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Abstract

This article aims to introduce emerging measurement domains made feasible through the electronic health record (EHR) use
metadata, to inform the changing landscape of health care delivery. We reviewed emerging domains in which EHR metadata
may be used to measure health care delivery, outlining a framework for evaluating measures based on desirability, feasibility,
and viability. We argue that EHR use metadata may be leveraged to develop and operationalize novel measures in the domains
of team structure and dynamics, workflows, and cognitive environment to provide a clearer understanding of modern health care
delivery. Examples of measures feasible using metadata include quantification of teamwork and collaboration, patient continuity
measures, workflow conformity measures, and attention switching. By enabling measures that can be used to inform the next
generation of health care delivery, EHR metadata may be used to improve the quality of patient care and support clinician
well-being. Careful attention is needed to ensure that these measures are desirable, feasible, and viable.
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Introduction

Since the widespread adoption of electronic health records
(EHRs) following the enactment of the Health Information
Technology for Economic and Clinical Health (HITECH) Act,
clinical care is increasingly mediated by health information
technology (HIT) [1]. The digitization of health care has enabled
not only the capture of more clinical data for use in clinical
research [2], but also metadata about how those data are
produced and used, giving a window into the process of health
care delivery [3-7].

Established health care metrics focus largely on the patient
process and outcome measurements (eg, health maintenance
screening and preventable admissions) or outcomes for
individual health care workers (eg, turnover and professional
burnout). While these measures reflect important outcomes of
a complex health care system, they do not reliably indicate
upstream aspects and contextual factors of health care delivery,
which may be leveraged to improve patient and clinician
outcomes. EHR use metadata (eg, audit logs, orders metadata,
documentation and communication metadata, and patient
encounters metadata) contain valuable details on the complex
system in which health care is delivered, with early insights
primarily focused on discrete action or time-based measures
[8-15].

This paper describes 3 examples of emerging domains of
measurement through EHR use metadata, identified through a
series of workshops facilitated by the Measures Workgroup of
the National Research Network for EHR Audit Log Data [16].
These domains, health care teams, workflows, and cognitive
environments, may provide a clearer understanding of modern
health care delivery. We expect the value of these measures to
outweigh the resources required to develop them, informing the
next generation of health care delivery that improves both the
quality of patient care and supports clinician well-being.

Data and Data Sources

Traditional sources of health care delivery data (eg, time and
motion studies, surveys, or administrative claims) [17,18] often
require high resource expenditure to capture accurately and in
detail. In contrast, continuously collected EHR use metadata
can facilitate widespread measurement of several domains of
health care delivery [4,7,13], providing valuable data that
otherwise would require direct observations that are virtually
impossible to collect at scale or for extended durations [19].

At a more granular level, EHR audit logs and other event logs
offer a detailed account of actions that took place within the
EHR at what time and by whom [20], enabling exploration of
the “path” that a clinician or team took in the EHR to complete
that task. In turn, these details can be used to delineate certain
workflows or team structures contributing to task efficiency
and clinical outcomes, which may be the result of
vendor-derived or investigator-derived measures [21]. Such
approaches have been described for a variety of EHR vendors,
clinical scenarios [12], methodologies [22], and health
professions [23].

Although metadata are not identical across EHR vendors, and
institutions often have differing customizations and third-party
modules, commonalities among metadata structures make it
feasible to normalize measures across institutions with sufficient
considerations. In addition, recent studies from 2 of the largest
EHR vendors suggest that clinician variation far exceeds
organizational variation [24,25], indicating that metadata-derived
EHR use measures are more reflective of individual workflows
than organizational configurations. We posit here that these
new horizons of measurement warrant dedicated development
and prioritization of the key clinical and operational questions
for which EHR use metadata can be brought to bear.

Principles of Domain Measurement

Innovative ideas need to be feasible, viable, and desirable to be
successful [26]. While originally developed for commercial
products, this framework can also guide EHR measure
development. First, EHR use metadata to enable new measures
of health care delivery that are technically feasible but also
require proof that such measures are valid and reliable. Second,
analyzing EHR metadata takes less time and money than many
other methods of observing health care delivery, but
measurement schemes based on EHR metadata still need to
prove their viability (providing more value than the effort
required to produce them) by generating insights that tangibly
improve care [27]. Finally, measures need to be desirable,
aligning with human values and providing insight into
phenomena people care about. Desirable measures may answer
research questions, contribute to more efficient and reliable
single-center cross-sectional or longitudinal operational and
quality reporting [28], or facilitate multi-institutional
comparisons. This perspective demonstrates that, in health care
delivery, these phenomena include not only how people spend
their time but also how they interact (team structure and
dynamics), organize their work (workflows), and direct their
attention (cognitive environment; Figure 1) [9,21,29-33].
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Figure 1. Emerging domains of measurement: team structure and dynamics, workflows, and cognitive environment, with example measures for each.

