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Abstract

Background: Recent advancements in artificial intelligence, such as GPT-3.5 Turbo (OpenAI) and GPT-4, have demonstrated
significant potential by achieving good scores on text-only United States Medical Licensing Examination (USMLE) exams and
effectively answering questions from physicians. However, the ability of these models to interpret medical images remains
underexplored.

Objective: This study aimed to comprehensively evaluate the performance, interpretability, and limitations of GPT-3.5 Turbo,
GPT-4, and its successor, GPT-4 Vision (GPT-4V), specifically focusing on GPT-4V’s newly introduced image-understanding
feature. By assessing the models on medical licensing examination questions that require image interpretation, we sought to
highlight the strengths and weaknesses of GPT-4V in handling complex multimodal clinical information, thereby exposing hidden
flaws and providing insights into its readiness for integration into clinical settings.

Methods: This cross-sectional study tested GPT-4V, GPT-4, and ChatGPT-3.5 Turbo on a total of 227 multiple-choice questions
with images from USMLE Step 1 (n=19), Step 2 clinical knowledge (n=14), Step 3 (n=18), the Diagnostic Radiology Qualifying
Core Exam (DRQCE) (n=26), and AMBOSS question banks (n=150). AMBOSS provided expert-written hints and question
difficulty levels. GPT-4V’s accuracy was compared with 2 state-of-the-art large language models, GPT-3.5 Turbo and GPT-4.
The quality of the explanations was evaluated by choosing human preference between an explanation by GPT-4V (without hint),
an explanation by an expert, or a tie, using 3 qualitative metrics: comprehensive explanation, question information, and image
interpretation. To better understand GPT-4V’s explanation ability, we modified a patient case report to resemble a typical “curbside
consultation” between physicians.

Results: For questions with images, GPT-4V achieved an accuracy of 84.2%, 85.7%, 88.9%, and 73.1% in Step 1, Step 2 clinical
knowledge, Step 3 of USMLE, and DRQCE, respectively. It outperformed GPT-3.5 Turbo (42.1%, 50%, 50%, 19.2%) and GPT-4
(63.2%, 64.3%, 66.7%, 26.9%). When GPT-4V answered correctly, its explanations were nearly as good as those provided by
domain experts from AMBOSS. However, incorrect answers often had poor explanation quality: 18.2% (10/55) contained
inaccurate text, 45.5% (25/55) had inference errors, and 76.3% (42/55) demonstrated image misunderstandings. With human
expert assistance, GPT-4V reduced errors by an average of 40% (22/55). GPT-4V accuracy improved with hints, maintaining
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stable performance across difficulty levels, while medical student performance declined as difficulty increased. In a simulated
curbside consultation scenario, GPT-4V required multiple specific prompts to interpret complex case data accurately.

Conclusions: GPT-4V achieved high accuracy on multiple-choice questions with images, highlighting its potential in medical
assessments. However, significant shortcomings were observed in the quality of explanations when questions were answered
incorrectly, particularly in the interpretation of images, which could not be efficiently resolved through expert interaction. These
findings reveal hidden flaws in the image interpretation capabilities of GPT-4V, underscoring the need for more comprehensive
evaluations beyond multiple-choice questions before integrating GPT-4V into clinical settings.

(J Med Internet Res 2025;27:e65146) doi: 10.2196/65146
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Introduction

Using computers to help make clinical diagnoses and guide
treatments has been a goal of artificial intelligence (AI) since
its inception [1]. The adoption of electronic health record
systems by hospitals in the United States has resulted in an
unprecedented amount of digital data associated with patient
encounters. Computer-assisted clinical diagnostic support
systems (CDSSs) endeavor to enhance clinicians’ decisions
with patient information and clinical knowledge [2]. There is
burgeoning interest in CDSS for enhanced imaging [3] in various
disciplines such as breast cancer detection [4], COVID detection
[5], diagnosing congenital cataracts [6], and hidden fracture
location [7]. For a decision to be trustworthy for clinicians,
CDSS should not only make the prediction but also provide
accurate explanations [8-10]. However, most previous imaging
CDSSs only highlight areas deemed significant by AI [11-14],
providing limited insight into the explanation of the diagnosis
[15].

Recent advances in large language models (LLMs) have
encouraged much discussion in health care. State-of-the-art
LLMs include GPT-3.5 Turbo, a chatbot released by OpenAI
in October 2022, and its successor, GPT-4, released in March
2023. The success of GPT-3.5 Turbo and GPT-4 is attributed
to their conversational ability and their performance, which
have approached or matched human-level competence in
cognitive tasks, spanning various domains including medicine
[16]. Both GPT-3.5 Turbo and GPT-4 have achieved
commendable results in the United States Medical Licensing
Examination (USMLE), leading to discussions about the

readiness of LLM applications for integration into clinical
[17-19] and educational [20-22] environments.

