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Abstract

Background: Molecular tumor boards (MTBs) require intensive manual investigation to generate optimal treatment
recommendations for patients. Large language models (LLMs) can catalyze MTB recommendations, decrease human error,
improve accessibility to care, and enhance the efficiency of precision oncology.

Objective: In this study, we aimed to investigate the efficacy of LLM-generated treatments for MTB patients. We specifically
investigate the LLMs’ ability to generate evidence-based treatment recommendations using PubMed references.

Methods: We built a retrieval augmented generation pipeline using PubMed data. We prompted the resulting LLM to generate
treatment recommendations with PubMed references using a test set of patients from an MTB conference at a large comprehensive
cancer center at a tertiary care institution. Members of the MTB manually assessed the relevancy and correctness of the generated
responses.

Results: A total of 75% of the referenced articles were properly cited from PubMed, while 17% of the referenced articles were
hallucinations, and the remaining were not properly cited from PubMed. Clinician-generated LLM queries achieved higher
accuracy through clinician evaluation than automated queries, with clinicians labeling 25% of LLM responses as equal to their
recommendations and 37.5% as alternative plausible treatments.

Conclusions: This study demonstrates how retrieval augmented generation–enhanced LLMs can be a powerful tool in accelerating
MTB conferences, as LLMs are sometimes capable of achieving clinician-equal treatment recommendations. However, further
investigation is required to achieve stable results with zero hallucinations. LLMs signify a scalable solution to the time-intensive
process of MTB investigations. However, LLM performance demonstrates that they must be used with heavy clinician supervision,
and cannot yet fully automate the MTB pipeline.

(J Med Internet Res 2025;27:e64364) doi: 10.2196/64364
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Introduction

Background
Precision oncology is a rapidly evolving field in which patient
treatment is determined by the DNA signature of the tumor.

Advancements in genome-sequencing techniques, molecular
analysis, and a growing body of clinical trials, have all allowed
for the field to integrate more easily into oncology research [1].
Using these techniques to optimize treatment has been shown
to be associated with favored clinical outcomes [1]. As a
mechanism to facilitate precision oncology, the molecular tumor
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board (MTB) serves as an approach in which a panel of expert
health care providers use their collective knowledge to interpret
the genomic profile of an oncology patient and jointly develop
an optimal treatment plan given available therapies. Access to
MTBs is likely to correlate to improved patient care [1]. The
workflow of an MTB is usually as follows: traditionally, before
the conference meeting, members of the panel review a list of
patients and their corresponding history and characteristics.

During the meeting, members propose targeted therapies and
generate a consensus recommendation, which is then received
by the treating physician [1]. We propose using large language
models (LLMs) to enhance this workflow. The current and
proposed LLM-enhanced MTB workflows are shown in Figure
1.

Figure 1. On the top is the current MTB workflow. On the bottom is the LLM-enhanced MTB workflow, in which patient characteristics from the
preparatory meeting are used to automatically generate queries. These queries are refined by clinicians and then fed into the LLM for recommendation
generation. This recommendation is then reviewed and refined by the MTB panel. LLM: large language model; MTB: molecular tumor board.

One standing challenge to MTBs is the amount of required
resources. Currently, the interpretation of a patient’s molecular
profile is a manual process, consisting of searching through
various databases, such as OncoKB by Memorial Sloan
Kettering Cancer Cancer [2], COSMIC by Wellcome Sanger
Institute [3], and PubMed [4]. The process of generating the
optimal treatment plan is laborious, and scales poorly,
potentially limiting the number of patients that can be reviewed
in a given conference. The median MTB experience time, which
is the time needed to conduct molecular analysis and hold
discussion, was reported in a global analysis published in 2020
to be 38.4 days, with a large range from 12.4 to 86 days [5].

