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Abstract

Background: Brain-related disorders are characterized by observable behavioral symptoms, for example, social withdrawal.
Smartphones can passively collect behavioral data reflecting digital activities such as communication app usage and calls. These
data are collected objectively in real time, avoiding recall bias, and may, therefore, be a useful tool for measuring behaviors
related to social functioning. Despite promising clinical utility, analyzing smartphone data is challenging as datasets often include
a range of temporal features prone to missingness.

Objective: Hidden Markov models (HMMs) provide interpretable, lower-dimensional temporal representations of data, allowing
for missingness. This study aimed to investigate the HMM as a method for modeling smartphone time series data.

Methods: We applied an HMM to an aggregate dataset of smartphone measures designed to assess phone-related social
functioning in healthy controls (HCs) and participants with schizophrenia, Alzheimer disease (AD), and memory complaints. We
trained the HMM on a subset of HCs (91/348, 26.1%) and selected a model with socially active and inactive states. Then, we
generated hidden state sequences per participant and calculated their “total dwell time,” that is, the percentage of time spent in
the socially active state. Linear regression models were used to compare the total dwell time to social and clinical measures in a
subset of participants with available measures, and logistic regression was used to compare total dwell times between diagnostic
groups and HCs. We primarily reported results from a 2-state HMM but also verified results in HMMs with more hidden states
and trained on the whole participant dataset.

Results: We identified lower total dwell times in participants with AD (26/257, 10.1%) versus withheld HCs (156/257, 60.7%;
odds ratio 0.95, 95% CI 0.92-0.97; false discovery rate [FDR]–corrected P<.001), as well as in participants with memory complaints
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(57/257, 22.2%; odds ratio 0.97, 95% CI 0.96-0.99; FDR-corrected P=.004). The result in the AD group was very robust across
HMM variations, whereas the result in the memory complaints group was less robust. We also observed an interaction between
the AD group and total dwell time when predicting social functioning (FDR-corrected P=.02). No significant relationships
regarding total dwell time were identified for participants with schizophrenia (18/257, 7%; P>.99).

Conclusions: We found the HMM to be a practical, interpretable method for digital phenotyping analysis, providing an objective
phenotype that is a possible indicator of social functioning.

(J Med Internet Res 2025;27:e64007) doi: 10.2196/64007
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Introduction

Background
Many psychiatric and neurological diseases exhibit observable
behaviors that indicate the underlying condition. For example,
social functioning is negatively impacted in a broad range of
conditions, including schizophrenia, major depressive disorder,
anxiety disorders, and Alzheimer disease (AD) [1-3], often
cumulating in social withdrawal. Social withdrawal, indicated
by reduced social interaction [1], can be observed as people
engage less with those around them. However, successfully
measuring behavioral components such as social withdrawal is
challenging, as reports of behavior are subjective and susceptible
to recall bias, with questionnaires often being burdensome to
complete. Therefore, there is a need to develop practical,
objective tools to monitor these symptoms, for example, to
predict or measure clinically relevant changes.

The field of digital phenotyping is developing to meet such a
need. Digital phenotyping involves the development of
behavioral or physiological markers calculated from digital
measures. “Digital phenotype” is a broad term referring to a
quantified digital behavior (such as the use of smartphone apps)
or behavior measured using a digital signal (such as movement
measured using GPS). These measures avoid issues of recall
bias as they are objective and can be acquired in real time as
participants go about their day, meaning they have high
ecological validity. A popular tool to collect digital phenotyping
data is the smartphone. Given how commonplace smartphones
are in society, they are a convenient data collection tool as they
do not require participants to change their behavior or routines.
A monitoring app, for example, “Behapp” [4], “Mood mirror”
[5], or “RADAR-base pRMT” [6], can be installed on the
participants’ smartphones and run passively in the background
to collect data without user intervention.

Modern smartphones have many sensors and functionalities,
including various apps, calling capabilities, Wi-Fi, GPS,
accelerometer, and Bluetooth, which can be leveraged to model
different aspects of behavior, such as social contacts, movement
patterns, and app usage [7,8]. Many of these data streams are
direct measures of digital behaviors that can be used as proxy
measures of social behavior; for example, the use of
communication apps could indicate how connected someone is
with their contacts. While using these measures requires
inferences to be made about behavior, their objective nature

and the range in available measures means they are a promising
tool for modeling social behavior.

Moreover, there are many ways in which these data can be
processed. For example, duration, rhythm, or statistical measures
can be calculated (such as daily durations of a behavior,
circadian rhythm, or mean and SD of a behavior across time),
or the occurrences of the behavior can be counted [9]. This often
leads to datasets with many features reflecting various
smartphone-measured behaviors. A major problem affecting
digital phenotyping is that data collection platforms are often
prone to missing data due to the difficulties of real-world
longitudinal data collection, leading to missing values across
all or a subset of these features [9].

The issues and complexities observed in digital phenotyping
research give rise to multiple analytic challenges. Processing
the collected feature sets, often representing a wide range of
seemingly distinct observed behaviors with potentially similar
underlying causes, requires many model decisions. Therefore,
appropriate methods are needed to analyze this multifaceted
data containing missing values to produce meaningful,
lower-dimensional data representations. These representations
may be more usable and informative about the underlying
behavioral states of participants than the individual features.
Models should also aim to be interpretable not only by
researchers but also by clinicians and patients to facilitate their
use in clinical practice. A further property that would enable
their use in this context is that they can preserve the time
domain, as one of the goals of smartphone digital phenotyping
is to be able to make useful clinical predictions that can enable
early intervention. Many digital phenotyping studies have
focused on time-averaged features and analyses, and a shift
toward more direct investigations of temporal dynamics is
expected to improve clinical utility [9].

In addition, given the range of symptoms experienced by people
with various neuropsychiatric disorders, it may be useful to
define a reference distribution that could represent a “standard
operating range” for a given population or participant, where
deviations from this range can then be conceptualized as
signaling transitions into different behavioral modes of
functioning, as is done in normative modeling [10,11] or
anomaly detection applications [12,13]. This reference
distribution could be, for example, data from healthy controls
(HCs) or from periods when individuals are not experiencing
a relapse of their disorder. This approach may also help to
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leverage more easily collectable periods of data, as it can be
challenging to capture periods containing relapses or the
symptom severity range that is of interest, leading to smaller
volumes of data for these periods.

Currently, digital phenotyping studies use a broad range of
modeling approaches, for example, investigating associations
between neuropsychiatric symptoms and summary measures
(eg, total number of places visited and mean duration of
communication app usage) [14]; clustering of digital phenotypes
to investigate transdiagnostic symptom classification [15]; linear
mixed effects models accounting for repeated measures of
time-averaged features [16-19]; multivariate anomaly detection
to identify relapse in schizophrenia [20]; and joinpoint
regression to identify changes in the trajectory of digital
phenotypes (eg, step count) [21].