One limitation of GPT-3.5 Turbo and GPT-4 is that they can
only read and generate text and are unable to process other data
modalities, such as images. This limitation, known as “single
modality,” is a common issue among many LLMs [23].
Advancements in multimodal LLMs promise enhanced
capabilities and integration with diverse data sources [24-26].
OpenAI’s GPT-4V is a state-of-the-art multimodal LLM
equipped with image processing and understanding ability [27].
However, the ability of GPT-4V to answer medical questions
with images with explanations has not been comprehensively
evaluated. In this study, we aimed to expose hidden flaws in
GPT-4V’s ability to interpret clinical images by thoroughly
evaluating its performance on medical licensing examination
questions involving image interpretation. For GPT-4V to be
useful to medical professionals, it should not only provide
correct responses but also offer accurate explanations for its
reasoning, especially in complex multimodal clinical scenarios
[28].

Methods

Overview
This cross-sectional study aimed to expose the hidden flaws of
GPT-4V in clinical image interpretation by comparing the
performance between GPT-4V, GPT-4, and GPT-3.5 Turbo in
answering medical licensing examination questions. This study
also investigates the quality of GPT-4V explanation in
answering these questions. The overview of the study is shown
in Figure 1. This study was conducted in October 2023.
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Figure 1. A summary of the image question selection process and prompt to large language models.

Ethical Considerations
The requirement for ethical approval and informed consent was
waived by the institutional review board at the VA Bedford
Health Care System because no patient data were used. The
experiments were performed in accordance with the Declaration
of Helsinki.

Medical Exams and a Patient Case Report Collection
We obtained study questions from 3 sources. USMLE consists
of 3 steps required to obtain a medical license in the United
States. USMLE assesses a physician’s ability to apply
knowledge, concepts, and principles, which is critical to both
health and disease management and is the foundation for safe,
efficient patient care. Step 1 assesses foundational scientific
concepts essential for medical practice, Step 2 clinical
knowledge (CK) evaluates the application of clinical science
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for supervised patient care, and Step 3 tests the medical
knowledge required for unsupervised practice. Step 1, Step 2
CK, and Step 3 of the USMLE sample exam released from the
National Board of Medical Examiners consist of 119, 120, and
137 questions respectively. We accessed these questions from
publicly available links [29]. Each question contained multiple
options to choose from. We then selected all questions with
images, resulting in 19, 14, and 18 questions from Step 1, Step
2 CK, and Step 3. Medical subdomains include but are not
limited to radiology, dermatology, orthopedics, ophthalmology,
cardiology, and general surgery.

The sample exam only included limited questions with images.
Thus, we further collected similar questions from AMBOSS, a
widely used question bank for medical students, which provides
students’ performance on the exam. The performance enabled
us to assess the comparative effectiveness of the model. For
each question, AMBOSS associated an expert-written hint to
tip the student to answer the question and a difficulty level that
ranges from 1-5. Levels 1, 2, 3, 4, and 5 represent the easiest
20%, 20%-50%, 50%-80%, 80%-95%, and 95%-100% of
questions respectively [30]. Hints are designed to guide students
to the correct answer. They are typically formatted as a short
paragraph that describes the image. We manually checked that
no hint had disclosed the answer directly. In addition to the gold
standard choice, each answer is associated with a detailed
explanation by AMBOSS. They were developed through an
internal peer-review process involving more than 50 physicians
who achieved high scores in the exam. We used a commercial
license to access the questions. Since AMBOSS is not publicly
available and its licensing terms restrict the automatic website
scraping of its proprietary content, they are not in the
CommonCrawl data set used to train GPTs [31]. We randomly
selected and manually downloaded 10 questions from each of
the 5 difficulty levels. We repeated this process for Step 1, Step
2 CK, and Step 3. This resulted in a total number of 150
questions.

In addition, we collected questions from the Diagnostic
Radiology Qualifying Core Exam (DRQCE) [32], which is an
image-rich exam to evaluate a candidate’s foundational
knowledge and clinical judgment across practice domains of
diagnostic radiology, which is offered after 36 months of
residency training. Since DRQCE is proprietary, we used a
commercial license to access the 26 questions with images of
54 questions in the preparation exam offered by the American
Board of Radiology. In total, we had 227 questions with images
from the 3 aforementioned sources.

To illustrate GPT-4V’s potential as an imaging diagnostic
support tool and further expose its limitations, we used part of
a patient case report [33] to resemble a typical “curbside
consultation” between medical professionals [34]. In this case,
the patient’s admission info, such as history of present illness,
labs, and images of the case report will be presented to both a
physician and GPT-4V. The physician can then work with
GPT-4V through question answering, for example, by asking
GPT-4V to help interpret images, for the final clinical diagnosis.

