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Abstract

Background: Vancomycin is commonly dosed using standard weight–based methods before dose adjustments are made through
therapeutic drug monitoring (TDM). However, variability in initial dosing can lead to suboptimal therapeutic outcomes. A
predictive model that personalizes initial dosing based on patient-specific pharmacokinetic factors prior to administration may
enhance target attainment and minimize the need for subsequent dose adjustments.

Objective: This study aimed to develop and evaluate a machine learning (ML)–based algorithm to predict whether an initial
vancomycin dose falls within the therapeutic range of the 24-hour area under the curve to minimum inhibitory concentration,
thereby optimizing the initial vancomycin dosage.

Methods: A retrospective cohort study was conducted using hospitalized patients who received intravenous vancomycin and
underwent pharmacokinetic TDM consultation (n=415). The cohort was randomly divided into training and testing datasets in a
7:3 ratio, and multiple ML techniques were used to develop an algorithm for optimizing initial vancomycin dosing. The optimal
algorithm, referred to as the OPTIVAN algorithm, was selected and validated using an external cohort (n=268). We evaluated
the performance of 4 ML models: gradient boosting machine, random forest (RF), support vector machine (SVM), and eXtreme
gradient boosting (XGB). Additionally, a web-based clinical support tool was developed to facilitate real-time vancomycin TDM
application in clinical practice.

Results: The SVM algorithm demonstrated the best predictive performance, achieving an area under the receiver operating
characteristic curve (AUROC) of 0.832 (95% CI 0.753-0.900) for the training dataset and 0.720 (95% CI 0.654-0.783) for the
external validation dataset. The gradient boosting machine followed closely with AUROC scores of 0.802 (95% CI 0.667-0.857)
for the training dataset and 0.689 (95% CI 0.596-0.733) for the validation dataset. In contrast, both XGB and RF exhibited
relatively lower performance. XGB achieved AUROC values of 0.769 (95% CI 0.671-0.853) for the training set and 0.707 (95%
CI 0.644-0.772) for the validation set, while RF recorded AUROC scores of 0.759 (95% CI 0.656-0.846) for the test dataset and
0.693 (95% CI 0.625-0.757) for the external validation set. The SVM model incorporated 7 covariates: age, BMI, glucose, blood
urea nitrogen, estimated glomerular filtration rate, hematocrit, and daily dose per body weight. Subgroup analyses demonstrated
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consistent performance across different patient categories, such as renal function, sex, and BMI. A web-based TDM analysis tool
was developed using the OPTIVAN algorithm.

Conclusions: The OPTIVAN algorithm represents a significant advancement in personalized initial vancomycin dosing,
addressing the limitations of current TDM practices. By optimizing the initial dose, this algorithm may reduce the need for
subsequent dosage adjustments. The algorithm’s web-based app is easy to use, making it a practical tool for clinicians. This study
highlights the potential of ML to enhance the effectiveness of vancomycin treatment.

(J Med Internet Res 2025;27:e63983) doi: 10.2196/63983
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Introduction

Vancomycin is a first-line treatment for methicillin-resistant
Staphylococcus aureus (MRSA) infections [1,2]. Due to its
narrow therapeutic index, therapeutic drug monitoring (TDM)
of vancomycin is essential to achieving effective outcomes
while minimizing side effects such as nephrotoxicity and
ototoxicity [3-6]. The first consensus vancomycin TDM
guidelines recommended area under the curve over 24 hours to
minimum inhibitory concentration (AUC24/MIC) as the
preferred pharmacokinetic/pharmacodynamic parameter [7].
However, calculating AUC24/MIC requires multiple blood
draws which limits its routine clinical use. To simplify
monitoring, trough serum vancomycin concentrations (15-20
mg/L) were previously recommended as a surrogate marker for
AUC24/MIC, but the correlation between vancomycin’s
AUC24/MIC and trough concentration remains modest [7,8].
Recently, with the increasing availability of Bayesian modeling
software, the revised vancomycin TDM guidelines now advocate
for AUC24/MIC-guided dosing (targeting 400-600) instead of
trough-guided monitoring [6,9]. If AUC24/MIC is below 400,
therapeutic efficacy is inadequate, necessitating a dose increase.
Conversely, exceeding 600 suggests an increased toxicity risk,
requiring dose reduction. A study by Tsutsuura et al [10] has
demonstrated that AUC-guided dosing reduces acute kidney
injury compared with trough-guided monitoring.

Despite these advances, determining the appropriate initial
vancomycin dose remains challenging due to high inter- and
intraindividual PK variability, particularly related to body weight
and renal function [11]. In a study by Yoon et al [12], 69.8%
(2051/2570) of cases had initial vancomycin trough
concentrations outside the therapeutic range (10-20 mg/L).
According to the latest clinical guidelines on TDM for
vancomycin, the recommended dosage for serious MRSA
infections is 15-20 mg/kg every 8-12 hours [6]. While the
vancomycin package insert provides renal function-based dosing
guidelines, in real-world clinical practice, initial doses are often
determined based on the clinician’s experience [13,14].
Suboptimal initial dosing may lead to therapeutic failure or
toxicity, prolonging treatment duration. Therefore, optimizing
the initial vancomycin dosing to account for patient-specific
PK variables is critical [15].