This Study
In this study, we propose the use of a hidden Markov model
(HMM) [22] as a method to model digital phenotyping time
series data. This model provides several appealing features,
namely, HMMs (1) can meaningfully combine different
behavioral features, (2) reflect changes in behavior over time,
(3) provide readily interpretable summary statistics, and (4)
naturally accommodate missingness. HMMs provide
interpretable, lower-dimensional representations of the data
using latent (ie, hidden) states, where the observed time series
channels are represented as a sequence of these hidden states.
Each hidden state has associated “emission probabilities”
indicating the probability that a set of observed behaviors occurs
when the sequence is in the said hidden state, allowing for
informative behavioral states to be derived by representing >1
feature per state. Changes in behavior through time are modeled
via transitions between these hidden states. Importantly for
digital phenotyping, HMMs contain intrinsic mechanisms for
handling missing data. HMMs have been used in many
applications for modeling behavior, for example, to model
drinking patterns in people with an alcohol use disorder [23],
cocaine dependence [24], sleep patterns represented in
neuroimaging data [25], mobility data [26,27], weekly psychotic
depressive symptom profiles [28], weekly depressive symptom
profiles [29], and actigraphy and survey data reflecting behavior
and affect in college students [30].

While our approach is widely applicable to digital phenotyping
time series, in this work, we demonstrate its application to data
collected using the Behapp monitoring app [31], which collects
passive data related to app usage, calls, GPS, Wi-Fi, and overall
phone usage, reflecting the periods the phone was unlocked.
We applied an HMM to a combined dataset of phone usage and
communication-related features from participants in the
“Psychiatric Ratings using Intermediate Stratified Markers”
(PRISM) [32] and Hersenonderzoek [14] studies, demonstrating
how an HMM can successfully represent digital phenotyping
time series. The model was initially trained on a set of HCs with
low missingness to provide a high-quality dataset for training,
which was treated as a “reference category.” The trained model
was then applied to HCs with higher missingness, participants
with AD and schizophrenia, and healthy participants with
memory complaints (subjective cognitive complaints [SCC])

to investigate the applicability of such a model to clinical groups
and participants with lower data availability. Hidden state
sequences were generated for these participants, and we then
calculated a digital phenotype derived from the HMM for each
participant, namely the “total dwell time.” Rather than being a
directly observed digital phenotype (such as the percentage of
time spent using communication apps), the total dwell time
provides the percentage of time the participant spent in a hidden
behavioral state derived from the observed digital measures.
This digital phenotype was then linked to clinical measures,
including diagnostic group and social functioning, demonstrating
the clinical value of this approach.

Methods

Participants

Overview
This analysis used data from participants from the PRISM and
Hersenonderzoek studies. We chose to combine these datasets
in our analysis due to the overlap in populations, as both studies
included participants with AD and, consequently, similarly
age-matched HCs, meaning we could have an increased sample
size for the AD and HC groups.

PRISM Study
The PRISM study aimed to investigate social withdrawal in 2
brain disorders, schizophrenia and probable AD [32,33].
Participants with AD, participants with schizophrenia, and age-
and sex-matched HCs were recruited across centers in Spain
(Hospital General Universitario Gregorio Marañón and Hospital
Universitario de La Princesa, Madrid) and the Netherlands
(University Medical Center Utrecht, Leiden University Medical
Center, and Amsterdam University Medical Center [location
Vrije Universiteit Medical Center]).

Participants with schizophrenia were required to be within the
age range of 18 to 45 years (inclusive) and to have a Diagnostic
and Statistical Manual of Mental Disorders-IV diagnosis of
schizophrenia confirmed by the Mini-International
Neuropsychiatric Interview. Participants were required to have
experienced at least 1 psychotic episode, to have had a maximum
disease duration of 10 years since diagnosis, and for any
antipsychotic medication dosage to have been stable for a
minimum of 8 weeks. As PRISM aimed to investigate social
withdrawal linked with negative symptoms (and not because
of other sources such as psychosis), participants with
schizophrenia were excluded if they rated highly for positive
symptoms (≥22 on the positive symptom factor of the 7-item
Positive and Negative Syndrome Scale [PANSS]) [34]. A
positive symptom indicates an additional experience an
individual is having, such as a hallucination or delusion, as
opposed to a negative symptom, which indicates a deficit in an
already existing function, such as a deficit in concentration.
While schizophrenia is commonly associated with positive
symptoms, negative symptoms also form a large component of
the disorder. Participants with AD were required to be within
the age range of 50 to 80 years, to meet the classification of
“probable AD” based on the National Institute on Aging and
the Alzheimer’s Association criteria, and to have a Mini-Mental
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State Examination (MMSE) [35] score of 20 to 26. For both
participants with schizophrenia and AD, it was required that
participants were not socially withdrawn due to other reasons,
such as their external circumstances or a comorbid medical
disorder or disability. These factors were evaluated during the
intake interview.

HCs were recruited in the age ranges of 18 to 45 years and 50
to 80 years and were required to have an approximately average
MMSE score according to their age and years of education.
Participants were excluded if they met the criteria for an Axis-I
psychiatric disorder (assessed by the Mini-International
Neuropsychiatric Interview) or a neurological disease associated
with cognitive impairment. The PRISM study overview by
Bilderbeck et al [32] provides further details of inclusion and
exclusion criteria for all participant groups.

In addition to Behapp data collection, measures of clinical and
social functioning were acquired. The self-report Social
Functioning Scale (SFS) [36] and the De Jong Gierveld
Loneliness and Affiliation Scale [37] were administered to all
participants, the MMSE was administered to HCs and
participants with AD, and the PANSS was administered to
participants with schizophrenia.

Hersenonderzoek Study
Participants with probable AD, SCC, and age-matched HCs
were recruited across the Netherlands by the Dutch Brain
Research Registry [38], providing demographics and
health-related information on the web via the Hersenonderzoek
platform [14]. Participants indicated the presence of probable
AD. To classify participants as those with SCC or HCs,
participants indicated that they had an absence of neurological
or psychiatric diseases, either with or without memory
complaints, respectively. The minimum age for inclusion was
45 years.

Ethical Considerations
PRISM was approved by the Ethical Review Board University
Medical Centre of Utrecht (17-021/D) for the participating
research centers in the Netherlands and by the Comité Ético de
Investigación Clínica Hospital General Universitario Gregorio
Marañón (59359) for the participating research centers in Spain.
PRISM participants were deemed by the researcher and
caregivers to be sufficiently competent to participate in the
study. Approval for Hersenonderzoek was provided by the
Ethical Review Board VU University Medical Centre
(2017.254). All PRISM and Hersenonderzoek participants
provided informed consent before participation commenced. In
the PRISM study, participants received both travel expenses
and compensation for their time. For the Hersenonderzoek study,
it was possible to receive travel expenses. In both studies,
participants’ data were deidentified. Participants could request
the deletion of their collected data from the database at any
time, in line with the General Data Protection Regulation.