LLMs are models trained on large amounts of textual data that
are capable of generating language similar to that of humans.
LLMs’ capabilities span a diverse array of tasks, including
question-answering, summarization, translation, and conversing.
The development and integration of LLMs is advancing rapidly
across different sectors. In particular, LLMs demonstrate

impressive performance in automated analyses and syntheses
of data [6]. As the written text is used heavily in the medical
domain for communication between health care providers,
between health care providers and patients, and reports on
diagnoses, procedures, and patient results, it is an opportune
moment for LLM application [7-10]. LLMs have a high potential
to improve patient care and the scalability of patient care by
increasing medical reasoning, medical knowledge competency,
and access to scientific knowledge [11].

The use of MTBs, as stated above, is aided by the advancements
in several adjacent fields within oncology, yet its connection to
artificial intelligence remains understudied. LLMs have the
potential to drastically increase the scalability of MTBs, ease
access to information, and prevent human error [12]. LLMs,
when used in the proper context with proper understanding, can
be a catalyst for precision oncology integration.
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Previous Works
Previous works have demonstrated the feasibility of using
natural language processing (NLP) in the field of precision
medicine for a plethora of applications, from treatment plans
to predictive diagnoses and prognoses. Within precision
oncology, researchers have already conducted a study evaluating
LLMs for the role they can play in clinical decision-making in
the MTB space, although this evaluation does not include
experimentation on using different information retrieval (IR),
or retrieval augmented generation (RAG) techniques in
conjunction with a pretrained LLM [13]. As a result, this study
found that LLMs are not suitable to be used in automating the
MTB process [14].

Outside the context of MTBs, there has been a substantial
amount of research on creating LLMs for the clinical domain.
This can be done through different approaches such as
generative data augmentation [15], pretraining on medical
domain literature [16,17], and fine-tuning on clinical domain
data [17-20]. Additionally, these investigations explore different
LLMs such as LLaMA, which is open-source, as opposed to
GPT, which is proprietary. The result of this difference is that
LLaMA can be run locally and therefore offers inherent data
security advantages.

Additionally, there are several related works in the field of IR.
Such studies investigate how to use NLP and named entity
recognition (NER) to analyze medical databases. Through NER,
literature can be obtained for a given keyword search, such as
a gene, by filtering articles by term presence [21]. One study
published the RetriLite framework, in which IR combines with
NLP and LLMs in powerful ways to create a functional pipeline
in which NLP is used for context analysis and NER, and IR is
used for query expansion and relevancy-based ranking [22,23].
RetriLite is an IR framework that capitalizes on NLP to identify
relevant articles from domain-specific knowledge bases and
extract these sources [22]. This approach focuses on retrieving
the highest quality of results, but does not explore the
presentation of that output via LLM-produced textual responses.

To summarize, previous works have focused on IR in the
medical domain and fine-tuning LLMs for medical

domain-specific tasks. Some models that have focused
specifically on the interaction and integration of IR and NLP
retrieve high-relevancy results. However, the use of LLMs
within precision oncology to produce meaningful,
evidence-based recommendations remains undetermined.
Applying LLMs to MTBs has clear promise in terms of saving
time and money, improving accessibility, and increasing the
feasibility and scale of MTBs.

Objectives
This article (1) presents a framework for using LLMs with
medical domain knowledge to generate treatment plans for
sample cases from MTB conferences, (2) explores the effects
of different prompt and query techniques on the LLM, and (3)
conducts an evaluation against ground truth historical cases
from an MTB annotated by members of the MTB panel.

Methods

Ethical Considerations
This study was exempted by the University of Tübingen’s ethics
review board due to the exclusive use of nonidentifiable data
(Article 2(1) GDPR).