How to Answer Image Questions Using GPT-4V
Prompts
GPT-4V took image and text data as inputs to generate textual
outputs. Given that input format (prompt) played a key role in
optimizing model performance, we followed the standard
prompting guidelines of the visual question-answering task [35].
Specifically, we prompted GPT-4V by first adding the image,
then appending context (ie, patient information) and questions,
and finally providing multiple-choice options, each separated
by a new line. An example user prompt and GPT-4V response
are shown in Figure S1 in Multimedia Appendix 1. When
multiple subimages existed in the image, we uploaded multiple
subimages to GPT-4V. We did not append a hint to the end of
the question, unless other specified. The response consists of
the selected option as an answer, supported by a textual
explanation to substantiate the selected decision. When using
GPT-3.5 Turbo and GPT-4 models that cannot handle image
data, images were omitted from the prompt. These models were
accessed through OpenAI application programming interfaces.
Responses were collected from the September 25, 2023, version
of models.

Evaluation Metrics
For answer accuracy, we evaluated the model’s performance
by comparing the model’s choice with the correct choice
provided by the exam board or question bank website. We
defined accuracy as the ratio of the number of correct choices
to the total number of questions.

We also evaluated the quality of the explanation by preference
from 3 health care professionals (1 medical doctor with 35 years
of experience in internal medicine, 1 registered ward nurse with
2 years of experience, and 1 third-year medical school student).
For each question from the AMBOSS data set (n=150), we first
asked the health care professionals to choose their preference
between an explanation by GPT-4V (without hint), an
explanation by an expert, or a tie without knowing the
correctness of GPT-4V’s answers. The exclusion of correctness
is to avoid bias in their preference of explanations. In addition,
the source of the explanations was blinded to the health care
professionals, ensuring that their judgments were not influenced
by knowing whether an explanation came from GPT-4V or an
expert.

In addition, we also asked health care professionals to evaluate
the GPT-4V explanation from a sufficient and comprehensive
perspective [36,37]. They determined if the information exists
in the explanation, that consists of (1) image interpretation:
GPT-4V tried to interpret the image in the explanation, and such
interpretation is sufficient to support its choice; (2) question
information: explanations contained information related to the
textual context (ie, patient information) of the question, and
such information was essential for GPT-4V’s choice; (3)
comprehensive explanation: the explanation included
comprehensive reasoning for all possible evidence (eg,
symptoms, lab results) that leads to the final answer.

Finally, for each question answered incorrectly, we asked health
care professionals to check if the explanation contained any
errors that consisted of (1) image misunderstanding (if the
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sentence in the explanation showed an incorrect interpretation
of the image; eg, GPT-4V said that a bone in the image was for
the hand, but it was in fact the foot); (2) text hallucination (if
the sentence in the explanation contained made-up information
[38]; eg, claiming Saxenda was insulin); (3) reasoning error (if
the sentence did not properly infer knowledge in either image
or text to an answer; eg, GPT-4V reasoned that a patient took
a trip within the last 3 months and therefore diagnosed the
patient as having Chagas disease, despite the clinical knowledge
that Chagas disease usually develops 10-20 years after
infection); or (4) nonmedical error (GPT is known to struggle
with tasks requiring precise spatial localization, such as
identifying chess positions on the board [27]).

In this study, we asked an internal medicine doctor with 35
years of experience to articulate a detailed rating guideline
above. Our study has shown that the medical student and nurse,
both of whom participated independently, agreed with the
doctor’s ratings of 95% and 86%, respectively. This high
agreement ratio underscores the effectiveness of the standardized
guidelines in ensuring consistent evaluation across varying
levels of expertise.

Statistical Analysis
Chi-square tests and pairwise comparisons with Bonferroni
corrections were used for the performance metrics of GPT-3.5

Turbo, GPT-4, and GPT-4V on visual question answering
exams. GPT-4V’s accuracies on the AMBOSS data set were
compared between different difficulties using unpaired
chi-square tests with a significance level of 0.05. All analysis
was conducted in Python software (version 3.10.11; Python
Software Foundation).