Behapp Acquisition
The smartphone app, “Behapp” [31], was installed on
participants’ smartphones. Behapp passively collected
smartphone usage data for 42 days without storing any content

of messages and calls, in compliance with the European Privacy
Regulation [39]. The classification of each app used by
participants was gathered from the Google Play Store, so that
apps could be grouped by type, including social media and
communication apps. During the time of data collection
(PRISM: August 2017 to May 2019 and Hersenonderzoek:
March 2018 to January 2020), Behapp was only available on
Android smartphones; therefore, PRISM participants who did
not have their own Android smartphone were supplied with one
for the duration of study participation. However, this was not
done for Hersenonderzoek participants in accordance with the
study design, and only 2 PRISM participants used a
study-provided phone. For each activity (eg, use of an app), the
respective start and end timestamps were stored.

Preprocessing

Smartphone Channels
Phone usage was split into 5 categories, referred to as
“channels”: social media app usage, communication app usage,
incoming calls, outgoing calls, and overall phone usage. GPS
channels were also available. Since many of these measures
were sparsely sampled, each channel was aggregated into hourly
bins, and the percentage of each hour for which each activity
was carried out was calculated. For example, a participant may
spend 100% of an hour using their phone, 50% on social media,
40% on communication apps, 0% making or receiving calls,
and 10% using another functionality, such as Google Maps.
Even with the temporal resampling, many of these phenotypes
have highly zero-inflated distributions (Figure S1 in Multimedia
Appendix 1), which can be difficult to handle natively.
Therefore, for each hourly time point, these percentages were
grouped into discrete bins instead of continuous percentages
such as binary bins reflecting either no or some activity carried
out in the hour (0% activity or >0% activity). We chose this
low threshold to define activity, as many of the activities we
investigated may still be meaningful despite their short duration,
for example, the time it took to send a message. We conducted
a sensitivity analysis to understand the impact that this activity
threshold had and found that a threshold requiring an activity
to be carried out for at least 5% of an hour provided comparable
results to the HMMs presented here; however, this was no longer
the case for a 10% threshold. With this threshold, very few
hours were classified as containing activity (Figure S1 in
Multimedia Appendix 1).

Digital phenotyping data are prone to missingness. Therefore,
we developed 2 measures to identify whether data had been
successfully collected by Behapp for each hour, with one
measure reflecting overall data availability and the other
reflecting data availability specific to GPS (a sensor that is
especially prone to missingness). These measures were required
so that we could differentiate between values that were 0
because a participant was not using their phone and values that
were 0 because data were not successfully collected. These
measures capitalized on the sampling frequency of the location
and other data sources such as Wi-Fi data (which are both
independent of active phone usage). This frequency was
expected to be greater than once per hour. A frequency <1
sample per hour in the location data indicated missing location
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data, and a frequency <1 sample per hour in all types of data
(including Wi-Fi) indicated that overall data were not being
collected successfully. Therefore, one of these measures
reflected overall data availability, and the other measure was
specific to GPS data availability. The distributions for these
measures are provided in Figures S2-S5 in Multimedia Appendix
1. Due to low GPS data availability acquired using the version
of Behapp used in these studies, it was decided not to include
the GPS channels in this analysis. Therefore, any missingness
that occurred in the included channels occurred across all
channels at the same timepoints (ie, it is not possible to have
data missing at a time point in, for example, only the social
media channel and not the other channels).

To account for any changes in behavior that may have arisen
from study onboarding (ie, participant attending assessments
at the study location), the first day of each participant’s Behapp
data were excluded. Consequently, all time series began at
midnight. If the overall data availability measure indicated
missing data, then the channels were marked as “NA.” Since
missing data are handled natively by the HMM implementation
we used [22], as explained subsequently, no missing data
imputation was carried out on the data.

Division Into Training and Validation Sets Based on
Missing Data and Diagnostic Group
Participants were split into training and validation sets, with the
training set used to train the model and the validation set used
to investigate relationships between HMM-derived digital
phenotypes and clinical measures. All participants with
schizophrenia, AD, or SCC were assigned to the validation set
(as well as a subset of withheld HCs), so that the HMM could

be trained on HCs, akin to training on a reference category [10].
To ensure that the HMM was trained on high-quality data (ie,
time series with low levels of missingness), HCs meeting an
overall data availability criterion of at least 90% of timepoints
available across their time series were assigned to the training
set. No minimum requirement was set for Behapp participation
length, so shorter time series that did not have missingness
issues during data collection were still included. We randomly
selected 15 of these high data availability HCs and retained
them in the validation set, to allow for some amount of data
availability matching between HCs in the training and validation
sets, also increasing the number of HCs in the validation set
with social and clinical scale measures available. The
distributions of time series lengths for training and validation
participants are provided in Figures S6 and S7 in Multimedia
Appendix 1, and distributions of data availability are provided
in Figures S2-S5 in Multimedia Appendix 1. In addition, we
investigated equivalent HMMs trained on the entire dataset (ie,
no training or validation split) for insight into how the dataset
split was affecting the learned model.

Overview of HMM
An overview of the main approach used in this study can be
seen in Figure 1. The HMM was used to model the observed
smartphone data channels using a smaller number of hidden
states, where each hidden state has corresponding probable
values in these observed channels. Through time, the participant
then switched between different hidden states. Mathematically,
given a sequence of observed variables xt and hidden states zt,
at time t=1,...,T, the joint distribution for this model can be
specified as follows:
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Figure 1. Overview of the hidden Markov model (HMM) approach showing the main processing and modeling steps involved in the method. (A) The
Behapp app was installed and collected data passively. (B) These data were processed into activity bins. (C) The HMM was trained on the binned hourly
time series. (D) The hidden state sequence was generated for each validation participant and their total dwell time calculated. (E) The total dwell time
was compared to clinical measures. (F) Lower socially active dwell time in AD versus HCs, and an interaction between socially active dwell time and
AD when predicting social functioning, were observed. AD: Alzheimer disease; HC: healthy control; SCC: subjective cognitive complaints; SZ:
schizophrenia; S1: state 1; S2: state 2; zt: hidden state at time point, t.

Where we use “1-hot” encoding for the latent variable, such
that ztn=1 if the latent variable at time t belongs to the class n,
and 0 otherwise. The different components of this model are
described in greater detail in the subsequent sections.