Conventional vancomycin TDM requires serum drug
concentration measurements 24-48 hours postadministration,
followed by manual TDM analysis. These processes may take
at least several days to obtain the formal TDM reports after the

first vancomycin dose. Moreover, differences in analytical
methods, reagents, and instruments across clinical laboratories
can introduce variability in vancomycin measurements [16].
Given these challenges, an alternative approach that leverages
machine learning (ML) to predict vancomycin AUC24/MIC
before administration could significantly enhance dosing
accuracy, enabling more precise dosing and patient-specific
therapy.

Advancements in artificial intelligence and ML enable
data-driven decision-making, improving personalized medicine
across various medical fields [17-21]. By integrating ML into
clinical practice, health care providers can make more informed
decisions, optimize drug dosing, and minimize the time required
to adjust treatments, ultimately leading to improved patient
outcomes and greater resource efficiency. In the context of
vancomycin dosing, an ML-driven approach could significantly
enhance the precision of initial dosing, reducing the risk of
under or overdosing and improving overall therapeutic success.
To date, research on optimizing the initial vancomycin dosing
using ML techniques with patient-specific PK variables and
AUC24/MIC remains limited.

This study aimed to develop and evaluate an ML-based
predictive algorithm for optimizing initial vancomycin dosing
in hospitalized patients. By leveraging readily available clinical
data and routine laboratory test results, our model predicts
whether a given initial vancomycin dose achieves the therapeutic
AUC24/MIC range (400-600). To enhance clinical accessibility,
we also developed a web-based vancomycin TDM application
to facilitate real-time implementation in clinical practice.

Methods

Study Design
This was a retrospective cohort study. The purpose of this study
was to develop an algorithm using ML techniques to forecast
whether the initial vancomycin regimen to be administered can
achieve an AUC24/MIC ratio within the therapeutic range. In
other words, the final output of the ML algorithm predicted
“yes” or “no” based on whether the AUC24/MIC of vancomycin
falls within the therapeutic range of 400 to 600. We established
an internal cohort of patients who were administered intravenous
vancomycin and underwent a TDM consultation to monitor the
therapeutic dosage of vancomycin. Patients were treated at the
discretion of the clinicians and not according to a standardized
protocol. The internal cohort was randomly divided into training
and testing datasets in a 7:3 ratio, and multiple ML techniques
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were used to develop an algorithm for determining the dosage
for initial vancomycin administration. Then, the optimal
algorithm was selected from the developed ones (hereinafter
referred to as “OPTIVAN algorithm”), and its performance was

validated using an external cohort. To enhance the clinical utility
of the OPTIVAN algorithm, we implemented a web-based
vancomycin TDM application (Figure 1).

Figure 1. Study design. GBM: gradient boosting machine; RF: random forest; SVM: support vector machine; XGB: eXtreme gradient boosting.

Internal Cohort
A total of 2770 cases from 1333 patients were referred for
vancomycin TDM consultation to the Department of Laboratory
Medicine at Ewha Womans University Seoul Hospital (Seoul,
Republic of Korea) from August 2021 to September 2022. Of
these, we selected the first TDM consultation data (n=540) in
the same patients if multiple were requested, and excluded
patients aged 18 years or younger (n=22), those undergoing
hemodialysis (n=38) or estimated glomerular filtration rate

(eGFR) less than 15 mL/min/1.73 m2 (n=10), patients with total
medication time of less than 48 hours (n=43), patients with less
than 3 medication doses (n=6), patients with vancomycin trough
concentrations below the lower limit of quantification (n=4),
patients with no trough measurement (n=1), and patients with
serum creatinine concentration below the limit of quantification
(n=1). These resulted in an internal cohort of 415 patients as a
development dataset (Figure S1 in Multimedia Appendix 1).

External Cohort
Patient data for external validation of the OPTIVAN algorithm
was collected from Ewha Womans University Mokdong
Hospital (Seoul, Republic of Korea) from March to September
2022. Among the 693 patients who underwent TDM consultation
during the study period, 317 patients remained after removing
duplicate records. We further excluded patients aged 18 years
or younger (n=5), those undergoing hemodialysis (n=12), those
without serum creatinine measurements (n=17), and patients
with a total medication time of less than 48 hours (n=15).
Consequently, a total of 268 patients were included as a
validation dataset (Figure S1 in Multimedia Appendix 1).

Feature Collection
Patients’ clinical information including demographics,
vancomycin drug administration history, sampling time for drug
concentration measurements, renal replacement therapy history,
and vancomycin TDM consultation analysis data were reviewed.

The following patient’s clinical information was collected as
candidate features of input data to be used in algorithm
development: age, sex, department, height, weight, BMI, body
surface area, length of hospitalization, and main diagnosis (7
categories: bloodstream infection or sepsis, osteomyelitis, central
nervous system infection, pneumonia, intra-abdominal infection,
skin and soft tissue infection, and urinary tract infection);
vancomycin drug-related information: blood drug concentration
measurements (trough and peak), drug administration time,
single drug dose, drug administration interval, number of drug
doses, total drug administration time period, drug dose
administered during the day, and daily drug dose per body
weight; and laboratory data: white blood cell, red blood cell,
hemoglobin, hematocrit, absolute neutrophil count, differential
count (neutrophil, lymphocyte, and monocyte), total calcium,
phosphorus, glucose, blood urea nitrogen (BUN), total protein,
albumin, total bilirubin, alkaline phosphatase, aspartate
aminotransferase, alanine aminotransferase, creatinine, eGFR,
sodium, potassium, chloride, total carbon dioxide, high sensitive
C-reactive protein, and procalcitonin.