Results

Overall Answer Accuracy
For all questions in the USMLE sample exam (including ones
without images), GPT-4V achieved an accuracy of 88.2%,
90.8%, and 92.7% among Step 1, Step 2 CK, and Step 3 of
USMLE questions, respectively. In comparison, GPT-3.5 Turbo
and GPT-4 achieved an accuracy of 55.1% and 81.5% in Step
1, 59.1% and 80.8% in Step 2 CK, and 60.9% and 88.3% in
Step 3, respectively (Table 1). GPT-4V outperformed GPT-4
and GPT-3.5 Turbo by 11.3% (95% CI 11.5%-11.1%; P<.001)
and 32% (95% CI 32.3%-31.7%; P<.001). The score of GPT-4V
passes the standard for the USMLE (about 60%). The
performance of GPT-4V across different subdomains is shown
in Table S1 in Multimedia Appendix 1.
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Table 1. Performance of GPT-3.5 Turbo, GPT-4, and GPT-4V on a USMLE sample exam from the National Board of Medical Examiners without
hints.

PerformanceExam name and agents

All questions, n (%)Questions with image, n (%)

USMLEa sample exam-Step 1b

11919Sample size

66 (55.1)8 (42.1)GPT-3.5 Turbo

97 (81.5)12 (63.2)GPT-4

105 (88.2)16 (84.2)GPT-4V

USMLE sample exam-Step 2 clinical knowledgec

12014Sample size

71 (59.1)7 (50)GPT-3.5 Turbo

97 (80.8)9 (64.3)GPT-4

109 (90.8)12 (85.7)GPT-4V

USMLE sample exam-Step 3d

13718Sample size

73 (60.9)9 (50)GPT-3.5 Turbo

121 (88.3)12 (66.7)GPT-4

127 (92.7)16 (88.9)GPT-4V

DRQCEe sample examf

5426Sample size

31 (57.4)5 (19.2)GPT-3.5 Turbo

35 (64.8)7 (26.9)GPT-4

48 (88.9)19 (73.1)GPT-4V

aUSMLE: United States Medical Licensing Examination.
b19 questions with images and 119 questions in total in Step 1.
c14 questions with images and 120 questions in total in Step 2 CK.
dThere were 18 questions with images and 137 questions in total in Step 3.
eDRQCE: Diagnostic Radiology Qualifying Core Exam.
fThere were 26 questions with images and 54 questions in total in DRQCE.

For questions with images, GPT-4V achieved an accuracy of
84.2%, 85.7%, and 88.9% in Step 1, Step 2 CK, and Step 3 of
USMLE questions, respectively. It outperformed GPT-3.5 Turbo
and GPT-4 by 42.1% (8/19; 95% CI 36.8%-47.4%; P<.001)
and 21.1% (4/19; 95% CI 7.8-34.2%; P=0.01) in Step 1, 35.7%
(5/14; 95% CI 3.1%-39.7%; P=.03) and 21.4% (3/14; 95% CI
4.7%-38.1%; P=.02) in Step 2 CK, 38.9% (7/18; 95% CI
32.2%-45.7%; P<.001) and 22.2% (4/18; 95% CI 5.5%-38.9%;
P=.02) in Step 3, respectively. Similarly, GPT-4V achieved an
accuracy of 73.1%, outperforming GPT-3.5 Turbo by 53.9%
(14/26; 95% CI 41.6%-66.2%; P<.001) and GPT-4 by 46.2%
(12/26; 95% CI 29.8%-62.5%; P<.001) in DRQCE (Table 1).
This highlights the superior ability of GPT-4V to interpret
clinical images compared with earlier versions.

Impact of Difficulty Level and Use of Hints
When asking GPT-4V questions without a hint, it achieved an
accuracy of 60%, 64%, and 66% for AMBOSS Step 1, Step 2
CK, and Step 3, respectively (Table 2). GPT-4V was in the
72nd, 76th, and 80th percentile with AMBOSS users who were
preparing for Step 1, Step 2 CK, and Step 3, respectively. When
asking GPT-4V questions with a hint, it achieved an accuracy
of 84%, 86%, and 88% for AMBOSS Step 1, Step 2 CK, and
Step 3, respectively. Figure S2 in Multimedia Appendix 1 is an
example where GPT-4V switched the answer from incorrect to
correct when a hint was provided. GPT-4V predictions on the
entire AMBOSS data set with images are reported in Table S2
in Multimedia Appendix 1 (n=646). Conclusions drawn from
automatic evaluation align with our findings presented in Table
2 (n=150).
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Table 2. Performance of GPT-4V on AMBOSS.