The HMM model was implemented and fitted using the R
package depmixS4 [22]. During model training, the
expectation-maximization algorithm was used to maximize the
expected joint log-likelihood of the model parameters. The
depmixS4 package allows for missing values in the dataset,
which means that missing values are effectively omitted from
the calculation of the log-likelihood, and allows the specification

of time-varying covariates that influence the transition
probabilities as we outline subsequently. Although depmixS4
allows for covariates to be specified over the starting
probabilities, we did not explore this here. Each response
variable (ie, observed channel) was modeled using a multinomial
distribution with an identity link function. As all the input
channels were binned into binary bins to manage the zero
inflation, this resulted in a binomial distribution for each
response variable.

We investigated a range of the number of hidden states used by
the HMM. As the input data included a total of 5 channels, a
reasonable number of hidden states used by the HMM to achieve
data compression ranged from 2 to 4 states. Due to this small
range of number of hidden states, this hyperparameter was not
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formally optimized, but rather we selected 1 main model for
reporting and reported results from the additional relevant
models in Multimedia Appendix 2. We also reported the
Bayesian information criteria (BIC) for the various models. In
addition, we investigated the inclusion of the time of day (ie,
the hour) as a covariate in the model (ie, over the transition
probabilities) and used the BIC to determine whether to include
this covariate in the models used for subsequent analyses. As
the hour is recorded as ranging from 0 (midnight) to 23 (11
PM), the hour must be encoded so that it is not incorrectly
implied that, for example, midnight is distant from 11 PM.
Therefore, we used 1-hot encoding to encode the hour (where
an indicator variable is used for each hour). We also investigated
different seeds for model training; however, this did not impact
the likelihood of the model.

We then applied the trained HMM to the validation dataset and
generated the hidden state sequences corresponding to these
participants’ time series using the Viterbi algorithm. Note that
this step did not involve retraining the model, and that the hidden
state sequence was equal in length to the observed time series.
For the alternative HMMs trained on the whole dataset, the
hidden state sequences were generated for all participants, and
subsequent investigations were made for all participants.

HMM Parameters and Measures
Various probabilities reflecting each of the hidden states were
learned during model training, which can be used to describe
the model and to understand what behaviors each of the hidden
states is associated with. This includes emission, starting, and
transition probabilities.

Emission Probability
The emission probability for each state refers to the probability
that certain values in each of the observed channels are observed
given that the sequence is in that hidden state and can, therefore,
be used to interpret what observed behaviors each hidden state
represents. A state may give a high probability of observing
activity in some observed behavioral channels and not others,
and this can be identified with the emission probability. The
emission probabilities of observed values xt at time t given
hidden states zt are given by:

Where ϕ is a set of parameters governing the distribution of the
observed data, N is the total number of hidden states in the
model, that is, in our case, ranging from 2 to 4 for the different
HMMs investigated.

Starting Probability
The starting probability indicates the probability of beginning
the sequence in each hidden state. If a time series often begins
with the same observed values, then the hidden state
corresponding to these values will have a high starting
probability. The probability distribution gives the probability
that each hidden state will be the first hidden state, z1 is given
by:

Where π is the probability vector with elements πn ≡ p(z1n = 1).

Transition Probability
The transition probability gives the probability of switching
into another hidden state from each state (or the probability of
staying in the same state). For example, for behaviors with long
durations, the transition probability of staying in the associated
hidden state may be high relative to the probability of
transitioning to a nonrelated hidden state. The probability of
transitioning into each hidden state at time t is dependent on
the previous hidden state, and is given by:

Where the elements of A are each of the transition probabilities
such that Amn ≡ p(ztn = 1|zt-1,m = 1, ct) denotes the probability
of transitioning from state m to state n at time t and we make it
explicit that this can depend on a vector of time-varying
covariates ct.

In addition, other measures can be calculated from the hidden
state sequence itself. In this study, we focused on a measure
referred to as the “dwell time.”

Dwell Time
The dwell time per hidden state, also known as fractional
occupancy, gives the percentage of time during which a state
was occupied. This can be calculated for any desired level of
granularity, for example, for all participants together, for each
participant, for a specific period, or for each instance a state is
occupied. In this study, we chose to calculate the total dwell
time per participant, that is, a single dwell time value per
participant in the validation set reflecting the percentage of their
time series that was spent in the socially active state. We chose
this level of granularity as we had a single value from each
social functioning and clinical measure available per participant,
that is, no repeated measures were available. As the validation
set contained a range of data availability, any missing data
timepoints were dropped from the time series after hidden state
sequence generation, so that the calculation of total dwell time
only reflected the available data. As we focused on a 2-state
model in this study, we concentrated solely on the total dwell
time spent in 1 state (the “socially active” state) and do not refer
to the total dwell time of the other state in the analyses. For
HMMs with more hidden states reported in Multimedia
Appendix 2, we provide results for the states identified as
socially active (refer to Figures S1-S10 in Multimedia Appendix
2 for the emission probabilities used to interpret each of the
hidden states from the alternative models and their
corresponding transition probabilities).
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Generalizability
As our principal model involved training on HCs, this could
mean that the model was biased toward this population and not
necessarily appropriate to use in other populations. To
investigate whether a model trained on HCs can generalize
sufficiently to the diagnostic groups, we investigated 2 additional
models—a model trained on all the HCs and a model trained
on all the remaining groups. We focused on 2-state models here
and included the hour as a covariate over the transition
probabilities following the same procedure as earlier. We
compared the emission probabilities of these 2 models to
establish whether equivalent hidden states were learnt and then
generated hidden state sequences for the participants in the
diagnostic groups using both models. We then compared these
hidden state sequences by evaluating the accuracy, sensitivity,
and specificity of the hidden state sequences provided by the
HC model relative to the sequences provided by the diagnostic
group model.

Comparison of Total Dwell Time to Social and Clinical
Measures
The total dwell times were used to predict 2 social measures
using linear regression models—social functioning (SFS) [36]
and loneliness [37] (available for participants in the PRISM
study). For each of these measures, total dwell time, age,
diagnostic group, and interactions between diagnostic group
and total dwell time were included as predictors. For the SFS,
separate models were also run for each of the diagnostic groups,
with age included as an additional predictor.

Total dwell times were then compared between the different
diagnostic groups and HCs (available for participants in both
PRISM and Hersenonderzoek studies) using multinomial logistic
regression, with total dwell time and age included as predictors.
Sensitivity analyses of age were also carried out for each
diagnostic group due to the broad age range in HCs because of
age-matching to both the schizophrenia and AD groups and
expected possible generational differences in phone use. For
the schizophrenia sensitivity analysis, the maximum age for

participants with schizophrenia was used as the maximum
cut-off age for HCs (so age-matched HCs for the schizophrenia
age sensitivity analysis had a maximum age of 41 years). For
AD and SCC groups, each respective minimum participant age
was used as the minimum cutoff age for HCs (so age-matched
HCs for the AD sensitivity analysis had a minimum age of 51
years, and for the SCC sensitivity analysis, a minimum age of
44 years). Binomial logistic regression models were then run
for each diagnostic group compared to their respective improved
age-matched HCs.