All vancomycin TDM consultation analyses were performed
based on AUC24/MIC-guided dosing using the Bayesian
software, MwPharm++ (v.1.9.0.338; Mediware). We used the
built-in 2-compartment model (model name:
#vancomycin_adult_k_C2) with the population PK parameters
for adults based on the Dutch Association of Hospital
Pharmacists monograph [22,23]. In the vancomycin TDM
analysis, the MIC was assumed to be 1 mg/L. The label value
used to train the algorithm was the AUC24/MIC (acceptable if
between 400 and 600, and unacceptable otherwise) when the
eGFR was calculated by the 2009 creatinine-based chronic
kidney disease epidemiology collaboration (CKD-EPI) equation
[24,25]. In the Korean population, the 2009 CKD-EPI equation
more accurately assesses renal function than the Cockcroft-Gault
or 2021 CKD-EPI equations [26,27]. Since there was no
clinically significant difference in the choice of eGFR equation
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used to calculate vancomycin’s AUC24 through Bayesian
methods [23,25], we used the 2009 CKD-EPI equation to
calculate eGFR.

Data Preprocessing
After dividing the variables into categorical and continuous
features, we performed imputation on the null values of
continuous features. No imputation was performed for the
categorical features, as these variables contained no null values.
Imputation on the null values of noncategorical features was
performed using “pmm” method in the R library “mice.”
Outliers of the continuous features were defined as a value with
an absolute value of the z score is 3.5 or more. The internal
cohort was randomly divided into a 70% training set and a 30%
testing set. To improve the quality of the training set for
algorithm training, we excluded cases that were outliers from
the continuous features and oversampled the training set.
Oversampling was performed using “mwmote” method in the
R library “imbalance.”

Feature Selection
To ensure an unbiased evaluation of model performance, we
used a bootstrapping methodology to derive the average
performance metrics from 50 iterations. In each iteration, the
internal cohort data was randomly partitioned in a 7:3 ratio into
training and test sets. The model was trained on the training
subset and subsequently evaluated on the test subset. By
performing 50 iterations of bootstrapping throughout the entire
process of deriving model performance, this iterative resampling
process provides a robust estimate of the model’s generalization
performance by mitigating the variability inherent in any single
train-test split.

To develop an OPTIVAN algorithm that delivers the best
performance while using the minimum number of features from
our dataset, we selected the features to be used as input data.
First, features that were easily obtainable, regardless of the
hospital’s context, thereby ensuring practicality in data
collection, were selected. A random forest (RF) algorithm was
used for further feature selection based on the algorithm’s
performance. The feature importance score of each feature in
predicting vancomycin dose acceptability was calculated and
ranked. The highest-ranked feature was then selected as the
initial input for algorithm development, and the algorithm’s
predictive power, as determined by the acceptability of
AUC24/MIC of vancomycin, was assessed. Subsequently, we
systematically evaluated the algorithm’s performance by
incrementally introducing the next highest-ranked features. If
the predictive performance increased and its predictive power
improved, the additional feature was incorporated into the input
data. Conversely, if there was no improvement in the predictive
performance, the feature was not included. This sequential
process continued until we reached a point where the model’s
performance improvement plateaued with each additional
feature. At that juncture, we determined the minimum number
of features required for the optimal input data configuration.
Finally, correlation analysis confirmed that the selected features
were not highly correlated (Figure S2 in Multimedia Appendix
1).

Feature Importance Calculation
To calculate the feature importance of our final model, which
is based on the RF algorithm, the varImp() function from the
varImp package was used. This function specializes in
determining importance scores for RF models through a
permutation-based method. Specifically, the prediction accuracy
on the out-of-bag samples was recorded as reference data, and
the data for each feature was permuted individually, recording
the resulting prediction accuracy. By comparing the prediction
accuracies of the reference data and the permuted data, the
differences in accuracy were calculated. These differences were
averaged over all trees and normalized by the SE. Features
causing a greater decrease in prediction accuracy when permuted
were assigned higher importance scores, indicating their
significant role in the model’s predictive power.

Development of the OPTIVAN Algorithm
We compared the prediction performance of different ML
algorithms using selected features as input data. The ML
algorithms evaluated were RF, gradient boosting machine,
eXtreme gradient boosting (XGB), and support vector machine
(SVM). We optimized the model parameters to achieve the best
performance by using a grid search strategy for each algorithm.
This involved defining a specific range for each parameter using
the expand.grid() function from the caret package and using the
tuneGrid option within the train function. This systematic
approach allowed for an exhaustive search across specified
parameter values to identify the optimal settings for our model.
All algorithms were trained by applying 50 times bootstrap
sampling to mitigate overfitting and ensure that the model’s
performance is evaluated across different subsets of the data.