GPT-4V accuracy on AMBOSS, %AMBOSS steps and hint availability

5 (n=10)4 (n=10)3 (n=10)2 (n=10)1 (n=10)Overall (n=50)

Step 1

607030707060Without hint

909080808084Expert hint

Step 2 clinical knowledge

505070708064Without hint

70701009010086Expert hint

Step 3

505060908066Without hint

809090909088Expert hint

Figure 2 shows a decreasing trend in GPT-4V’s performance
in the AMBOSS data set when the difficulty of questions
increased (P=.04) without a hint. However, with the hint, the
performance of GPT-4V plateaued across 5 difficulty levels.
Importantly, the accuracies of both GPT-4V, with or without a
hint, in general, outperformed the accuracies of medical students,
and the gap between the performance of GPT-4V and medical
students increased when the difficulty increased. On the most

difficult questions, GPT-4V with hint outperformed medical
students by 60% (18/30, 95% CI 56.8%-63.1%; P<.001), and
GPT-4V without hint outperformed medical students by 26.7%
(8/30, 95% CI 24.2%-29.3%; P<.001). The findings show that
while GPT-4V outperforms medical students in accuracy, its
performance is largely dependent on context-based hints,
reflecting a fundamental flaw in image reasoning.

Figure 2. Performance of GPT-4V and students on 150 AMBOSS questions with different difficulty levels.

Quality of Explanation
We evaluated the user’s preference among GPT-4V-generated
explanations and expert-generated explanations. When GPT-4V
answered incorrectly, our results show that health care
professionals overwhelmingly preferred expert explanations as
shown in Table 3. In total, 47 preferred experts and 0 preferred

GPT-4V. When GPT-4V answered correctly, the quality of
GPT-4V-generated explanations was close to expert-generated
explanations: out of 95 votes, 19 preferred experts, 15 preferred
GPT-4V, and 61 preferred either. The preference for expert
explanations in incorrect answers highlights key weaknesses in
GPT-4V’s ability to interpret clinical images accurately and
offer dependable reasoning.
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Table 3. Health care professionals preferred explanations for 150 AMBOSS questions.

Health care professionals’ preferenceAMBOSS steps and correctness of GPT-4V (without
hint) responses

Prefer GPT-4VTiesPrefer expert

Step 1

3234Correct

0416Incorrect

Step 2 clinical knowledge

71510Correct

0018Incorrect

Step 3

5235Correct

0413Incorrect

We further evaluated the quality of the GPT-4V generated
explanation by verifying if the explanation includes image and
question text interpretation in Table S3 in Multimedia Appendix
1. When examining the 95 correct answers, 84.2% (n=80) of
the responses contained an interpretation of the image, while
96.8% (n=92) aptly captured the information presented in the
question. On the other hand, for the 55 incorrect answers, 92.8%
(n=51) interpreted the image, and 89.1% (n=49) depicted the
question’s details. In terms of comprehensiveness, GPT-4V
offered a comprehensive explanation in 79% (n=75) of correct
responses. In contrast, only 7.2% (n=4) of the wrong responses
had a comprehensive explanation that led to the GPT-4V’s
choice.

We also evaluated the explanations of incorrect responses by
GPT-4V image and grouped them into 4 categories, that are
image misunderstanding, text hallucination, reasoning error,
and nonmedical error. Among GPT-4V responses with wrong
answers (n=55), we found that 76.3% (n=42) of responses
included misunderstanding of the image, 45.5% (n=25) of
responses included logic error, 18.2% (n=10) of responses
included text hallucination, and no responses included
nonmedical errors.

A Case Study of Curbside Consultation
We present a clinical case study involving a 45-year-old woman
with hypertension and altered mental status. As shown in Figure
S3 in Multimedia Appendix 1, a collaborative design of GPT-4V
allows communication between GPT-4V and physicians. In this
scenario, when asked to interpret a CT scan, GPT-4V initially
provided an irrelevant answer. GPT-4V needed 5 additional
physician-guided prompts to list potential diagnoses, including
primary aldosteronism, hypertension, and Cushing’s syndrome.
For instance, when the physician specifically prompted, “If I
suspect Cushing’s syndrome due to ectopic ACTH secretion,
what would be the next steps to evaluate this patient to determine
the source of the hormonal abnormality?” and pointed to a
specific area on the CT scan, GPT-4V was then able to respond
correctly. This interaction indicates that GPT-4V struggles to
autonomously interpret medical images, requiring continuous
and specific prompts for accurate interpretation, which
underscores its flaws in independent image reasoning.

Discussion

Principal Findings
Recent advancements in medical question-answering systems
have leveraged domain-specific transformer models. Early
models such as PubMedBERT [39] with 100 million parameters
score around 38.3% in USMLE. The introduction of larger
models marked a substantial improvement. JMLR [40] with 13
billion parameters, Med-Palm [41] with 540 billion parameters,
and GPT-4 achieves 62.5%, 86.2%, and 90.2% respectively.
However, previous works only tested these models on text-only
questions without images [20,42-44] or questions in non-English
languages [45,46]. Unlike previous works that focus primarily
on accuracy [47,48], we emphasize explanation quality as a
crucial metric for assessing the model’s clinical applicability.
In particular, we evaluated GPT-4V’s ability to interpret medical
images (a new feature) to highlight hidden flaws in clinical
image interpretation.