Constructing the LLM Framework
To construct the framework that would be used to obtain
treatment recommendations for sample MTB cases, we first
selected a baseline model to use. This decision was driven by
experimenting with various open-source LLMs and selecting
the LLM that had the best performance on treatment
recommendations without any downstream fine-tuning. Prompt
experimentation on different LLMs is shown in Table S1 in
Multimedia Appendix 1. The selected model was
Llama-2-7b-chat [24]. In addition to its baseline performance
prior to fine-tuning, as mentioned in Previous Works, LLaMA
also offers inherent security advantages over other
non-open-source models such as GPT-4.0. We also
experimented with various hyperparameters for this model. The
optimal hyperparameters are shown in Table S2 in Multimedia
Appendix 1. A full workflow is shown in Figure 2.
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Figure 2. Given the input documents to an MTB conference, we parse the data into actionable queries for each pair of cancer type and genetic mutation.
For each patient, we identify the diagnosis and the relevant genetic mutations by filtering the genes that are oncoKB level 1, 2, or 3, as scraped and
listed in Table S4, Multimedia Appendix 1. We construct a query for document retrieval and a query for LLM inference. The LLM uses RAG, incorporating
documents retrieved by querying the PubMed Data Loader using LlamaIndex, as detailed in the Methods. For each LLM response, we isolate the
treatment recommendation, justification, and references and evaluate them against the MTB protocol, which we consider the ground truth. LLM: large
language model; MTB: molecular tumor board; RAG: retrieval augmented generation.

To interface with the LLM as a search engine and to integrate
PubMed data, we used LlamaIndex [25]. LlamaIndex is an
orchestration framework for incorporating custom data into an
LLM. It injects data from custom sources into the LLM, embeds
the data as vectors, and allows the data to be queried by storing

it in a vectorized database. Using LlamaIndex allows us to use
RAG to harness the capabilities of an LLM for domain-specific
tasks. We then feed the PubMed papers from LlamaIndex into
the LLM to be used for RAG [25]. This is highlighted in red
and orange in Figure 2. A full workflow of the LLamaIndex
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orchestration, detailing data selection and literature retrieval is
shown in Figure S1 in Multimedia Appendix 1.

To determine the ideal query for the PubMed-adjusted LLM,
we experimented with different query types both for document
retrieval and for text generation. We determined the optimal
document retrieval query from the PubMed data loader would
be the name of the broader cancer type, and the genetic mutation
to be investigated. This is shown in Table 1, and further
discussed in the discussion. Experimentation of various queries
with the same LLM pipeline is shown in Table S3 in Multimedia
Appendix 1. The genetic mutations to be further queried were
determined as follows: for a given patient’s list of genetic
mutations that are included in the briefing document sent out
to MTB panelists before the meeting, any genetic mutation from
that list that is flagged on OncoKB as “level of evidence one,
two, or three” (under their original name or alternate name) is
further queried. These 3 levels distinguish varying degrees of
available clinical evidence. Level 1 drugs are Food and Drug
Administration (FDA) recognized biomarkers that are predictive
of response to an FDA-approved drug in a specific indication.
Level 2 drugs are standard care biomarkers recommended by
the National Comprehensive Cancer Network (NCCN) or other

professional guidelines predictive of response to an
FDA-approved drug. Level 3 drugs have compelling clinical
evidence supporting the biomarker as being predictive of
response to a drug. Other drugs exist on OncoKB with evidence
categorized as biological rather than clinical, with hypothetical
therapeutic implications based on preliminary data, or without
a determined level of evidence [2]. The resulting full list of
genes is shown in Table S4 in Multimedia Appendix 1. For
example, “Occult metastatic melanoma NRAS” would be a
query for document retrieval. NRAS is listed on OncoKB as a
level 1 gene. We define “broader cancer type” as the cancer
diagnosis excluding the stage of the cancer, the location of the
tumor, or other additional information that may have been
included in the diagnosis. This is because when the query
exceeds a certain length, the results are too noisy for meaningful
articles to be retrieved. Then, a Vector Store Index is constructed
from the retrieved documents, which then serves as a query
engine. The Vector Store Index stores each document node and
corresponding embedding in a Vector Store, allowing a query
to fetch the most similar nodes. The optimal query for the LLM
uses the full name of the cancer, provided by the MTB. The
query is shown in Table 1.

Table 1. Input illustration for document retrieval and large language model (LLM) querying. For the Cancer Type Short, we input the type of cancer
without further specifications such as stage or tumor location. For Cancer Type Long, we input the exact diagnosis listed in the molecular tumor board
(MTB). The gene mutation is inputted as it is listed on OncoKB.