Linear regression models were also run to predict cognitive
impairment (MMSE; available for the participants with AD and
HCs in the PRISM study) and schizophrenia symptoms (PANSS;
available for the participants with schizophrenia in the PRISM
study) from total dwell time. For MMSE, total dwell time, age,
diagnostic group, and interactions between diagnostic group
and total dwell time were included as predictors. In the case of
PANSS scores, separate models were run to predict the total
score and the subscores (positive, negative, general
psychopathology, and composite) from total dwell time and
age.

To assist readability, we present the results from total dwell
times from a single HMM in this paper. The equivalent results
from additional HMMs can be found in Multimedia Appendix
2.

Results

Sample Statistics
This study used data from participants in the PRISM and
Hersenonderzoek datasets, which jointly contained 71%
(247/348) HCs, 5.2% (18/348) participants with schizophrenia,
7.5% (26/348) participants with AD, and 16.4% (57/348)
participants with SCC (Table 1). Participants with AD and HCs
were present in both datasets, whereas participants with
schizophrenia were provided by PRISM, and participants with
SCC were provided by Hersenonderzoek.

Table 1. Demographics of each of the diagnostic groups.

Education (y),
mean (SD)

Country, n (%)Dataset, n (%)Sex, n (%)Age (y),
mean (SD)

Diagnostic group

ESdNLcHObPRISMaMaleFemale

6 (4)13 (5)234 (95)219 (89)28 (11)107 (43)140 (57)59 (13)Healthy control
(n=247)

15 (3)6 (33)12 (67)0 (0)18 (100)11 (61)7 (39)31 (6)Schizophrenia (n=18)

13 (7)8 (31)18 (69)7 (27)19 (73)16 (62)10 (38)67 (7)Alzheimer disease
(n=26)

5 (2)0 (0)57 (100)57 (100)0 (0)21 (37)36 (63)61 (7)Subjective cognitive
complaints (n=57)

aPRISM: Psychiatric Ratings using Intermediate Stratified Markers.
bHO: Hersenonderzoek.
cNL: the Netherlands.
dES: Spain.
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In the PRISM and Hersenonderzoek datasets, HCs were age
matched to the diagnostic groups, with the PRISM sample being
matched to both participants with schizophrenia and AD and
the Hersenonderzoek sample age-matched only to participants
with AD. After aggregation of datasets, this resulted in a
bimodal age distribution. Specifically, due to the expected
differences in age between participants with schizophrenia and
AD, the HCs were on average older than participants with
schizophrenia and younger than those with AD. However, it is

to be noted that the difference in age between the diagnostic
groups is a consequence of aggregating multiple samples. From
the age distributions presented in Figure 2, it is clear that the
HC group spans the full range of each diagnostic group. We
also performed additional sensitivity analyses with HCs
age-matched to the diagnostic groups to confirm group
comparison findings. Training set and overall validation set age
distributions are shown in Figure S8 in Multimedia Appendix
1.

Figure 2. Age density distributions for validation participants. (A) Distribution of ages for all validation participants. (B) Distribution of ages for
validation participants with social measures. Plotted using kernel density estimation.

PRISM data were collected across sites in the Netherlands and
Spain, while Hersenonderzoek data were collected solely in the
Netherlands. PRISM recorded participant race, with nearly all
participants identifying themselves as White, whereas
Hersenonderzoek did not report participant race. The
demographics of the HCs, split by training versus validation set
assignment, are provided in Table S1 in Multimedia Appendix
1.

HMM Derivation and Interpretation
When training the HMM, the number of hidden states used by
the model must be set. We evaluated 2-, 3-, and 4-state models,
which all converged. Generally, as the number of hidden states
increased, the BIC improved, and it was also seen that including
the hour as a covariate consistently improved the BIC (Table
S1 in Multimedia Appendix 2). We have chosen to primarily
present results from a 2-state model for simplicity, but we
present equivalent results for other HMM variations in
Multimedia Appendix 2. These alternative models varied in the
number of hidden states (2-4) and the training set used (models
trained on HCs with high data availability versus models trained

on the entire dataset). For the models trained on all participants,
total dwell times were also calculated for all participants (ie,
not only the validation set).

The emission probabilities of the states generated by the 2-state
model are shown in Figure 3. Using these emission probabilities
to interpret the hidden states, it is evident that they represented
socially active and socially inactive states. That is, the second
state (S2) corresponded to phone usage with a very high
probability that communication apps were also being used by
the participant. There was a smaller probability of social media
usage, and outgoing and incoming phone calls. Due to the use
of communication methods in this state, such as calls and app
usage, this hidden state was referred to as the “socially active”
hidden state. The first state (S1) corresponded to a much smaller
probability of phone usage, with the probability of all other
channels near 0, and was referred to as the “socially inactive”
hidden state. We show a demonstrative example of how the
hidden states correspond to the observed channels in Figure 4,
illustrating different observed channel configurations that can
correspond to each of the hidden states.

J Med Internet Res 2025 | vol. 27 | e64007 | p. 9https://www.jmir.org/2025/1/e64007
(page number not for citation purposes)

Leaning et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 3. Emission probabilities of the selected 2-state model. Emission probabilities are provided for (A) state 1 (S1) and (B) state 2 (S2).

Figure 4. Examples of which behaviors may correspond to the hidden states. For the socially active state, various social behaviors are displayed,
including calls and app use; in the socially inactive state, there may be no phone usage or phone usage without corresponding social behaviors.

After model training, the hidden state sequence corresponding
to each participant’s time series was generated. The total dwell
time for each validation participant could then be calculated
from the hidden state sequence, with missing data in the
validation set removed, and compared to clinical scores and
diagnostic group. We chose to drop the missing portions from
these time series after hidden state sequence generation due to
the high rates of missingness for some participants. As the

selected model only contained 2 states and the total dwell time
(ie, the proportion of time spent in each state) was a percentage
value, only the dwell times corresponding to 1 of the states
needed to be investigated. Therefore, we focused on the total
dwell times from the “socially active” state. Hence, further
reference to “total dwell time” derived from the HMM solely
refers to dwell times in the socially active state.
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An example of one participant’s hidden state sequence alongside
the input sequence is shown in Figure 5, and an example of
another participant can be seen in Figure 6. It is immediately
apparent that the participant shown in Figure 5 spends
considerably more time in the socially active state relative to
the participant shown in Figure 6. The participants in both
Figures 5 and 6 oscillate quite frequently between the socially
active and inactive states, which is not surprising due to expected
diurnal variation [40]. More clearly, higher social activity during
the daytime and lower social activity during the nighttime can

be seen in Figure 7. In Figure 8, the probability of transitioning
into the socially active state (state 2) from both the socially
active and inactive states is increased during the daytime and
drops off again in the evening. In addition, the probability of
starting a hidden state sequence in the socially active and
inactive states was 0.26 and 0.74, respectively, showing that it
is more probable to begin the time series in the socially inactive
state. This is to be expected, as all the time series began at
midnight, so many participants would have been asleep.