Making decisions based on social measures is fraught with risk,
with a natural tendency to focus on what is easiest to measure
(feasible) rather than what is most useful (viable) or meaningful
(desirable) as an indicator of high-quality processes or outcomes
[34]. Yet, most measures are only rough proxies for more
complex phenomena, and improving the measure (eg, patient
satisfaction scores) may not improve the phenomenon of interest
(eg, patient satisfaction) [35]. Furthermore, poor selection of a
proxy can promote bias (eg, using predicted health care costs
as a proxy for clinical risk underestimates the needs of those
with less access to care [36]), and measures used for social
decision-making are more likely to be gamed [37].

These risks do not require that we avoid measuring health care
delivery. As statistician George Box observed, “Essentially, all
models are wrong, but some are useful” [38]. Developing useful
measures while acknowledging the ways in which they are
wrong requires careful attention to the social aspects of what
cannot be easily measured and the unintended consequences of
putting such measures into practice [39]. Here we describe 3
domains of health care delivery where EHR use metadata
measures may be feasible, viable, and desirable, though not
without risk.

Measuring Team Structure and Dynamics

Most patient care is delivered through teams of nurses, medical
assistants, technicians, pharmacists, physicians, and many other
staff members all of whom are integral to care delivery and
outcomes. Fortunately, a byproduct of EHR auditing
requirements means that EHR use metadata record details on
both the clinicians and patients for whom they perform actions,
making it feasible to reconstruct team structures and dynamics.
This can be viewed as (1) clinician-centric models of health
care provider teams, and (2) patient-centric models of clinicians
involved in their care (synchronously and not), recognizing that

each feeds back on the other through complex relationships.
Identifying these team structures relies on inference based on
shared patient access, physical locations of EHR access,
temporal proximity, or direct communication records [21,40].

Health Care Provider Teams

EHR uses metadata in relation to defined team structures to
allow investigation into patterns of how health care teams
interact with each other. The “strength” of team structure can
then be weighted (eg, through repeat interactions) to quantify
team familiarity that might promote shared mental models that
are essential for effective teamwork.

Researchers have the opportunity to consider the timing,
intensity, and content of team-based interactions as proxies for
effective teamwork. This requires a robust understanding of
how EHR-based teamwork takes place in a broader framework
of in-person and HIT-mediated collaboration, allowing for
variance in the phenotypes of team collaboration that can
reliably still be associated with provider satisfaction and patient
care quality [41]. This work also requires the development of
outcome measures more sensitive to the quality of team
collaboration, such as care delays or therapy cycling. Valid and
reliable understanding of the connections between team
structure, processes, and outcomes is foundational to each
measure’s viability and desirability, insofar as it supports health
care managers in making operational decisions and designing
institutional supports that enhance team collaboration and quality
of care [42].

Clinician-Patient Teams

The clinician-patient relationship is the cornerstone of health
care provision, yet many essential measures of this relationship
have been prohibitively difficult to measure at scale before the
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emergence of EHR use metadata. For example, continuity of
care is associated with patient satisfaction and a host of
improved outcomes [43,44], attributed to the trust and
knowledge in the clinician-patient relationship that supports
tailored evaluations, accurate diagnosis, customized treatment
plans, and increased medication adherence. EHR use of metadata
has made more nuanced measurements in this domain feasible
because system-wide records of all clinician-patient interactions
now enable quantifying repeated interactions with the same
clinician at a more granular level than visits, procedures, or
diagnoses. These records include asynchronous messages
through patient portals and documentation of telephone
encounters. With the addition of domain knowledge, these
detailed metadata also enable assessments of the appropriateness
of a patient’s encounters with primary care versus subspecialty
care. These concepts of continuity of care [45-53] and
comprehensiveness [31,54,55] are particularly viable and
desirable as they may help physicians and operational leaders
optimize care to achieve the quintuple aim [27,56] goals of
quality, cost, satisfaction, patient and care team experience, and
equity.

Through improved measures and stakeholder engagement, health
care systems can work to optimize the relationship between
clinicians and patients, to promote health care that is not only
more effective and efficient but also more satisfying and
rewarding for both clinicians and patients.