QueryTask

Cancer Type Short + “ ” + Gene MutationDocument retrieval

A patient has+ Cancer Type Long +, and the+ Gene Mutation +gene mutation. What is thebest therapy treatment for this patient?

Cite the PubMed sources you used to inform your response.

LLM response

The results from these queries are in the form of text paragraphs.
Each paragraph states the recommendation, provides
justification, and cites sources. Including justification in the
recommendation allows for chain-of-thought reasoning, which
has been shown to improve LLM performance [26]. The number
of sources to cite is unspecified in the response. Asking the
LLM to cite sources has many shown benefits including
allowing the reader to fact-check the LLM response and
improving faithfulness and decreasing hallucinations by forcing
LLMs to justify their recommendations [27].

Evaluation Set Construction From Historical MTB
Cases
To evaluate LLM recommendations, we created a dataset by
retrieving previous cases presented at MTB conferences at the
Center for Personalized Medicine at the Universitätsklinikum
Tübingen [4]. This was done by manually evaluating case
reports given to the panelists before the conference to extract
lists of genetic mutations and the cancer diagnosis for each
patient to create the queries. As this is not an end-to-end
automated product, but a feasibility study of LLM capacities,
we decided to manually extract genetic mutations and diagnoses
to ensure the accuracy of queries. We further acknowledge that
the integration of the case reports into the LLM directly is an
important undertaking for future implementations. Then, results
were collected from the LLM and compared against the

ground-truth responses produced at the conference. The
evaluation was conducted by a member of the MTB.

Results

For each cancer type + genetic mutation pair, we generated 2
different treatment recommendations using the LLM. As shown
in Table 1, we do not instruct the LLM to cite a specified
number of sources. As a result, the number of sources referenced
in one LLM response varied drastically across queries. The
number of articles retrieved ranged from 1 to 12 across the 40
total LLM responses (2 unique retrievals per query).

A full histogram of the number of retrieved articles is shown
in Figure S2 in Multimedia Appendix 1. Each citation in an
LLM response was categorized into one of four types.

1. Hallucination: No article with that title or citation is findable
on the internet.

2. Non-PubMed: The article is findable on the internet, but
not on PubMed.

3. Inferred-PubMed: The title differed slightly from a title that
does exist on PubMed, and the author and journal were
identical to what was indicated in the response. Examples
of citations labeled as Inferred-PubMed are shown in Table
2.

4. PubMed: The exact article is findable on PubMed.
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Table 2. Examples of citations labeled as Inferred-PubMed.

Ground truth citationLLM Citation

Mauduit D, Taskiran II, Minnoye L, de Waegeneer M, Christiaens V,
Hulselmans G, Demeulemeester J, Wouters J, Aerts S. Analysis of long
and short enhancers in melanoma cell states. Elife. 2021 Dec 7;10:e71735.
doi: 10.7554/eLife.71735. PMID: 34874265; PMCID: PMC8691835

Mauduit D, et al (2021). Long and short enhancers in melanoma cell states
are enriched in cell-type–specific enhancer function. Elife, 10, e71735.

Maesaki R, Ihara K, Shimizu T, Kuroda S, Kaibuchi K, Hakoshima T.
The structural basis of Rho effector recognition revealed by the crystal
structure of human RhoA complexed with the effector domain of
PKN/PRK1. Mol Cell. 1999 Nov;4(5):793-803. doi:10.1016/s1097-
2765(00)80389-5. PMID: 10619026.

The study by Maesaki et al (1999) published in the journal Mol Cell found
that the structural basis of Rho effector recognition revealed by the crystal
structure of human RhoA complexed with the effector domain of
PKN/PRK1, which provides insight into the mechanism of resistance to
anti-HER2 therapies.

The complete categorization of articles is shown in Figure S3
in Multimedia Appendix 1. The overall categorization of articles
in shown in Table 3. The categorization of articles was
conducted through manual human evaluation of retrieved
articles. The majority, 76% of retrieved articles, were findable
on PubMed, while 17% of articles were hallucinations.
Accounting for the final quantity of retrieved articles, 3% of

articles were non-PubMed and 3% were PubMed-Inferred. This
demonstrates the majority of citations were credible. The cited
articles from beyond PubMed demonstrate that the LLM may
be using prelearned knowledge, instead of entirely retrieval
augmented knowledge, to generate responses, despite prompt
instructions.