We found that GPT-4V outperformed both GPT-3.5 Turbo and
GPT-4 (Table 1). When evaluating all questions in the USMLE
sample exam, GPT-4V achieved an accuracy of 90.7%
outperforming GPT-3.5 Turbo (58.5%) and GPT-4 (83.8%). In
comparison, medical students can pass the USMLE exam with
more than 60% accuracy, indicating that the GPT-4V performed
at a level similar to or above a medical student in the final year
of study. The accuracy of GPT-4V highlights its grasp over
biomedical and clinical sciences, essential for medical practice,
and showcases its ability in patient management and
problem-solving skills [49]. Other studies further demonstrated
the potential for clinical routines, such as summarizing radiology
reports [50] and differential diagnosis [51,52].

For medical exam questions with images, we found that GPT-4V
achieved an accuracy of 62%, which was equivalent to the
70th-80th percentile with AMBOSS medical students. This
finding indicates that GPT-4V has the capability to integrate
information from both text and images to answer questions,
making it a promising tool for answering clinical questions
based on images. However, our evaluation also reveals hidden
flaws in its image interpretation, particularly in its inconsistency
and the need for extensive context to provide accurate answers.
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Another important finding is that GPT-4V significantly
outperformed medical students for questions considered difficult
for the students. Specifically, our results, as shown in Figure 2,
show that while medical students’ performance linearly
decreased when the difficulty of questions increased, GPT-4V’s
performance stayed relatively stable. When expert hints were
provided, GPT-4V’s performance stayed plateau among
questions in all difficult levels. This consistent performance
indicates that GPT-4V effectively addresses questions that
medical students find challenging. Its advanced capabilities
suggest potential as an educational assistant, particularly for
complex topics. Under the supervision of teachers’ hints,
medical students could benefit from its advanced capabilities
to understand and analyze complex medical questions.

There may be multiple factors that contribute to GPT-4V’s
performance on difficult questions. Instrument methods (eg,
item response theory [53]) have been typically used for the
construction and evaluation of measurement scales and tests.
For example, item response theory uses a statistical model that
links an individual person’s responses to individual test items
(questions on a test) to the person’s ability to correctly respond
to the items and the items’ features. Therefore, medical
examination test sets have been specifically selected and tailored
to medical students’performance with the intended distribution
where the performance decreases when the difficulty level
increases. Although more evaluation is needed to draw the
conclusion that GPT-4V substantially outperformed medical
students in difficult questions, our results at least show that
GPT-4V performed differently.

On the other hand, we found that GPT-4V’s performance was
inconsistent among different medical subdomains. As shown
in Table S1 in Multimedia Appendix 1, GPT-4V achieved high
accuracy on subdomains such as immunology (5/5, 100%),
otolaryngology (6/6, 100%), and pulmonology (6/8, 75%), and
low accuracy on others such as anatomy (1/4, 25%), emergency
medicine (1/4, 25%), and pathology (5/10, 50%). This suggests
that while GPT-4V shows potential in some specialties or
subdomains, it may require further development to be reliable
across the board. The uneven performance highlights the need
for tailored approaches to enhancing the model’s capabilities
where it falls short.

Another advantage of GPT-4V is its ability to explain its image
content. Previous studies have shown limited use of current
CDSS as most of them offered limited decision explanations
and thus gained limited trust among physicians (unlike their
colleagues) [54-57]. In contrast, GPT-4V has the potential to
improve the effectiveness and credibility of CDSS by providing
explanations preferred by experts. As our results indicate, the
quality of explanations generated by GPT-4V, when answering
correctly, is close to that of expert-generated explanations.
Although in more complex scenarios (such as in our curbside
consult setting), GPT-4V currently requires continuous highly
specialized guidance, which temporarily prevents it from
enhancing physician work efficiency, this feature still has the
potential to encourage physicians to adopt and use GPT-4V
more confidently and broadly.

In terms of explanation quality, we found that more than 80%
of responses from GPT-4V provided an interpretation of the
image, regardless of whether the responses were correct or not.
This suggests that GPT-4V consistently takes into account the
image while generating responses. Figure S1 in Multimedia
Appendix 1 illustrates an example of a high-quality explanation
that uses images to answer a hard question. In this example,
more than 70% of students answered incorrectly on the first try,
because both bacterial pneumonia and pulmonary embolism
may involve symptoms such as cough. To differentiate them,
GPT-4V correctly interpreted the x-ray with a radiologic sign
of Hampton hump, which further increased the suspicion of
pulmonary infarction rather than pneumonia [58]. To show the
need for an x-ray as mentioned in the explanation, we removed
the image from the input, and GPT-4V switched the answer to
bacterial pneumonia while also acknowledging the possibility
of pulmonary infarction. This change in response demonstrated
the high quality of the GPT-4V explanation, as its explanation
about x-rays was not fictional and it truly needed the x-ray to
answer this question.