Health care team structure and dynamics are complex and not
fully reflected within EHR use metadata, raising important
limitations. The balance between HIT-facilitated and in-person
interactions varies among settings, with important implications
for the validity of extrapolating teamwork measures from EHR
use metadata within a particular use case. In addition, value
judgments on the appropriateness or quality of a particular team
structure or clinician-patient interaction require additional
clinical and system knowledge, much of which is not readily
available within EHR data or metadata.

Measuring Workflows

EHR audit logs and other event logs contain records of
timestamped granular interactions with an EHR as part of larger
clinical tasks (eg, refilling a prescription or ordering bloodwork),
making feasible large-scale identification of common pathways
for routine clinical practices [32]. These pathways may then be
evaluated for relative time spent on clinical tasks, the complexity
of action sequences, engagement with decision support, variation
for particular workflows, specialties, providers, or combinations
of these (eg, variation in outpatient ordering workflow among
physicians within 1 clinic) [57].

To be viable and desirable, workflow measures must account
for the tension between unnecessary and necessary deviations
of behaviors from the norm [58]. Reducing unnecessary
deviations can improve efficiency and patient safety through
standardized best practices [59,60]. For example, heterogeneity
in physician work with medical scribes may negatively impact
physician efficiency [61]. While highly variable stroke care
pathways may result in therapeutic delays [32]. Yet, enabling
necessary deviations from the norm may promote tailored

approaches to unique or complex scenarios, promoting clinician
autonomy, professional satisfaction, and precision medicine.

Key to this measurement domain is the risk of misclassifying
an unhelpful workflow as “normative” or a necessary variation
as “deviant,” highlighting the importance of establishing clinical
expertise, stakeholder buy-in, and relationships to important
outcomes in the development and deployment of any workflow
measures. In addition, although efforts at automated task
identification within audit log data have been made [22,62,63],
the diversity of clinical workflows makes reliable task
identification challenging. Furthermore, due to differences in
actions and tracking methods available in particular EHR
instances, such measures may be poorly generalizable outside
of an institution or EHR vendor unless carefully designed to be
context-agnostic and may require recalibration over time with
new technologies (eg, large language models and generative
artificial intelligence), clinical approaches, or software
functionality.

Measuring Cognitive Environment

Clinical work is cognitively complex; clinicians must synthesize
ever increasing amounts of information to make diagnosis and
treatment decisions amidst competing demands for their
attention. Cognitive overload, which has been linked to errors
and burnout, can occur easily in such environments [64,65].
Because clinical work is largely mediated by the EHR [66],
EHR use metadata offers opportunities to measure clinician
cognitive load at scale without laborious data collection. These
measurements are critical for understanding how the clinical
cognitive environment can be improved.

Cognitive load includes an intrinsic component related to the
complexity of a particular task (eg, patient complexity), and an
extrinsic component related to the work environment (eg,
interruptions, poor EHR, or workplace design [67]). Both
components may be feasible to measure using EHR use
metadata. For example, intrinsic cognitive load can be
approximated using audit log–derived measures of patient load
[11,68], EHR time [69], and encounter or task complexity [70].
Extrinsic cognitive load is more challenging to measure; while
some interruptions like secure messaging use can be observed
directly within domain-specific or third-party event logs [71],
many occur outside of HIT. Instead, efforts have focused on
capturing task fragmentation [72,73], such as attention switching
[74] or undivided attention [9,33,65,67,74-83].

While this domain has considerable promises, there are several
barriers to progress. Few of the audit log-derived cognitive load
measures have been validated using established instruments
from the cognitive science literature (eg, surveys like the
NASA-TLX [National Aeronautics and Space
Administration–Task Load Index] or physiological
measurements like pupillometry) [84]. In addition, difficulties
with the related concept of task identification limit the ability
to subsequently measure task fragmentation, with further
validation of task identification needed before task fragmentation
can be reliably measured.
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Conclusion

EHR uses metadata to provide remarkable potential for
measuring and improving health care delivery by making
feasible previously inaccessible insights. By measuring team
structure and dynamics using intersecting metadata on clinician
EHR use, health care provider teams may be studied and
optimized and clinician-patient teams can be improved to

prioritize continuity of care and comprehensiveness where
appropriate. Health care workflows may be better understood
through better identification of tasks and measurement of paths
taken to achieve them. Finally, proxies of cognitive load may
be measured, to inform interventions to reduce overload and
the resultant risks for burnout and medical errors. Each of these
measurement domains will require further tuning to fully realize
their promise of improving health care delivery through
sustainably scalable measurement.
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