Table 3. The breakdown of all large language model (LLM) retrieved references into types: hallucination, non-PubMed, Inferred-PubMed, and PubMed.

Retrieved LLM references, %Reference classification

76.0PubMed

17.1Hallucination

3.4Inferred-PubMed

3.4Non-PubMed

For each LLM response, we evaluated whether at least one of
the referenced articles contained the cancer type mentioned in
the query. If this was the case, we assigned a binary point to
this LLM response. We performed the same search with regard
to gene mutation, assigning a binary point if the gene mutation
was present in at least one of the referenced articles. We also
evaluated whether at least one of the referenced articles had
presented the ground truth protocol that the reference MTB had
recommended. Similarly, this was awarded a binary point. Last,
we evaluated whether the LLM response itself mentioned the
Keyword treatment recommendation (eg, “PARP inhibitor” or
“olaparib”), also worth one binary point. Therefore, every LLM
response’s accuracy was ranked on a scale of 0 to 4, where 0
meets none of the criteria above, and 4 meets all of the criteria
above. As previously stated, 2 unique LLM responses were

recorded per query. This was motivated by the stochastic nature
of LLMs, to demonstrate how consecutive identical queries can
yield different outcomes. For each response, we evaluated the
above 4 characteristics of the response. The results of this
accuracy calculation are shown in Table 4. The accuracy
calculation on a 4-point scale for each individual LLM response
is shown in Figure S3 in Multimedia Appendix 1. The increasing
accuracy (from keyword being present to cancer type being
mentioned) is expected in Table 4, as the evaluation metric
increasingly broadens. Therefore, the lowest accuracy (25%)
corresponds to the treatment name being present in the response,
whereas the highest accuracy (82.5%) corresponds to the
patient’s cancer type being present in at least one referenced
article of the response.

Table 4. The overall accuracy of large language model (LLM) responses compared with ground-truth molecular tumor board recommendations.

LLM responses that include patient characteristic, %Patient characteristic

25Keyword in response

45Protocol in at least one referenced article

50Gene mutation in at least one referenced article

82.5Cancer type in at least one referenced article

The LLM responses and retrieved articles were presented to an
MTB. MTB members were asked to annotate the responses and
retrieved articles according to the following criteria. For each
article (excluding hallucinations), we asked the MTB members
to label it as Not Relevant or Relevant. Not relevant articles
should have nothing to do with the case being presented. For

each LLM response, we asked MTB members to label the text
response as either Off-base, Alternative, or Reference. We define
the three LLM response labels as follows:

1. Off-base: This treatment suggestion does not make sense
as a possible treatment for the patient.
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2. Reference: This treatment is what was suggested at the
MTB conference.

3. Alternative: This is not the treatment suggested in the MTB
conference, but it is a potential alternative treatment route
for the patient.

After collecting feedback from one clinician, we asked them to
provide the query with which they themselves would have
prompted the LLM. We obtained a second round of LLM
responses and collected corresponding feedback on these

responses. The results from this evaluation are shown in Table
5. The LLM prompted with automatically generated queries
retrieved treatment recommendations equal to that of clinicians
in 32% of cases, and alternative plausible treatment
recommendations in 16% of cases. When the LLM was
prompted (for the same cases) with queries crafted by clinicians,
the recommendations were equal to that of clinicians in 25%
of cases, and alternative plausible treatment recommendations
in 38% of cases. Clinician-generated queries yielded more
accurate LLM responses and more relevant publication citations.

Table 5. Annotation from molecular tumor board (MTB) members of large language model (LLM) responses and retrieved articles. Automated queries
were constructed by combining a gene name and cancer diagnosis. Clinician queries were created by an MTB member for the same case.