The performance of each algorithm model was evaluated by
measuring the AUC of the receiver operator characteristic
(AUROC) curve and AUC of the precision-recall curve
(AUPRC), and the agreement between the model’s predicted
probability and observed true probability in the calibration plot.
In the calibration plot of each algorithm, the lower the sum of
the absolute value of the difference between the algorithm’s
predicted probability and the observed true predicted probability
corresponding to each bin midpoint, the better the algorithm
was considered to be with fewer under or overestimates. To
ensure the robustness and reliability of our results, we conducted
a resampling procedure. Specifically, for each algorithm, we
resampled the 70% training dataset a total of 50 times to
calculate the average AUROC and AUPRC values, and generate
the calibration plot for a model with the highest AUROC and
AUPRC values. The algorithm, which showed the highest
average AUROC and AUPRC values, along with an optimal
calibration plot, was selected as our ultimate model of choice,
namely OPTIVAN algorithm. All statistical and computational
analyses were carried out in R (version 4.2.3; R Development
Core Team).

External Validation and Subgroup Analyses
We conducted external validation and subgroup analyses to
evaluate the performance of the OPTIVAN algorithm using an
external cohort. Patients were stratified into subgroups based
on their renal function (eGFR <60, 60-89, and ≥90 mL/min/1.73
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m2), sex (male and female), and BMI (<18.5, 18.5-24.9,

25.0-29.9, and ≥30.0 kg/m2), and the performance of the
OPTIVAN algorithm was evaluated within each subgroup.

Implementing a Web-Based App Using the OPTIVAN
Algorithm
The web-based app [28], was developed using Rshiny (version
1.7.4; RStudio). When a clinician enters the patient’s clinical
information and laboratory test results (including sex, age,
weight, height, BUN, creatinine, glucose, and hematocrit) and
the desired daily dose of vancomycin for prescription, the system
automatically calculates the BMI, eGFR in mL/min, and daily

dose per body weight. Then, the algorithm quickly assesses
whether the predicted AUC24/MIC of vancomycin falls within
the therapeutic range. If the predicted AUC24/MIC falls within
the therapeutic range, the clinician can proceed with
administering the planned dose. If the predicted AUC24/MIC
of vancomycin falls outside the therapeutic range based on the
entered information, the app will notify the user that the drug
dosage is inappropriate. The tool also offers easy-to-use tabular
information. This table provides various daily dosage examples
for achieving a therapeutic range of AUC24/MIC based on
individual patient data. The description of the web-based app
use is summarized in Figure 2, and an example of the screenshot
is provided in Figure S3 in Multimedia Appendix 1.

Figure 2. Summary of web-based app use. The user can predict whether the area under the curve over 24 hours to minimum inhibitory concentration
(AUC24/MIC) of the initial vancomycin dosage they plan to administer falls within the therapeutic range. Upon entering the patient’s sex, intended
initial dosage, height, weight, BUN, creatinine, glucose, and hematocrit results, the system automatically calculates the BMI, eGFR, and daily dose per
body weight. It then promptly indicates whether the AUC24/MIC of vancomycin falls within the therapeutic range. Additionally, it provides examples
of different drug dosages that fall within the therapeutic range. If the input dose value is unacceptable, the user can adjust the value and check again or
view other acceptable doses in a table format. eGFR: estimated glomerular filtration rate.

Ethical Considerations
This study was approved by the institutional review board of
the Ewha Womans University Seoul Hospital (approval number
SEUMC 2022-03-019-003) and Ewha Womans University
Mokdong Hospital (approval number EUMC 2023-04-020). In
light of the retrospective nature of the study, the process of
obtaining informed consent from patients was exempted by both
institutional review boards.

Results

Cohort Characteristics
The internal cohort of 415 patients included in the study had a
mean age of 67.7 years and an average body weight of 61.9 kg.

The most common reason for vancomycin administration was
bloodstream infection or sepsis, affecting 245 (59.0%) patients,
followed by skin and soft tissue infections in 59 (14.2%)
patients. The mean eGFR was 90.9, with 66 patients exhibiting
an eGFR of less than 60. The external cohort comprised 268
patients with a mean age of 69.9 years. Similar to the internal
cohort, the predominant reason for vancomycin administration
in this group was bloodstream infection or sepsis, which
occurred in 154 (57.5%) patients. The mean eGFR of the
external cohort was 82.8, significantly lower than that of the
internal cohort. The detailed characteristics of the internal and
external cohorts are summarized in Table 1.
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Table 1. Baseline characteristics of internal and external cohorts.

P valueExternal cohort (n=268)Internal cohort (n=415)Characteristics

.0669.9 (14.5)67.7 (15.2)Age (years), mean (SD)

.80Sex, n (%)

112 (41.8)168 (40.5)Female

156 (58.2)247 (59.5)Male

.69162.9 (9.0)163.2 (9.4)Height (meters), mean (SD)

.5261.2 (13.0)61.9 (13.6)Body weight (kg), mean (SD)

.5423.0 (4.1)23.2 (4.5)BMI (kg/m2), mean (SD)

.47BMI group (kg/m2), n (%)

35 (13.1)56 (13.5)<18.5

158 (59.0)226 (54.5)18.5-24.9

63 (23.5)107 (25.8)25.0-29.9

12 (4.5)26 (6.3)≥30.0

.561.7 (0.2)1.7 (0.2)BSAa (m2), mean (SD)

.08Diagnosis, n (%)

