters 2, 3,
and 4 were 2.28 (95% CI 0.81-6.42), 6.60 (95% CI 2.08-20.96),
and 8.54 (95% CI 2.55-28.63), respectively. These results
suggest that all 6 of our clustering approaches outperformed
the RF-RG and IIgAN-PT schemes. Considering potential
collinearity between the primary indicators used in these models
and the covariates adjusted in our Cox regression, we primarily
assessed the models using AUC values. The AUC values for
IIgAN-PT and RF-RG were 0.72 (Figure 3F) and 0.69 (Figure
3G), respectively, indicating that IIgAN-PT performs better
than RF-RG but is inferior to our KMN model, which achieved
an AUC of 0.77 (Figure 3E). We conducted 10 rounds of random
sampling to generate AUC values for each classification scheme.
A Mann-Whitney U test on the resulting AUC values revealed
that the P values for differences between any 2 classification
schemes were less than .001. These results confirm statistically
significant differences between the methods, with our clustering
approach outperforming both RF-RG and IIgAN-PT (Figure
3H).

External Validation of KMN Stratification
To assess whether our risk stratification could be applied to
external cohorts, we conducted further validation by including
200 patients with IgAN who met the inclusion and exclusion
criteria from the Affiliated Hospital of Zunyi Medical
University, Zigong Third People’s Hospital, and People’s
Hospital of Mianzhu City. Our findings indicated that the
KMN-based stratification effectively categorized patients in
these additional cohorts, with clinical symptoms and predictive
performance consistent with previous results (Figure S10 in
Multimedia Appendix 1).

Guidance of Treatment Decisions by KMN
Stratification Scheme
The current treatment for IgAN predominantly relies on ACEIs
or ARBs, with the option of IST for more severe cases. The
KIDGO guidelines focus mainly on creatinine and urinary
protein levels, offering less guidance on pathological indices
or systemic status [16], and do not provide specific
recommendations for therapies under the IIgAN-PT or RF-RG
schemes [12,15]. Our study aimed to determine if our KMN
stratification could effectively guide immunosuppressive
treatment for IgAN, a topic currently under debate [34-36].
While recent studies have introduced new therapeutic options
such as atacicept [37], telitacicept [38], sparsentan [39],

irbesartan [40], and dapagliflozin [41], these were not used in
our cohort, which primarily consists of patients followed for
over 3-5 years before these drugs were fully available. We
explored the utility of KMN stratification in guiding IST through
Cox multivariable regression and survival curve analyses as
shown in Figure 4 and Figure S11 in Multimedia Appendix 1.

The Kaplan-Meier curve shows significant differences in
survival rates within cluster 1 between supportive care, primarily
using ACEIs or ARBs, and various ISTs including
glucocorticoids and other immunosuppressive agents,
underscoring that these therapies might not confer any additional
benefit for these patients.

In cluster 2, there was no significant difference between IST
and supportive care (P=.49), with supportive care and
glucocorticoids performing similarly and better than
immunosuppressive agents (P=.04). Given the significant side
effects of glucocorticoids and the negative results from
multivariable Cox regression for immunosuppressants,
supportive care remains the preferred treatment for this group.

For cluster 3, glucocorticoids were found to slightly outperform
other immunosuppressants, which themselves were marginally
better than supportive care alone (P=.06). Combining
glucocorticoids and immunosuppressants demonstrated a clear
advantage over supportive care (P=.05). Multivariable Cox
regression (Figure 4G) revealed a significant renal protective
effect of this combined IST, with an HR of 0.32 (95% CI
0.16-0.61). Given the data showing poor prognosis and rapid
renal deterioration typically within 3 years for cluster 3 patients,
we strongly recommend immunosuppressive treatment, favoring
glucocorticoids or, if intolerable, alternative
immunosuppressants such as mycophenolate mofetil.

For cluster 4, which had the poorest prognosis, survival curves
and Cox regression analyses showed no significant differences
between immunosuppressive treatment and supportive care.
However, upon closer examination, immunosuppressive
treatment outperformed supportive care for up to 96 months,
with intersections thereafter likely due to the small number of
patients followed for this duration, which could explain the
absence of statistical significance. Given the severity of their
condition, immunosuppressive treatment should be considered
for these patients if they could manage the side effects, with
decisions tailored to individual circumstances.