Figure 5. Example time series with high social activity. The observed time series composed of hourly bins (bottom 5 rows) of a participant compared
with their corresponding predicted hidden state sequence (top row). S1: state 1 (socially inactive state); S2: state 2 (socially active state).

Figure 6. Example time series with low social activity. The observed time series composed of hourly bins (bottom 5 rows) of another participant
compared with their corresponding predicted hidden state sequence (top row). S1: state 1 (socially inactive state); S2: state 2 (socially active state).
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Figure 7. An example of a 2-day period of a participant’s time series. This participant showed higher social activity during the daytime than the
nighttime. 0: midnight; S1: state 1 (socially inactive state); S2: state 2 (socially active state).

Figure 8. The probability of transitioning into the socially active state from each state, for each hour in the day. 0: midnight; S1: state 1 (socially inactive
state), S2: state 2 (socially active state).

Generalizability
To investigate the generalizability of the approach of training
the HMM using HCs and evaluating in other diagnostic groups,
we compared the hidden state sequences of participants in the
diagnostic groups generated from 2 different models—a model
trained solely on these participants and a model trained solely
on HCs. We found that both models produced very similar
hidden states (Figures S11 and S12 in Multimedia Appendix
2), with state 1 in each model corresponding to social activity.

Therefore, we did not need to relabel the hidden states before
comparing the models. Specifically, considering the hidden
state sequences from the model trained on all diagnostic groups
as the “true” sequence, we found that the hidden state sequences
from the model trained on HCs had an overall accuracy of 0.91,
a sensitivity of being in the socially active state of 1.0, and
specificity of 0.86. Overall, this suggests that an HMM trained
on HCs can generalize adequately to the diagnostic groups in
this analysis.
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Measures of Social Functioning and Loneliness
For validation purposes, we made use of a measure of social
functioning for each participant in the PRISM dataset, namely
the SFS [36] (see Figures S9 and S10 in Multimedia Appendix
1 for score distributions). Therefore, we investigated possible
relationships between social functioning and total socially active
dwell times for participants with SFS scores available. The
number of participants in each group was small, so we
considered our results to be preliminary indicators of possible
relationships between the HMM-derived digital phenotypes and
social functioning.

To investigate the relationship between social functioning and
total dwell time, we ran linear regression models that predicted
SFS score from total dwell time, age, diagnostic group, and

interactions between diagnostic group and total dwell time. HCs
were taken as the reference group. False discovery rate
(FDR)–corrected P values (considering 6 tests) were presented
with results considered significant at P<.05 (Table 2). A
significant interaction between the AD group and total dwell
time was identified (FDR-corrected P=.02; Figure 9); however,
no significant main effect of total dwell time was found. This
result was robust across HMMs with different numbers of states
and regardless of whether the model was trained on high–data
availability HCs and assessed on withheld participants or trained
and evaluated for all participants (Tables S2-S7 in Multimedia
Appendix 2). In addition, a significant main effect of the
schizophrenia group relative to HCs was seen (FDR-corrected
P=.02), with lower SFS scores seen in the schizophrenia group,
but no significant main effect of AD was seen.

Table 2. Results from a linear regression model predicting Social Functioning Scale score from total dwell time, age, and group, where healthy controls
(12/49, 24%) were the reference group.

FDRa-corrected P valueP value
t value
(df=42)Coefficient (SE)Predictor

>.99.740.34060.0269 (0.0788)Age

.02.004−3.0750−20.5052 (6.6684)Schizophrenia group (n=18)

>.99.360.91784.4857 (4.8877)Alzheimer disease group (n=19)

.48.081.79820.1193 (0.0663)Total dwell time

>.99.710.37570.0401 (0.1069)Interaction between the schizophrenia group and
total dwell time

.02.003−3.1384−0.3201 (0.1020)Interaction between the Alzheimer disease group
and total dwell time

aFDR: false discovery rate.

Figure 9. Social functioning scale score against total dwell time, with interactions displayed for the different groups.

Linear regression models were also run within the different
diagnostic groups to investigate possible within-group
relationships between SFS scores and total dwell times. Separate
models were run for each of the diagnostic groups in the
validation set, with age included as an additional predictor in
the models. FDR-corrected P values (considering 3 tests) are
presented in Table S2 in Multimedia Appendix 1, with results
considered significant at P<.05. A significant positive

relationship between social functioning and total dwell times
was found for the HCs (FDR-corrected P=.005), with every 1%
increase in total dwell time corresponding to a 0.1153 increase
in SFS score; however, this relationship was not seen when
evaluating the entire HC group (using the HMM trained on all
participants) and is expected to be due to sampling variation
rather than differences in the learnt HMM parameters. No
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significant relationship was found for the other diagnostic
groups.

A measure of loneliness [37] was also provided for the PRISM
participants; however, no significant relationship between
loneliness and total dwell times was found. The results from
this linear regression model are presented in Table S3 in
Multimedia Appendix 1, as well as histograms of the distribution
of loneliness scores (Figures S11 and S12 in Multimedia
Appendix 1).

Diagnostic Group
A multinomial logistic regression model was run to investigate
differences in total socially active dwell time between the
different diagnostic groups and the HC group in the validation
set (ie, the reference category; Figure 10). Age was again
included as an additional predictor in the model (age-related
results are presented in Table S4 in Multimedia Appendix 1),
and FDR-corrected P values (considering 3 tests) are presented
to provide an indicator of significance at P<.05 (Table 3). Total

dwell time was found to be a significant predictor of AD relative
to HCs (FDR-corrected P<.001); participants with AD generally
showed lower dwell times (ie, spending less time in the socially
active state) relative to HCs (odds ratio 0.9483, 95% CI
0.9223-0.9742). This relationship was also seen across almost
all equivalent socially active hidden states of the additional
HMMs considered, with results of these models and their
respective sensitivity analyses presented in Tables S8-S19 in
Multimedia Appendix 2. For the SCC group, lower total dwell
times were also observed relative to HCs (FDR-corrected
P=.004, odds ratio 0.9742, 95% CI 0.9580-0.9903). However,
this result was less robust when considering the other HMM
variations. No significant relationship of total dwell time on the
schizophrenia group was found relative to HCs. Due to the broad
age range of HCs, sensitivity analyses of age were carried out
for each diagnostic group (Table S5 in Multimedia Appendix
1), with a subsample of HCs age-matched to each respective
diagnostic group, with the AD result remaining significant
(FDR-corrected P<.001), along with the SCC result
(FDR-corrected P=.003).