154 (57.5)245 (59.0)Bloodstream infection or sepsis

2 (0.7)9 (2.2)Osteomyelitis

14 (5.2)16 (3.9)CNSb infection

43 (16.0)41 (9.9)Pneumonia

14 (5.2)38 (9.2)Intra-abdominal infection

37 (13.8)59 (14.2)Skin and soft tissue infection

4 (1.5)7 (1.7)Urinary tract infection

.0635.4 (22.3)39.9 (40.3)Hospitalization period (day), mean (SD)

Vancomycin drug history, mean (SD)

<.001933.8 (180.5)874.5 (193.7)Dose (mg)

.5815.5 (5.8)15.2 (5.6)Dosing interval (h)

.0086.4 (3.4)5.8 (2.3)Total number of administration

.0189.2 (39.4)82.1 (28.1)Total drug administration time (h)

.041623.9 (584.7)1533.7 (535.5)Daily dose (mg/day)

.0427.4 (10.7)25.7 (10.2)Daily dose per body weight (mg/day/kg)

<.00112.9 (9.0)10.4 (7.3)Trough concentration (mg/L)

.006531.4 (287.6)472.9 (235.1)AUC24/MICc ratio

.06AUC24/MIC ratio group, n (%)

80 (29.9)154 (37.1)400-600

188 (70.1)261 (62.9)<400 or >600

Laboratory findings

.0310.8 (8.3)9.5 (5.5)WBCd (×109/L), mean (SD)

Differential counts, n (%)

.2574.6 (13.9)73.2 (17.3)Neutrophil

.2214.9 (11.2)16.2 (14.9)Lymphocyte

.537.9 (3.9)7.7 (4.1)Monocyte

.068.5 (7.6)7.5 (5.2)ANCe (×109/L), mean (SD)
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P valueExternal cohort (n=268)Internal cohort (n=415)Characteristics

.023.0 (0.7)3.2 (0.6)RBCf (×1012/L), mean (SD)

<.0018.9 (1.8)9.7 (1.8)Hemoglobin (g/dL), mean (SD)

<.00127.0 (5.4)29.0 (5.5)Hematocrit, n (%)

.532.9 (0.6)2.9 (0.5)Albumin (g/dL), mean (SD)

.82129.2 (104.9)127.0 (118.5)ALPg (IU/L), mean (SD)

.9649.5 (123.3)49.0 (120.0)ALTh (IU/L), mean (SD)

.1953.8 (111.6)79.1 (361.4)ASTi (IU/L), mean (SD)

.1424.3 (19.3)22.1 (16.9)Blood urea nitrogen (mg/dL), mean (SD)

.15104.0 (5.6)104.7 (5.4)Chloride (mmol/L), mean (SD)

.0080.94 (0.74)0.80 (0.52)Creatinine (mg/dL), mean (SD)

.00179.2 (31.1)87.0 (30.4)eGFRj (mL/min), mean (SD)

.00182.8 (29.6)90.9 (29.5)eGFR (mL/min/1.73m2), mean (SD)

.002eGFR group (mL/min/1.73m2), n (%)

65 (24.3)66 (15.9)< 60

122 (45.5)242 (58.3)60-89

81 (30.2)107 (25.8)≥90

.65136.7 (63.1)138.8 (49.0)Glucose (mg/dL), mean (SD)

.0039.1 (8.1)7.3 (7.0)hsCRPk (mg/dL), mean (SD)

.0023.2 (0.9)3.0 (0.8)Phosphorus (mg/dL), mean (SD)

.0024.0 (0.7)3.9 (0.5)Potassium (mmol/L), mean (SD)

.0010.9 (1.4)3.5 (9.2)Procalcitonin (ng/mL), mean (SD)

.03138.9 (5.5)138.0 (5.5)Sodium (mmol/L), mean (SD)

<.00122.9 (3.9)25.4 (4.2)TCO2
l (mmol/L), mean (SD)

aBSA: body surface area.
bCNS: central nervous system.
cAUC24/MIC: area under the curve over 24 hours to minimum inhibitory concentration.
dWBC: white blood cell.
eANC: absolute neutrophil count.
fRBC: red blood cell.
gALP: alkaline phosphatase.
hALT: alanine aminotransferase.
iAST: aspartate aminotransferase.
jeGFR: estimated glomerular filtration rate.
khsCRP: high-sensitivity C-reactive protein.
lTCO2: total carbon dioxide.

Feature Selection
In the process of feature selection for input data, we initially
calculated the feature importance scores for each feature (Table
2). Among these features, age showed the highest feature
importance score. Subsequently, we proceeded to identify

features with notable importance scores that contributed to an
enhancement in the algorithm’s AUROC when combined with
age. This selection process led to the final choice of 7 features:
age, eGFR (mL/min), daily dose per body weight, glucose,
BUN, hematocrit, and BMI.
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Table 2. Features filtered by feature importance score.