Percentage from clinician queries, %Percentage from automated queries, %Classification

Retrieved article feedback

67.7887.02Not relevant

32.2212.98Relevant

LLM response feedback

37.5052.63Off-base

37.5015.79Alternative

25.0031.58Reference

Additionally, feedback from clinicians regarding some LLM
responses indicates that there is more nuance to MTB treatment
recommendations than solely what was included in the LLM
query. For example, in the case of a patient with adenocarcinoma
of the esophagogastric junction and the ERBB2 amplification,
clinician feedback noted that the MTB recommendation
(Trastuzumab-Deruxtecan) was based on the pathology HER2
DAKO 3+ Score, which was due to the ERBB2 Amplification.
Furthermore, the recommendation was made because the patient
had already previously received Trastuzumab. This information
was only derived from interaction with the clinical team and
was not available to the LLM. Consequently, our experiments
should be considered a lower bound of how well RAG-enhanced
LLMs could work in the MTB space when fully integrated into
care systems such as electronic health records. We opted for
these evaluation metrics as they offer a more informative
approach than fully automated metrics such as ROUGE scores,
which track topicality at a high level of abstraction. The
evaluation methods we have chosen use explicit human
judgments and are possible given the small size of our dataset.

Discussion

Summary
We developed a RAG-enhanced LLM to streamline the
treatment recommendation process for MTB conferences. This
provided a pipeline to generate treatment recommendations for
MTB patients quickly while maintaining a rigorous evidence
retrieval stage from medical literature. When the LLM is
prompted with automatically generated queries to retrieve
treatment recommendations, these recommendations were equal
to that of clinicians or alternative plausible treatment
recommendations in 48% of cases. However, when the LLM
was prompted with clinician-generated queries,
recommendations were equal to that of clinicians or alternative

plausible treatment recommendations in 63% of cases.
Importantly, this demonstrates that high-quality treatment
recommendations can in some cases be achieved by the LLM
without the manual and time-consuming tasks of conducting
human literature reviews and synthesizing retrieved documents.
This is even more promising when clinicians play a role in query
generation [12]. However, this is not always the case, and some
retrieved articles used as evidence are highly irrelevant,
demonstrating a disconnect between recommendations and
citations. Additionally, hallucinations remain a persistent
problem in LLM responses, accounting for 17.1% of cited
sources. LLMs have the potential to make the MTB workflow
more efficient, and scalable, which can lead to greater access
to personalized patient care. To our knowledge, this is the first
attempt to apply RAG to enhance LLMs for MTB use.

Key Findings
This study demonstrates several key findings. First, LLMs can
be powerful tools to aid in clinician decision-making on MTBs.
However, the use of NLP-assisted MTB recommendations
necessitates oversight by MTB members at multiple stages of
the pipeline, including query generation as well as
recommendation assessment prior to presentation to a patient.
Second, the references retrieved for a given LLM response do
not align directly with the textual response generated by the
LLM. This suggests that rather than all of the responses being
produced through RAG approaches, LLM memory also plays
a significant role in its decision-making. This role must be
further explored and understood so as to mitigate unintended
consequences of using pretrained LLMs to generate patient
treatment recommendations. Last, it is essential to consider the
drawbacks of LLMs (as they currently function) in the clinician
domain: namely, the potential dissemination of misinformation
through hallucinatory responses that must be properly vetted
before being legitimized in patient treatment. Strategies to
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mitigate hallucinations are imperative to ensure the
trustworthiness of LLM-generated treatment suggestions.

It is important to note that the results from our study are in slight
disagreement with that of the study conducted using pretrained
LLMs on fictional patient vignettes [14]. Their study noted how
the accuracy of provided LLM references was often a reason
why the LLM itself was deemed unfit for the cause. We believe
our study poses a potential solution to this, through the addition
of RAG. Therefore, this new approach can advance the field by
demonstrating the potential for a more robust LLM-enhanced
MTB pipeline that decreases hallucination rates. Hallucinations
still pose a serious problem in LLM implementation in health
care settings. In this feasibility study, our goal is to assess the
extent of this issue and benchmark existing components, rather
than resolve it.