Figure 10. A box plot of the total dwell times per participant for the different diagnostic groups. There is a significant difference between the HC and
AD groups, and the HC and SCC groups. AD: Alzheimer disease; HC: healthy control; SCC: subjective cognitive complaints; SZ: schizophrenia.

Table 3. Results from a multinomial logistic regression model predicting diagnostic group (vs healthy controls, 156/257, 60.7%) using total dwell time.
Age was also included as a predictor.

FDRa-corrected P valueP valuez valueOdds ratio (95% CI)Coefficient (SE)Group

>.99.44−0.77630.9867 (0.9531-1.0204)−0.0133 (0.0172)Schizophrenia (n=18)

<.001<.001−4.00970.9483 (0.9223-0.9742)−0.0531 (0.0132)Alzheimer disease (n=26)

.004.001−3.18460.9742 (0.9580-0.9903)−0.0262 (0.0082)Subjective cognitive complaints
(n=57)

aFDR: false discovery rate.

Further Clinical Measures
For participants with AD and the HCs in the PRISM dataset,
MMSE [35] scores, measuring cognitive impairment, were
provided. No significant effect of total dwell time or age, nor
a significant interaction between dwell time and diagnostic

group, was found, although there was a significant effect of
diagnostic group (Table S6 in Multimedia Appendix 1, with
score distributions provided in Figures S13 and S14 in
Multimedia Appendix 1). This was expected given the inclusion
criteria of the study.
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The PRISM dataset also provided PANSS [34] scores for
participants with schizophrenia; however, no significant
relationships between any of the PANSS scores (positive,
negative, general psychopathology, composite, and total) and
total dwell time were found. The results from these linear
regression models are presented in Table S7 in Multimedia
Appendix 1, as well as histograms of the distribution of PANSS
scores per subscale (Figure S15 in Multimedia Appendix 1).

Discussion

Principal Findings
The central aim of digital phenotyping is to develop objective
measures that can be used to monitor clinically relevant
behaviors and symptom changes. In this study, we proposed a
method for deriving meaningful, interpretable digital phenotypes
using the HMM, a time series model that can accommodate
missingness. We applied this model to general phone usage and
communication smartphone measures, calculating the total
socially active dwell time phenotyped by the HMM. Our
smartphone measures were collected passively, reducing the
burden on participants, and we protected participant privacy by
abstracting app measures to descriptive levels, without collecting
content. We investigated the association of the total socially
active dwell time with various social and clinical measures,
including diagnostic group and a questionnaire on social
functioning (SFS). We found that 2- to 4-state HMMs provided
comparable socially active states, which showed consistent
results when investigating the relationships between the total
dwell time and the social and clinical measures. We observed
a significant difference in the HMM-derived total “socially
active” dwell times between HCs and participants with AD,
with participants with AD exhibiting lower total dwell times.
This difference was robust to age sensitivity analysis and across
different HMM variations (in terms of the number of hidden
states and the training set used). A significant interaction
between total dwell times and AD label was also observed for
social functioning.

The HMM has several strengths. It uses lower-dimensional
hidden states to represent the various observed behaviors, which
can be easily interpreted for each state using the emission
probabilities (Figure 3). The socially active state could be
interpreted as being linked to observed communication-related
behaviors, while the socially inactive state reflected a lack of
these behaviors, such as other kinds of, or no, phone usage.
Transitions between these hidden states indicated behavioral
changes throughout time, for example, daily behavioral patterns
(Figure 7). It was seen that during the daytime it was more likely
for participants to transition to the socially active state than
during the nighttime (Figure 8). Hidden states may allow for
some individual behaviors to be represented as comparable
behaviors. For example, Figure 6 shows a time series with no
social media usage, whereas Figure 5 shows highly recurrent
social media use, and both of these participants can have their
respective behaviors represented using the socially active state
despite individual differences in what social activity may mean
for each participant. Therefore, this type of modeling approach
can allow a certain amount of flexibility in the behaviors of the

participants, dependent on the number of hidden states used in
the model.

A summary measure of the HMM, the total socially active dwell
time, was calculated per validation participant so that a
model-derived digital phenotype could be compared to clinical
and social measures. The observed difference in total dwell time
between participants with AD and HCs, with participants with
AD having lower dwell times than HCs, is consistent with the
understanding that AD is associated with impaired social
functioning [1] and demonstrates a potential objective measure
of this difference. A significant interaction between total dwell
time and AD was also seen when predicting social functioning,
further demonstrating this.

Similarly to the AD group, differences in total dwell time
relative to HCs were also observed for SCC participants;
however, these differences were less robust across HMM
variations. Differences in total dwell time were not observed
for participants with schizophrenia. These results may be
unsurprising as, by definition, participants with SCC are very
similar to HCs, with the difference in inclusion criteria being
that participants with SCC experience memory complaints.
Similarly, the participants with schizophrenia did, for the most
part, exhibit quite low symptom severity. The number of
participants with schizophrenia was also small. While the
PRISM study only placed exclusion criteria on positive
symptoms (to exclude psychosis), the negative symptoms in
the sample did not turn out to be very severe either, and overall,
most participants could be classified as “mildly ill” based on
their total PANSS score [41]. This indicates a selection of
less-affected patients. The mild PANSS scores as well as low
loneliness scores may also contribute to the absence of an
identified relationship between these scales and total dwell time.
When investigating social functioning within the different
groups, significant relationships between social functioning and
total dwell time for participants with AD and schizophrenia
were also not observed. It is possible that participants with AD
and schizophrenia may overestimate their social functioning
[42], which could be reflected in their self-report SFS scores.
This may complicate any possible relationship between this
social functioning measure and total dwell time for these groups.
A further interesting factor that could affect these relationships
is the impact of different symptom profiles on total dwell time.

Future Directions
To expand upon the current work, the HMM method could be
applied in a larger population of participants with schizophrenia
exhibiting broader symptom severity and different symptom
profiles. Given the reluctance of many people with acute
psychotic symptoms to being monitored, it may be necessary
to monitor participants for a longer period, beginning with low
symptom severity at study enrollment, to allow for more
fluctuations in symptom severity to be observed [20]. The HMM
method can also be applied to other disorders, including major
depressive disorder (to be included in PRISM 2). A wider range
of smartphone channels can also be included in the HMM, for
example, calls could be encoded to reflect the variation in who
is called and who is calling each hour. With a larger number of
input channels, the derived hidden states could reflect more
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specific behavioral states. The optimal number of hidden states
may then be driven by both the number of input channels and
the underlying behavioral states of the participants themselves.
With a higher-order model, the hidden states’ emission
probabilities would not necessarily correspond to distinct single
behaviors; for example, with the inclusion of GPS channels,
there could be 2 hidden states that correspond to time spent at
home, with one state also reflecting communication activities
and the other reflecting no communication.