SEImportance scoreFeature

9.388×10–4100Age (years)

7.243×10–474.03eGFRa (mL/min)

8.626×10–470.96Daily dose per body weight

4.790×10–452.72Glucose

4.905×10–445.54Height

3.799×10–444.19ALTb

4.993×10–436.06eGFR (mL/min/1.73 m2)

4.395×10–435.85Chloride

4.710×10–435.79Potassium

3.717×10–435.77ALPc

3.964×10–435.51Sodium

3.583×10–432.60ASTd

4.128×10–432.40Blood urea nitrogen

4.083×10–431.53hsCRPe

3.202×10–430.56ANCf

3.777×10–430.46TCO2
g

3.345×10–428.70Hematocrit

3.168×10–428.35BMI

3.459×10–427.24WBCh

3.420×10–425.24Creatinine

3.295×10–423.55Body weight

4.888×10–423.07Daily dose

4.475×10–420.85Total calcium

3.101×10–419.27BSAi

2.719×10–418.15Neutrophil

2.663×10–417.16Lymphocyte

2.473×10–416.82Monocyte

3.218×10–416.18Total protein

3.068×10–415.73Phosphorus

2.259×10–412.48Total drug administration time

2.876×10–412.40Dose

2.097×10–412.08Hemoglobin

aeGFR: estimated glomerular filtration rate.
bALT: alanine aminotransferase.
cALP: alkaline phosphatase.
dAST: aspartate aminotransferase.
ehsCRP: high-sensitivity C-reactive protein.
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fANC: absolute neutrophil count.
gTCO2: total carbon dioxide.
hWBC: white blood cell.
iBSA: body surface area.

Development of the OPTIVAN Algorithm
The calibration plots for each ML algorithm are described in
Figure 3. The SVM algorithm showed the highest AUROC
(0.832 for the training dataset), AUPRC (0.817 for the training
dataset), while other algorithms including the gradient boosting
machine showed the lower AUROC (0.802 for the training
dataset), AUPRC (0.729 for the training dataset; Table 3), and
the most minimal discrepancy between the algorithm’s

predictions and the actual observations in the calibration plot.
Consequently, the model developed using the SVM algorithm
was considered the most outstanding model and selected as the
OPTIVAN algorithm. This model is a nonlinear model with
radial basis function kernel, and tuned hyperparameters “cost”
and “sigma,” each with a value of 1 and 0.3, respectively (the
grid search range for both parameters was from 0.1 to 10, with
a step size of 0.5).

Figure 3. Calibration plots to compare algorithm. (A) The result of the testing dataset which is 30% of the internal cohort and (B) the result of the
external validation dataset. All plots are based on the best result. Abbreviations: GBM: gradient boosting machine; RF: random forest; SVM: support
vector machine; XGB: eXtreme gradient boosting.
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Table 3. The predictive performance of machine-learning algorithms.

Average performanceaBest performanceMethod and dataset

F1-scoreAUPRCAU-
ROC

SpecificitySensitivityF1-scoreAUPRCc

(95% CI)
AUROCb

(95% CI)

Specificity
(95% CI)

Sensitivity
(95% CI)

GBMd

0.7200.7580.7110.5420.7270.7670.729
(0.621-
0.848)

0.802
(0.667-
0.857)

0.725
(0.561-
0.854)

0.730
(0.553-
0.794)

Testing

0.7220.7010.6790.7540.6680.7450.727
(0.662-
0.797)

0.689
(0.596-
0.733)

0.550
(0.435-
0.662)

0.707
(0.637-
0.771)

External vali-
dation

RFe

0.7130.7640.6890.5360.7190.7340.669
(0.549-
0.800)

0.759
(0.656-
0.846)

0.55 (0.385-
0.707)

0.746
(0.621-
0.847)

Testing

0.7330.7010.6950.5840.6820.7390.702
(0.620-
0.783)

0.693
(0.625-
0.757)

0.538
(0.422-
0.650)

0.702
(0.631-
0.766)

External vali-
dation

SVMf

0.7310.7210.7330.5870.7290.8030.817
(0.738-
0.916)

0.832
(0.753-
0.900)

0.675
(0.509-
0.814)

0.810
(0.691-
0.898)

Testing

0.7370.6310.7200.6360.6740.7360.672
(0.597-
0.750)

0.720
(0.654-
0.783)

0.688
(0.574-
0.787)

0.660
(0.587-
0.727)

External vali-
dation

XGBg

0.7050.7370.6880.5330.7080.7460.678
(0.562-
0.803)

0.769
(0.671-
0.853)

0.600
(0.433-
0.751)

0.746
(0.621-
0.847)

Testing

0.7240.7050.6690.5600.6740.7620.697
(0.619-
0.774)

0.707
(0.644-
0.772)

0.650
(0.535-
0.753)

0.707
(0.637-
0.771)

External vali-
dation

aAverage values are obtained from a total of 50 different analysis results.
bAUROC: are under the receiver operator characteristic.
cAUPRC: area under the precision-recall curve.
dGBM: gradient boosting machine.
eRF: random forest.
fSVM: support vector machine.
gXGB: eXtreme gradient boosting.

Performance Evaluation of the OPTIVAN Algorithm
In subgroup analysis for the validation dataset, the AUROC
values were 0.780 (95% CI 0.662-0.895) for patients with

eGFR<60 mL/min/1.73 m2, 0.672 (0.549-0.795) for 60-89

mL/min/1.73 m2, and 0.725 (0.629-0.821) for ≥90 mL/min/1.73

m2. The AUROC for males was higher than that for females

(0.791 vs 0.606). In the BMI subgroup analysis, the AUROC

was 0.751 (95% CI 0.675-0.826) for the BMI 18.5-24.9 kg/m2

group and 0.621 (0.474-0.760) for the BMI 25.0-29.9 kg/m2

group (Table 4). The detailed comparison results between
subgroups can be found in Figure S4 in Multimedia Appendix
1.