Limitations
Limitations of this study include reproducibility of LLM
responses, scope of query inputs, evaluation technique, and
generalizability.

Reproducibility
Given the dynamic nature of LLMs, it is not guaranteed to
achieve consistent responses, even when the same prompt is
applied [11]. Additionally, we observed different LLMs can
yield different results, given the same prompt. Results from this
are shown in Table S1 in Multimedia Appendix 1. We observed
changes in LLM recommendations when we reran inference
numerous times with identical prompts on the same model. Due
to this, it is crucial to document all model parameters, prompt
templates, and model versions when experimenting with LLMs
in the medical domain. The goal of this study is to observe and
quantify the extent of such behavior in LLMs. We leave the
challenging task of addressing these issues for future work.

Scope of Queries
Currently, when we extract information from the patient’s
genetic characteristics provided prior to the conference, we are
identifying and querying genetic mutations that are listed on
OncoKB as level 1, 2, or 3, as shown in Table S4 in Multimedia
Appendix 1. This excludes not-categorized genes as well as
genes listed with levels above 3, which may also be listed on
the patient’s genetic information. Additionally, a number of
treatment recommendations from MTB conferences were
motivated by other, non–genetic-mutation characteristics of the
patient, such as tumor mutation burden range, homologous
recombination deficiency assessment, and human lymphocyte
antigen expression levels. These values, while promising
biomarkers for responsiveness to certain treatments [28-30]
were not available to our models. In future modifications to this
algorithm, we hope to extract all patient information pertaining
to their genetic mutations and biomarkers so that we can increase
the scope and therefore, the robustness, of generated
recommendations.

Evaluation Technique
Feedback from clinicians suggested that a further evaluation
category should be included to account for LLM responses that
list a combination treatment of multiple drugs, but the MTB

recommended only one of them, or vice versa. Adding this
category would improve the robustness of the evaluation.

Generalizability
This study is focused on a single comprehensive cancer center.
In the future, this approach can be expanded and evaluated at
additional sites and in different health care settings to gauge the
generalizability and scalability of the proposed methods.

Future Directions
There are many future directions motivated by this study.

Using Local Hospital Data for RAG
First, our model is built on PubMed sources to augment and
improve the credibility and accuracy of LLM responses,
decrease LLM hallucination rate, and isolate the latest research
to inform recommendations. However, by enhancing this system
by using local hospital data (ie, using existing local hospital
patient history and MTB conference recommendations), we can
tune the model to be more accurate within the specific context
of the hospital’s resources and history of care. Existing research
demonstrates that in-house models can better accommodate the
needs of specific centers, therefore enhancing precision medicine
across the field [12]. This would also allow for a framework to
generalize this approach across various health care settings.
Upon expansion to other health care settings, further
experimentation would be needed to investigate the scalability
of the proposed approach.