On the other hand, we found that the quality of generated
explanations was poor when GPT-4V answered incorrectly.
Manual analyses by health care professionals concluded that
image misunderstanding was the primary reason why GPT-4V
answered incorrectly. Out of 55 wrong responses, 42 (76.3%)
were due to misunderstanding of the image. In comparison,
only 18.2% (10/55) of the mistakes were attributed to text
misinterpretation. Clearly, GPT-4V’s proficiency in processing
images was considerably lagging behind its text-handling
capability. This gap in capability suggests that GPT-4V’s
advancements in image understanding remain nascent and
require significant refinement to align with its text analysis
capabilities. To circumvent its image interpretation issue, we
additionally prompted GPT-4V with a short hint that described
the image. We found that 40% (22/55) of responses switched
to the correct answer. One potential future direction involves
strengthening GPT-4V's domain-specific knowledge by
integrating extensive clinical datasets into its training. For
example, employing domain-adaptive pretraining
methods—such as those used in MEDITRON [59], which
leverages medical guidelines and specialized clinical
corpora—could significantly improve the model’s understanding
of medical concepts, leading to more precise and contextually
relevant explanations. In addition, incorporating
retrieval-augmented generation based on domain-specific
corpora [40] would enable the model to access and retrieve
pertinent clinical information during inference, grounding its
explanations in verified data. This could improve factual
accuracy and reduce the likelihood of incorrect or unsupported
responses. Together, these strategies aim to bolster the model's
capacity to provide high-quality, accurate explanations, thereby
enhancing its overall reliability and usefulness in clinical
applications.

Creating these image-related hints requires clinical expertise,
limiting the use of GPT-4V as a CDSS. In our case study, when
GPT-4V delivered an irrelevant response, the physician needed
to come up with correct hints for GPT-4V. These findings reveal
a key limitation: GPT-4V’s reliance on external guidance from
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experts to interpret complex image content effectively, thereby
exposing its inability to operate independently in clinical
scenarios. Efforts improving GPT-4V on images include
multimodal LLMs with reinforcement learning from human
feedback to align the outputs of LLMs with physicians’
intentions and expectations. This alignment is critical not only
for enhancing the accuracy and relevance of the responses but
also for integrating GPT-4V seamlessly into clinical
environments where time is of the essence [60].

Another significant drawback of GPT-4V involved its tendency
to produce factually inaccurate responses, a problem often
referred to as the hallucination effect, which is prevalent among
many LLMs such as GPT-4V [38]. We found that more than
18% of GPT-4V explanations contain hallucinations, potentially
misleading or distracting physicians, particularly the less
experienced medical students and residents. This finding
emphasizes the need for robust evaluation and correction
mechanisms to minimize hallucinations, which are critical to
ensure GPT-4V’s reliability and safety in clinical practice. One
future direction is to integrate GPT-4V and a probabilistic model
with CI and citations from credible sources to show the
reliability of the response [40,61,62]. The confidence score
could also help prioritize the list of differential diagnoses,
making it clearer to the physician which conditions are more
probable. Thereby reducing the risk of confusion and enhancing
the reliability of the CDSS response when additional physician
review is warranted [15].

Limitations
This study has several limitations. First, our findings are
constrained in their applicability due to the modest sample size.
We gathered 227 questions from a total of 28 subdomains or
specialties that included images, which might not
comprehensively represent all medical disciplines. The small
number of questions in each subdomain may not be sufficient
to conclude that GPT-4V’s performance is inconsistent between
medical subdomains. Second, the exams used to test GPT-4V
are written in English. Future work could explore other
languages. Third, the models used for evaluation were from
September 2023, and frontier models may have evolved since
then, potentially impacting the results. Fourth, we cannot
guarantee that OpenAI strictly adhered to licensing terms when
determining which content was included or excluded from their
training sets; therefore, even though AMBOSS is not publicly
available and its licensing terms restrict the automatic website
scraping of its proprietary content, GPT may have already seen
the data during training, potentially impacting the results.
Finally, while GPT-4V has demonstrated proficiency in medical
license examination, its CDSS ability remains untested. Future
work could explore continued training GPT-4V in the medical
domain for better CDSS integration. Medical exams provide
options, but such options would rarely be provided by physicians
during CDSS. Our study highlights the inherent limitations in
GPT-4V’s image interpretation abilities, particularly without
expert guidance. We showed that GPT-4V can reduce errors
with expert hints, but in more realistic clinical environments,
it required continuous highly specialized guidance to make
partially correct diagnoses and subsequent examination
recommendations, revealing limitations in its autonomous

decision-making capabilities. Therefore, more cases with
clinician questions should be explored to confirm our findings
before clinical integration. Extrapolating the efficacy of GPT-4V
to broader clinical applications requires appropriate benchmarks
and further research.