Interpretable Analysis of KMN Stratification
Unsupervised clustering based on network biomarkers exhibited
a “black box” nature; while effective in assessing clinical
severity, prognosis, and treatment, it lacked intuitive
interpretation. Therefore, we conducted an innovative
interpretive analysis of the unsupervised clustering approach,
which might offer additional insights for clinical practice. Figure
S12 in Multimedia Appendix 1 highlights the key factors
influencing the KMN classification, revealing significant
network parameters such as diameter, nodes, and edges. Notably,
the networks centered on urinary protein, red blood cells, age,
and eGFR were particularly crucial for stratifying IgAN. We
further analyzed the networks centered on these parameters for
patients in clusters 1-4, discovering significant differences
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among these groups (Figures S13-S16 in Multimedia Appendix
1). This suggested that not only did urinary protein, urinary red
blood cells, age, and eGFR individually impact the prognosis
of IgAN, but the relationships between these markers and other
indicators also significantly correlated with outcomes. This
aspect was often overlooked by traditional statistical methods,
which had primarily focused on isolated indicators, especially
renal-related ones, neglecting the statistical significance of these
networks.

Metabolomic Diversity Analysis Based on KMN
Stratification
To identify potential serum metabolomic markers for the
progression of IgAN, we used the KMN method to stratify 63
new patients with blood metabolomics data into 4 clusters:
cluster 1 with 17 individuals, cluster 2 with 27, cluster 3 with

11, and cluster 4 with 8. After quality control and normalization
of the metabolomics data, we conducted a PLS-DA model
analysis and observed a distinct separation trend among the 4
clusters (Figure 5A) [42]. Clusters 1 and 2 were then reclassified
into a new cohort labeled the low-risk group, and clusters 3 and
4 into a high-risk group. Further PLS-DA analysis of the
metabolomic data revealed significant disparities between the
high-risk and low-risk classifications (Figure 5B). Additionally,
we constructed metabolite interaction networks for the clusters,
uncovering distinct intermetabolite relationships across them
(Figure S17 in Multimedia Appendix 1). These findings
indicated that the differences in serum metabolites between
various risk levels of IgAN were significant and that changes
in their interaction networks might also contribute to the
disease’s progression.
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Figure 5. Differentiation of serum metabolites and gut microbiota in IgAN progression revealed by KMN grouping. (A) PLS-DA score plots vividly
illustrating the separation trends of serum metabolites among the 4 KMN clusters (1, 2, 3, and 4). (B) PLS-DA analysis highlighting significant structural
differences in serum metabolites between the high-risk IgAN groups (clusters 3 and 4) and low-risk IgAN groups (clusters 1 and 2). (C) Windrose
visualization of variable importance in projection values for metabolites across the 4 grouped PLS-DA models, demonstrating the impact of key
metabolites in differentiating the clusters. (D) Bar graph showing the fold changes of differential metabolites in high-risk groups compared to low-risk
groups, indicating their increase or decrease in abundance. (E) PLS-DA score plots vividly showcasing the separation trends of gut microbiota among
the 4 KMN clusters. (F) PLS-DA analysis indicating significant structural differences in gut microbiota between the high-risk IgAN groups and low-risk
IgAN groups. (G) Windrose visualization of variable importance in projection values for gut microbiota across the 4 grouped PLS-DA models, highlighting
the impact of key microbiota at the genus level in differentiating the clusters. (H) Bar graph illustrating the fold changes of differential gut microbiota
on the genus level in high-risk groups compared to low-risk groups, showing their increase or decrease in abundance. IgAN: immunoglobulin A
nephropathy; KMN: k-means clustering based on network biomarkers; PLS-DA: partial least-squares discrimination.

Through VIP analysis of the PLS-DA models for the 4 clusters,
we identified the top 10 metabolites that most significantly
differentiate the clusters (Figure 5C and D). Notably, levels of
bis(2-ethylhexyl) adipate (3-dehydroepiandrosterone sulfate
[DEHA]), Val-Arg, and dodecanoic acid were reduced in the
high-risk group. DEHA, a plasticizer not typically found in the
human body and primarily ingested externally, has no
well-documented links to renal diseases, and its metabolic

pathways in the body remain unclear. Some studies suggest
DEHA could have carcinogenic effects, cause DNA damage,
and disrupt steroidogenesis pathways [43-46]. We hypothesize
that in high-risk IgAN, abnormal kidney function could decrease
the renal excretion of microplastics, leading to their uptake by
cells, potentially causing cellular damage, though further
experimental evidence is needed to confirm this. Additionally,
Val-Arg, a dipeptide involved in protein metabolism, and
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dodecanoic acid, a medium-chain fatty acid, may indicate
disruptions in protein and fatty acid metabolism in high-risk
patients.