Increasing Response Relevance and Decreasing
Hallucinations Through Isolating IR from LLM
Generation, and LLM Architecture Experimentation
A second direction for future research is to use IR approaches
as an independent and isolated step prior to LLM interfacing.
This approach can retrieve the optimal articles and directly feed
those articles into the LLM to perform RAG. Doing so would
ensure that the referenced articles are relevant before we even
interface with the LLM. This would also likely increase LLM
recommendation performance, since the LLM would be basing
its recommendation on a small sample of preselected relevant
articles. Through this approach, we could include additional
evidence such as scientific meeting abstracts and posters in the
searched literature as they provide the most up-to-date trial
information, which was a point of feedback made by clinicians.
This is motivated by the observation that LLM memory plays
a significant role in decision-making, potentially leading to
unintended consequences. The misalignment between the
sources and response text in some cases can be mitigated in
future studies by more robust filtering and contextualization of
search results. In order to further understand the role of memory
in LLM decision-making, work is being done in the field of
mechanistic interpretability to create human-readable
explanations of artificial intelligence–generated representations
[31]. Another potential experiment to reduce hallucinations and
overall increase the accuracy of responses involves using
ensemble learning, rather than a single LLM, to harness the
power of multiple models. Not only does this have the potential
to improve performance, but it also could improve the reliability
of results [32].
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Experiment Further With Prompting Strategies
Another interesting area of future research lies in diverse
prompting strategies. In our experimentation, by adjusting the
query slightly, different results are generated by the LLM.
Different directions include asking the LLM to rank different
treatments, list multiple treatments, or decide between 2 given
treatments. Different prompting strategies have been shown to
augment LLM text generation, and optimizing prompting
strategies can enhance the accuracy, comprehensibility, and
quality of LLM responses [33,34]. We can also make the query
broader or more specific, such as asking for a general treatment,
versus asking for a specific drug name for a targeted therapy
approach. The genetic mutation can also be further specified to
include details regarding therapy-relevant copy number
variations (amplifications and deletions), fusion genes, and
rearrangements. Additionally, our clinician feedback suggested
a further experiment of feeding a clinician-generated treatment
recommendation into the LLM and directly asking the LLM
whether, under consideration of this MTB recommendation,
further treatment recommendations are suggested by the LLM.
Clinicians also noted that, while MTB decisions ideally are
based on reports from the same tumor type (m1 evidence), they
also recommend treatments successful in other tumor entities
with the same genetic alteration (m2 evidence). Therefore, we
could expand the query-process into a 2-step approach, in which
after looking for m1 evidence, we query for results regarding
any cancer type. As clinician feedback is a crucial part of the
proposed pipeline, we would like to further experiment with
diverse prompting strategies to optimize LLM text generation
that directly uses this feedback. In addition to broader human
feedback, using strategies such as chain-of-thought prompting
and prompt tuning could further improve the accuracy of
generated results [35,36].

Improve the Interpretability and Transparency of
RAG-Enhanced LLMs to Facilitate Trust Among
Clinicians and Patients
There are several existing methods that can be used as tools in
LLM evaluation, such as gradient tracing, Shapley values,
probing, or casual mediation. For example, Shapley values
demystify LLM decision-making by quantitatively determining
how much each word in the input text contributes to the LLM
output text. This can be used to detect bias by identifying

features that disproportionately affect model outputs [37]. This
could be used, along with the above-mentioned tools, to increase
transparency of LLM decision-making within the MTB
treatment recommendation context. Additionally, to improve
the LLM’s ability to understand the nuances of the MTB
treatment recommendations, and therefore create more
context-driven responses, we can use existing methods such as
reinforcement learning from human feedback, targeted
instruction tuning, and grounding LLMs [3,38,39].

Analyze Change in Efficiency of MTB Pipeline
Last, with this study, we demonstrated the feasibility of
incorporating LLMs into the MTB pipeline. However, it remains
to be shown that this translates to increased efficiency. In a
future study, we hope to analyze the effort needed to manually
operate the MTB pipeline, and contrast that with that of the
LLM-enhanced pipeline. This study evaluates existing
open-source components of LLMs in the MTB context, rather
than building production-ready systems. Therefore, this study
measures the feasibility of LLMs as they currently exist in the
MTB pipeline. Our recommendation based on this study is to
continue working toward fixing the observed issues before
moving on to prospective evaluation and clinical integration in
real-world settings.

Conclusions
In this study, we developed a RAG approach to LLM text
generation to develop treatment recommendations for MTB
patients. Specifically, we evaluated the articles referenced in
the LLM response, as well as the treatment recommendation
itself. This study demonstrates that LLMs have the potential to
be harnessed for rapid treatment plan generation based on patient
DNA signature and diagnosis, generating responses comparable
to that of clinicians and highlighting the potential of LLMs in
precision oncology. The use of such an approach has a high
feasibility at scale, as opposed to current manual MTB
investigations. However, LLMs are not currently suitable to
fully automate the MTB process and must be used with
supervision from clinicians at each stage of their deployment.
We have shown the feasibility of the implementation of LLMs
in the MTB pipeline, and in future work, we hope to analyze
how this feasibility has the potential of further translating into
increased efficiency.
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