In our analysis, each hidden state sequence was generated per
participant, but total dwell time comparisons were only made
between groups. To shift toward individual predictions (for
example predicting symptom scores or relapse along the time
series), the dwell time for windows of the sequence or
potentially the sequence likelihood could be extracted and
changes along the time series evaluated. This would also
maintain the time component of the analysis. Our current
analysis uses a time series model but then compares a summary
HMM measure to clinical measures. For clinical applications,
the eventual goal would be to be able to make individual
predictions along the time series. For this goal, it may be
beneficial to include group-specific transition probabilities. It
could also be beneficial to allow some individual parameters,
for example, individualized transition probabilities could be
considered. The choice of individual versus group-specific
parameters may depend on the data available per individual.
Zero-inflated distributions for the various channels could also
be investigated as an alternative to binning the data into activity
versus no activity bins.

Using our HMM trained on high data availability HCs as a
reference group, we could identify differences in total socially
active dwell time between the HCs and the AD group, as well
as between HCs and the SCC group, and an interaction between
the AD group and total dwell time on social functioning scores.
These findings were also observed in models trained using the
entire dataset. However, maintaining our dataset split in future
analyses would allow us to look into the likelihood for
identifying time series for which the model is a “poor fit,” that
is, deviates from the reference group as a tool. This could be
useful in datasets where, for example, the aim is to identify
relapses, but for which there are not necessarily many examples
of the relapse periods available that can be used in model
training. These deviations could potentially be used to identify
anomalous time series.

To improve the management of missing data, there are several
more avenues that can be explored. Data are often expected to
be missing due to technical difficulties, but it is also possible
that data can be missing due to user behavior, for example, if
the user switches the phone off, turns on flight mode, or deletes
the app from their phone. It is also possible that a phone running
out of battery could be correlated with certain activities carried
out by the user or with certain times of the day, meaning the
missingness is caused indirectly by user behavior. Future studies
could consider recording the direct behaviors (which would
currently be more feasible with Android phones, rather than
iOS), to provide a better indicator of data missing due to
technical difficulties versus user behavior.

Limitations
Due to high rates of missingness, we made 4 main decisions to
handle missing data: (1) to focus model training on high data
availability time series, (2) to use a model that can accommodate
missing data, (3) to exclude GPS channels from this time series
analysis due to low levels of data availability affecting these
specific channels, and (4) to exclude missing timepoints from
the validation time series after hidden state sequence generation.
While we view decisions (1) and (2) as useful strategies for
managing missing data, decision (3), and to a lesser degree
decision (4), were unfortunate consequences that in future
studies should be avoided with improved data collection. The
datasets used in this study were collected with early versions
of Behapp, and throughout data collection, no indicator of
missingness was known. Indicators of missing data were
developed retrospectively using Wi-Fi and GPS sampling
frequencies to assist analyses of these time series. Incoming
data monitoring has now been improved in more recent Behapp
versions, as well as the overall data collection process.
Therefore, researchers using Behapp can now track data
collection as it is ongoing and take action if sustained periods
of data are missing. This could involve contacting participants
to ensure they have not accidentally disabled desired
functionalities for sustained periods. In addition, while the
analysis package we used assumes that data are missing at
random, and therefore, equally likely to be missing across the
different hidden states, it is possible that this is not the case and
that missingness may vary across hidden states. For example,
in cases where missingness may be due to user behavior
affecting battery consumption.

For interpretation purposes, we have named the 2 hidden states
as “socially active” and “socially inactive.” However, a person
could, of course, be socially active offline without using their
phone. For example, a person may be socializing with friends
at home without using their phone. Therefore, we acknowledge
the limits to our naming convention and recommend caution
when interpreting hidden states. Other sensors could be used to
give an indicator of other people in the participant’s vicinity,
such as Bluetooth [43], but passive smartphone data will
nevertheless remain somewhat of a proxy for social activity. In
a similar vein, we used the App Store classification to group
apps, but participants may use the apps for purposes other than
this classification (eg, some people use Instagram for
communication, and less so for social media). While in our
2-state model these discrepancies would be inconsequential,
with a larger number of hidden states, these discrepancies could
potentially lead to misleading interpretations of a person’s
behavior. In a clinical setting, the patient’s behaviors could be
discussed with the clinician at the beginning of the Behapp use
to assist in understanding and interpreting their personal digital
phenotypes.

In addition, it is worth noting that by using a reference class
approach, we do restrict the model to only learning hidden states
present in the reference group (as well as transition and starting
probabilities associated with the reference). While we also
trained the HMM on all participants (Multimedia Appendix 2)
and found that the hidden states present in our HMM trained
on high data availability HCs were highly comparable to the
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hidden states in HMMs trained on the whole dataset, for other
datasets (such as those with a larger number of input channels)
it may be that those in a clinical group could exhibit different
hidden states, or that if a clinical group in remission or with low
symptom severity is used for model training that states
associated with relapse or high symptom severity would not be
learned by the model. Therefore, the dataset used for training
the model and the subsequent analysis steps must be considered,
as this restricts the hidden states that are learned by the model.
In such cases, accepting that the trained model may not be a
“good fit” for the withheld data could be something that could
be used to help rather than hinder the analysis, by looking for
deviations in the likelihood of such data with respect to the
learned HMM.

Conclusions
Smartphone-based digital phenotyping is a promising tool for
monitoring and predicting mental health outcomes. However,
methods are needed for managing this multifaceted time series

smartphone data. We proposed the use of an HMM to model
digital phenotyping time series, as this method can (1) combine
different behavioral features, (2) reflect temporal behavioral
changes, (3) be easily interpreted, and (4) manage missingness.
We developed a 2-state model that represented various
smartphone channels as “socially active” and “socially inactive”
states, and calculated the total socially active dwell time for
each participant’s time series. We identified a significant
difference between HC and AD dwell times, with AD dwell
times being lower than HC dwell times, showing how this
HMM-derived digital phenotype may be a useful measure to
indicate differences in social functioning. We also observed a
significant interaction between total dwell time and the AD
group when predicting social functioning. The HMM is an
interpretable method to model behavior based on digital
phenotyping data, and with further development, it can provide
an appealing approach for making clinical predictions of
symptom changes and relapse across a range of neuropsychiatric
diseases.
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Abbreviations
AD: Alzheimer disease
BIC: Bayesian information criteria
FDR: false discovery rate
HC: healthy control
HMM: hidden Markov model
MMSE: Mini-Mental State Examination
PANSS: Positive and Negative Syndrome Scale
PRISM: Psychiatric Ratings using Intermediate Stratified Markers
SCC: subjective cognitive complaints
SFS: Social Functioning Scale
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