Conversely, levels of N-acetyl-L-carnosine (a dipeptide with
antioxidant properties) [47], L-glutarylcarnitine and
isovaleryl-L-carnitine (both involved in fatty acid metabolism)
[48,49], uric acid, Trp-Met (a tryptophan and methionine
complex indicating protein metabolism), L-glutamine (an amino
acid vital for immune function) [50,51], and
3-methyl-L-histidine (a marker of muscle metabolism) [52]
were elevated in the high-risk group, pointing to enhanced
oxidative stress and altered protein and energy metabolism in
these patients.

An interesting finding from our study was the strong correlation
among metabolites, which suggested that their collective
interactions might influence the severity of IgAN and potentially
lead to poor outcomes (Figure S18A in Multimedia Appendix
1). Additionally, by focusing on these metabolites, we explored
the metabolite networks across different clusters and observed
distinct network patterns between them (Figures S19-S25 in
Multimedia Appendix 1). These variations in metabolite levels
and their interactions could provide insights into the mechanisms
underlying IgAN progression, particularly in high-risk
individuals.

Further investigation into the relationship between these
metabolites and clinical indicators revealed that, except for
Val-Arg, which demonstrated a statistical correlation with
kidney function, the levels of other metabolites did not correlate
with traditional renal function markers such as urinary protein,
red blood cells, and pathological lesions. This finding suggests
that classifications based solely on renal function markers might
miss crucial metabolites that play a significant role in the
disease’s progression. Therefore, our KMN stratification offers
a novel approach to understanding the complex mechanisms
driving IgAN progression, highlighting the importance of
broader biomarker profiles in disease analysis.

Gut Microbiota Diversity Analysis Based on KMN
Stratification
Similarly, we recruited an additional 45 patients, stratified into
4 clusters using the KMN method: 9 individuals in cluster 1,
14 in cluster 2, 12 in cluster 3, and 10 in cluster 4. We conducted
gut microbiome sequencing on these individuals. Subsequent
PLS-DA model analysis of the reclassified cohorts revealed
significant disparities between the high- and low-risk groups
(Figure 5E and F), indicating substantial differences in the gut
microbiomes among patients with varying risk levels.
Additionally, the analysis of microbiome interaction networks
(Figure S29 in Multimedia Appendix 1) clearly showed distinct
intermicrobial relationships across the clusters, suggesting that
changes in these interactions may be related to disease
progression.

Through VIP analysis of the PLS-DA models for the 4 clusters,
significant variances in gut microbiota were identified,
delineating distinct profiles between high- and low-risk groups
(Figure 5G and H). Elevated levels of Paraprevotella and
Lachnoclostridium—the latter closely linked to kidney function

(Figure S18B in Multimedia Appendix 1)—in the high-risk
group suggest their role in exacerbating IgAN through gut
dysbiosis, given their association with inflammatory processes
[53,54]. Conversely, decreased levels of
norank_f_Coriobacteriales_Incertae_Sedis, Sutterella,
Mogibacterium, Family_XI AD3011_group,
Ruminococcaceae_UCG-010, Megasphaera, Intestinibacter,
and Slackia were noted. These genera might be involved in
fermenting dietary fibers and producing short-chain fatty acids,
essential for colon health and immune modulation [55,56]. Their
reduced presence might suggest a loss of protective microbial
functions in patients at higher risk of disease progression.
Additionally, the interaction patterns between these microbiota
batches underscore the potential of gut bacteria as biomarkers
for stratifying IgAN risk and highlight the complex relationship
between gut health and kidney disease (Figures S26-S34 in
Multimedia Appendix 1). However, these causal relationships
need to be substantiated by further studies.

Discussion

Principal Findings
Our study used network biomarkers combined with unsupervised
clustering to develop a novel stratification scheme for IgAN,
offering distinct advantages over existing approaches. By
integrating a broad array of variables, including but not limited
to renal indicators—such as liver function, lipid metabolism,
comorbidities, and lifestyle factors—our method offers a more
holistic assessment of patients. Additionally, we examined the
interrelationships among these indicators, applying clustering
techniques to their interaction vectors, which may more
accurately reflect biological interactions. Our stratification
scheme has undergone external validation, indicating potential
applicability to diverse cohorts. Clinically, this stratification
could assist in personalizing treatment, suggesting supportive
ACEI or ARB treatment for patients in lower-risk groups
(clusters 1 and 2) and potentially considering IST for those in
higher-risk groups (clusters 3 and 4).