Regarding ethical considerations, deploying AI systems for
medical advice poses significant ethical implications, especially
in medical education and clinical decision-making. Incorrect
AI-generated explanations risk disseminating misinformation
that could misguide medical professionals, impacting patient
safety and treatment outcomes. This is particularly concerning
when AI is used in training settings, as it could shape the
decision-making abilities of future healthcare providers in
potentially harmful ways. Integrating AI into clinical workflows
also raises broader societal concerns. While AI has the potential
to enhance healthcare efficiency, it could alter patient care
dynamics and physician roles. Overreliance on AI may reduce
direct physician-patient communication, eroding trust and
undermining the relationship-building essential for effective
care. Physicians might also become too dependent on AI,
potentially compromising their clinical judgment and their
ability to critically assess AI-generated insights. Thus,
integrating AI in a manner that complements human expertise
(supporting rather than replacing health care providers) is vital.
Moreover, current benchmarks, including the one in our study,
do not fully assess an AI’s capabilities for real-world clinical
decision-making. Although some LLMs perform well on
benchmarks, they lack the comprehensive clinical skills and
nuanced understanding required to navigate complex medical
scenarios effectively. Viewing these AI models as tools that
assist rather than replace clinicians is crucial to ensuring their
safe and beneficial use in health care. A responsible approach
is needed when deploying AI for medical advice, one that
ensures ethical standards are maintained. Issues such as privacy,
bias, and the broader implications of AI in society must guide
the development and implementation of these systems. By
enhancing data diversity, ensuring privacy, and fostering a
transparent understanding of AI’s role, we can work toward
ethical advancements in health care that enhance outcomes
without compromising human oversight or patient trust. Future
work should focus on developing AI technologies that are fully
aligned with health care professionals, maintaining a
collaborative and ethically sound approach to their integration.

Conclusion
In this study, GPT-4V demonstrated remarkable overall accuracy
on the medical licensing examination and provided high-quality
explanations when correct. The evaluation of questions with
images (a relatively novel feature for GPT models) allowed us
to expose hidden flaws in GPT-4V’s image interpretation
abilities, offering a unique insight into its strengths and
weaknesses. Its performance on image-related questions ranged
from 60% to 88%, while physician misdiagnosis rates can be
as high as 40% [63,64]. GPT-4V substantially outperformed
medical students on difficult questions, but we observed severe
issues in its explanations and reasoning, including hallucinations,
errors, and misinterpretations. These findings reveal significant
challenges in GPT-4V’s ability to independently interpret and
reason through complex image-based questions, which is crucial
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for clinical applications. Despite its strong performance on
multiple-choice questions, GPT-4V may still encounter
comprehension or explanation errors. When assisted by human
experts, GPT-4V reduced some errors with image-related hints.
However, in realistic curbside consult settings, continuous and

highly specialized prompting was still required, making it
time-consuming and limiting its utility as a clinical decision
support system in real-world clinical practice. Table 4 lists the
summary of key findings.

Table 4. Summary of key findings.

FindingsMetric

GPT-4V achieved 84.2% in Step 1, 85.7% in Step 2 CKa, 88.9% in Step 3, and 73.1% in DRQCEb, out-
performing GPT-3.5 Turbo (42.1%, 50%, 50%, 19.2%) and GPT-4 (63.2%, 64.3%, 66.7%, 26.9%).

Accuracy of image-based questions

When GPT-4V provided correct answers, its explanations were almost on par with those given by domain
experts. However, for incorrect responses, the explanation quality was often lacking: 18.2% included in-
accurate information, 45.5% involved inferencing mistakes, and 76.3% reflected misinterpretations of
images.

Explanation quality

There is a decreasing trend in GPT-4V’s performance in the AMBOSS dataset when the difficulty of
questions increased) without hint. However, with the hint, the performance of GPT-4V plateaued.

The impact of human expert hints

GPT-4V with hints outperformed medical students by 60%, and GPT-4V without hints outperformed
medical students by 26.7%.

Performance of GPT-4V on most difficult
questions

aCK: clinical knowledge.
bDRQCE: Diagnostic Radiology Qualifying Core Exam.

Overall, our findings emphasize the need for a more
comprehensive evaluation of GPT-4V’s multimodal capabilities,
especially in clinical image interpretation, before considering
its integration into clinical decision support systems. Future

randomized clinical trials will help further verify the actual
utility of GPT-4V and promote more extensive and profound
integration of AI in the medical domain.
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