J Med Internet Res 2025 | vol. 27 | e63983 | p. 10https://www.jmir.org/2025/1/e63983
(page number not for citation purposes)

Lee et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 4. Subgroup analyses of the performance of the OPTIVAN algorithm.

AUROCa (95% CI)Subgroup

Validation datasetbTesting datasetb

eGFRc (mL/min/1.73 m2)

0.780 (0.652-0.888)0.667 (0.333-1.000)<60

0.672 (0.545-0.795)0.700 (0.467-0.889)60-89

0.725 (0.626-0.818)0.896 (0.797-0.970)≥90

Sex

0.791 (0.709-0.865)0.885 (0.789-0.955)Male

0.606 (0.490-0.712)0.855 (0.721-0.962)Female

BMI (kg/m2)

0.644 (0.407-0.861)0.886 (0.657-1.000)<18.5

0.751 (0.675-0.826)0.859 (0.756-0.941)18.5-24.9

0.621 (0.474-0.760)0.845 (0.678-0.970)25.0-29.9

0.630 (0.296-0.889)0.834 (0.333-1.000)≥30.0

aAUROC: AUC of the receiver operator characteristic.
bTesting dataset refers to the results from an internal cohort, while validation dataset pertains to the results from an external cohort.
ceGFR: estimated glomerular filtration rate.

Discussion

Principal Results
We developed and evaluated the OPTIVAN algorithm, an
ML-based tool designed to optimize initial vancomycin dosing
using a minimal set of clinical variables. By incorporating key
PK factors, this model enhances precision in dose selection for
hospitalized adult patients, potentially improving therapeutic
outcomes. A major strength of our study lies in the development
of the algorithm using a large dataset and its external validation
with independent hospital data. To develop the OPTIVAN
algorithm, we selected 7 key features to predict whether
AUC24/MIC of vancomycin would fall within the therapeutic
range, accounting for individual patient PK variables before
vancomycin administration. These features include age, BMI,
glucose, BUN, eGFR (mL/min), hematocrit, and daily dose per
body weight. Although ALT had a high importance score as a
marker of disease severity, it was excluded from the final model
due to its negative impact on predictive accuracy. Despite its
association with disease severity, ALT’s high variability
appeared to disrupt model stability, and its indirect relevance
to vancomycin levels limited its utility in this context. Future
analyses will consider comprehensive severity indices, such as
the Acute Physiology and Chronic Health Evaluation II score,
or alternative markers like albumin, to refine model performance
as additional data become available.

Since vancomycin is mainly eliminated via renal excretion, its
plasma concentration is highly dependent on renal function [29].
As renal function declines, the half-life of vancomycin increases
and this leads to elevated blood concentration. Overall renal
function is assessed by GFR and creatinine-based eGFR is the
most commonly used measure in clinical practice [24,26]. It is
well known that GFR physiologically declines with age [30].

BUN is an end product of protein metabolism, and tends to
accumulate when renal function deteriorates [31]. In patients
with diabetes, persistent hyperglycemia can lead to structural
and functional damage to the renal vasculature and glomeruli,
contributing to the development of diabetic nephropathy [32].
Given the strong dependence of vancomycin clearance on renal
function, the inclusion of variables such as age, BMI, glucose,
BUN, and eGFR in the OPTIVAN algorithm ensures robust
predictive performance. Huang et al [33] conducted a study on
vancomycin dose prediction using the XGB technique, in which
composite variables incorporating low hematocrit and elevated
creatinine concentrations exhibited high feature importance.
There is minimal biological plausibility for hematocrit in the
dose prediction model. One possible explanation is that it may
serve as a surrogate for the volume of distribution, which is
significantly increased in critically ill patients. However, the
relationship between hematocrit and vancomycin metabolism
remains unclear and requires further investigation. Notably,
excluding hematocrit from the OPTIVAN algorithm resulted
in a decline in its predictive performance, suggesting its potential
role in dose optimization.

Vancomycin TDM using Bayesian modeling can provide dose
prediction after 1-2 drug administrations and is known for its
reasonably strong predictive validity [6]. In comparison, the
primary advantage of the OPTIVAN algorithm developed in
this study is its ability to predict the appropriate dose before
administration. A key strength of the OPTIVAN algorithm is
its reliance on variables commonly available in medical
institutions, ensuring practical applicability. Demographic
information and routine laboratory test results are accessible
across all health care settings. Additionally, the ML-based TDM
approach is more intuitive and easy to use in real-world clinical
settings. Unlike Bayesian modeling, which requires specialized
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software and trained personnel, the OPTIVAN algorithm offers
immediate dose predictions, making it more accessible to
prescribing clinicians. While conventional TDM is typically
conducted by clinical pathologists or pharmacists, a web-based
ML algorithm allows physicians to directly assess whether their
intended dose achieves therapeutic AUC24/MIC targets even
without expertise in ML. This facilitates more efficient and
timely vancomycin dose adjustments in clinical practice.