To our knowledge, our study was the first to integrate k-means
clustering with network biomarkers. K-means clustering
partitions patients into a predetermined number of clusters based
on their similarity to cluster centroids, which is computationally
efficient and well-suited for large datasets [32,57]. This makes
it particularly effective for managing high-dimensional data in
the classification of patients with IgAN. Network biomarkers,
offering several advantages over traditional biomarkers, capture
the intricate relationships between different biological factors
and provide a nuanced understanding of disease heterogeneity
[19,30]. They also offer a system-level view that highlights the
interconnectedness of various physiological processes involved
in IgAN pathogenesis.

By incorporating network biomarkers into k-means classification
models, our method outperformed traditional molecular
biomarker–based clustering in distinguishing varying degrees
of clinical severity in IgAN. This approach not only more
accurately categorized patients but also surpassed existing
prognostic models, providing deeper insights into disease
progression by our interpretable analysis. The innovative
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integration of network biomarkers enhances our ability to
capture complex biological interactions and systemic effects
that traditional markers might overlook. This improves the
accuracy of IgAN prognosis and suggests the method’s
applicability to other diseases with similar complex traits. The
scalability and adaptability of this approach could significantly
improve disease classification and management across various
clinical cohorts, leading to more personalized and effective
treatment strategies.

Previous metabolomic and gut microbiome studies have
indicated structural changes in the metabolites and microbiota
of patients with IgAN compared to healthy individuals
[20,24,26]. However, clinical research exploring their impact
on disease progression remains preliminary and simplistic. Most
investigations into these substances have been conducted
through animal or cell experiments to elucidate the changes in
the gut-kidney axis and their influence on IgAN [22,24].
Building on this foundation, our study conducted further
research, using the KMN stratification to more accurately predict
clinical outcomes for these patients, moving beyond simple
classifications based on proteinuria and creatinine. We observed
significant differences in serum metabolite structures and gut
microbiome compositions between high-risk and low-risk
patients with IgAN. Importantly, the interaction networks
between metabolites and microbiota also varied distinctly,
suggesting that changes in these elements and their interactions
are closely linked to the progression of IgAN. Preliminary
clinical evidence from our study shows that a reduction in
beneficial bacteria and an increase in potentially pathogenic
microbes, along with environmental pollution, metabolic
abnormalities in proteins and lipids, oxidative stress, and

immune dysregulation, collectively contribute to the progression
of IgAN [58,59]. These findings are consistent with other basic
and clinical research, indirectly validating the clinical relevance
of our KMN stratification.

Our study has several limitations that warrant discussion. First,
our cohort consisted exclusively of Chinese individuals, lacking
diversity in racial data. Given the heterogeneity of IgAN across
different races, our existing classification scheme may not be
directly applicable to other populations. However, other ethnic
groups could potentially use our approach of unsupervised
clustering based on network biomarkers to develop tailored
classification schemes suited to their specific racial
characteristics. Second, our analyses of the gut microbiome and
metabolomics were essentially cross-sectional, which, despite
using the KMN stratification scheme providing prognostic
insights, does not establish causality. Additionally, the sample
size was relatively small, meaning that our findings represented
only a preliminary characterization of the gut microbiome and
serum metabolites to validate the clinical value of our KMN
stratification. Further in-depth studies are needed to explore the
underlying mechanisms of these findings.

Conclusions
This study developed a novel risk stratification model for IgAN
using network biomarkers and unsupervised clustering. The
KMN scheme outperformed existing models in predicting
disease progression and guiding personalized treatment. Our
findings also highlight the potential role of systemic biomarkers,
including serum metabolites and gut microbiota, in IgAN
management. Further research is needed to validate these
insights and enhance clinical applicability.
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KDIGO: Kidney Disease: Improving Global Outcomes
KMN: k-means clustering based on network biomarkers
PLS-DA: partial least-squares discrimination
RF-RG: renal function–renal histology grading
rRNA: ribosomal ribonucleic acid
STROBE: Strengthening the Reporting of Observational Studies in Epidemiology
VIP: variable importance in projection
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