Using the SVM technique, the OPTIVAN algorithm
demonstrated clinically acceptable performance, achieving the
best AUROC of 0.832 for testing and 0.720 for external
validation datasets. Additionally, it exhibited the highest average
AUROC of 0.733 for testing and 0.720 for external validation
datasets. The calibration plot of the SVM algorithm indicated
minimal underestimation or overestimation. Based on the
external validation results, the implementation of the OPTIVAN
algorithm would likely predict approximate exposure in 72.0%
(95% CI 65.4%-78.3%) of patients. There was variability in its
predictive ability among subgroups, as it performed equally
well among various renal function groups, (AUROC ranging
from 0.672 to 0.780); however, there was greater variability
among other patient characteristics including sex (0.791 for
males and 0.606 for females) and BMI (ranging from 0.621 to
0.751). Further refinements may be necessary to improve
generalization.

Typically, the results of conventional vancomycin TDM analysis
can be determined after drug administration. In other words,
the AUC24/MIC of vancomycin can be evaluated by measuring
the drug concentrations after administration and subsequently
conducting TDM analysis using Bayesian methods to assess
the adequacy of the initial dosage. When analyzing the first
requested vancomycin TDM after drug administration, the
AUC24/MIC was within the therapeutic range in 37.1% of the
internal cohort and 29.9% of the external cohorts. As mentioned
earlier, while vancomycin dosing is recommended to be based
on body weight and renal function, in real-world clinical
practice, clinicians often rely on standard dosing based on their
experience. Interestingly, our study found only a moderate to
minimum correlation between daily dose per weight and BMI,
suggesting that most patients were treated with standard doses
of vancomycin rather than a weight-based dosing strategy. Since
the OPTIVAN algorithm demonstrates a predictive performance
of approximately 72.0% (95% CI 65.4%-78.3%) for
vancomycin’s AUC24/MIC, using this algorithm in the initial
drug dosage determination phase would make it over twice as
likely for AUC24/MIC ratios to fall within the therapeutic range
compared with decisions made solely by clinicians. These results
support the notion that applying the OPTIVAN algorithm to
the vancomycin treatment process in clinical practice can
provide valuable assistance in medical decision-making.

Comparisons With Prior Work
Previous studies have suggested vancomycin dosing nomograms
based on body weight and renal function to reach a target trough
concentration of 15-20 mg/L [34-36]. Other researchers have
proposed recommended dosages by pharmacists for more
efficient drug administration [37,38]. However, these approaches
face limitations in addressing timely patient-specific clinical

decisions. Recently, some groundbreaking studies have been
introduced using various ML techniques for vancomycin TDM
analysis [33,39]. However, some studies were either based on
trough concentrations, which are not recommended in current
vancomycin TDM guidelines [6], or focused exclusively on
pediatric and neonatal populations [40,41]. Miyai et al [42]
predicted the maintenance dose rather than the initial dose,
lacked external validation, and did not specify model
performance. The model by Bououda et al [43] focused on
interdose rather than the initial dosing, relied on simulated rather
than real patient data, and was validated using only 24 external
cases. Furthermore, the lack of a web-based app in these studies
restricts their practical clinical applicability.

Enhance Clinical Utility
The web-based app using the OPTIVAN algorithm provides an
easy-to-use interface for clinicians to input patient data and
receive instant assessments of whether the predicted
AUC24/MIC of vancomycin falls within the therapeutic range.
The app is expected to improve vancomycin TDM efficiency
by integrating into hospital or laboratory information systems.
The OPTIVAN algorithm consists of 7 features. To improve
user convenience, the web-based app includes 9 variables: sex,
age, weight, height, creatinine, BUN, glucose, hematocrit, and
planned daily dose. The eGFR, BMI, and daily dose per body
weight can be automatically calculated using input variables.
Upon inputting the data, the algorithm immediately predicts if
the desired dosage falls within the therapeutic range.

Limitations
Despite its robust validation, this study had limitations. First,
the OPTIVAN algorithm was developed using retrospective
data, which may introduce selection bias or data heterogeneity.
To further refine the model, future research should focus on
conducting prospective clinical trials to evaluate the algorithm’s
real-world impact on vancomycin dosing accuracy and patient
outcomes. Second, our model uses a binary classification
approach, determining whether a given vancomycin dose is
appropriate but does not provide a numerical AUC24/MIC
value. Despite the substantial amount of data collected in our
study, it appears that even more extensive data collection would
be necessary to develop a robust regression model. However,
we sought to address this limitation by providing users of the
ML model with examples of appropriate initial drug doses from
patients with similar conditions. This approach enables users
to approximate the appropriate initial drug dose with nearly the
same ease as a regression model. Finally, our model requires
all input variable values to be present and does not accommodate
missing data. Nevertheless, given that the input variables are
typically collected in hospital settings, we believe the model
can be effectively used in most patient cases.

Conclusions
The OPTIVAN algorithm represents a significant advancement
in ML-based precision dosing, addressing the limitations of
empirical vancomycin dosing strategies. By leveraging readily
available clinical data, this tool has the potential to improve
initial dosing accuracy, minimize therapeutic failures, and reduce
the burden of TDM adjustments, ultimately enhancing patient
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safety. By using a data-driven approach that considers individual
patient characteristics, this algorithm could reduce the risks of
treatment failure, complications, and drug-related adverse

effects. The use of ML techniques to personalize initial
vancomycin dosage is a significant advancement in treating
MRSA infections, especially in regions with high prevalence.
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