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Abstract

Background: Intraoperative neurophysiological monitoring (IONM) guides the surgeon in ensuring motor pathway integrity
during high-risk neurosurgical and orthopedic procedures. Although motor-evoked potentials (MEPs) are valuable for predicting
motor outcomes, the key features of predictive signals are not well understood, and standardized warning criteria are lacking.
Developing a muscle identification prediction model could increase patient safety while allowing the exploration of relevant
features for the task.

Objective: The aim of this study is to expand the development of machine learning (ML) methods for muscle classification and
evaluate them in a bicentric setup. Further, we aim to identify key features of MEP signals that contribute to accurate muscle
classification using explainable artificial intelligence (XAI) techniques.

Methods: This study used ML and deep learning models, specifically random forest (RF) classifiers and convolutional neural
networks (CNNs), to classify MEP signals from routine supratentorial neurosurgical procedures from two medical centers according
to muscle identity of four muscles (extensor digitorum, abductor pollicis brevis, tibialis anterior, and abductor hallucis). The
algorithms were trained and validated on a total of 36,992 MEPs from 151 surgeries in one center, and they were tested on 24,298
MEPs from 58 surgeries from the other center. Depending on the algorithm, time-series, feature-engineered, and time-frequency
representations of the MEP data were used. XAI techniques, specifically Shapley Additive Explanation (SHAP) values and
gradient class activation maps (Grad-CAM), were implemented to identify important signal features.

Results: High classification accuracy was achieved with the RF classifier, reaching 87.9% accuracy on the validation set and
80% accuracy on the test set. The 1D- and 2D-CNNs demonstrated comparably strong performance. Our XAI findings indicate
that frequency components and peak latencies are crucial for accurate MEP classification, providing insights that could inform
intraoperative warning criteria.

Conclusions: This study demonstrates the effectiveness of ML techniques and the importance of XAI in enhancing trust in and
reliability of artificial intelligence–driven IONM applications. Further, it may help to identify new intrinsic features of MEP
signals so far overlooked in conventional warning criteria. By reducing the risk of muscle mislabeling and by providing the basis
for possible new warning criteria, this study may help to increase patient safety during surgical procedures.
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Introduction

The importance of intraoperative neurophysiological monitoring
(IONM) during high-risk neurosurgical and orthopedic
procedures has been established in recent decades [1]. In
particular, the monitoring of motor evoked potentials (MEPs)
helps to assess the functional integrity of motor pathways during
surgeries and allows postoperative motor outcomes to be
predicted [2-9]. However, the features of this complex signal
that contribute to its predictive potential are still poorly
understood and there are few standardized warning criteria to
alert the surgeon. Currently, the best-established and most
reliable MEP warning criterion during IONM is a 50% drop in
amplitude [10].

Because changes in MEP amplitude are predictive of
postoperative motor outcome, it is natural to ask whether other
properties of the signals could be important for decision-making.
The emergence of machine learning (ML) methods has led to
an interest in leveraging these techniques to classify MEPs in
the hope of improving intraoperative decision-making [11,12].
However, most of the studies so far have focused on identifying
the most accurate and robust ML algorithms rather than on
uncovering the underlying patterns leading to the decisions.

In our previous work, we established prediction algorithms for
muscle identification to provide a proof of principle within a
solid ground truth framework before translating them to outcome
predictions [12]. Meanwhile, Boaro et al [13] implemented a
similar classification task with additional ML models and
muscles. The robustness of ML algorithms on clinical data needs
to be established using independent data sources, which is why
we have expanded our data set to include signals from an
external validation center.

To gain a deeper understanding of our signals, we investigated
them in both the time-series and time-frequency domains, which
have been shown to be useful in the quantification of
disease-related MEP changes [14]. In addition to the standard
ML models, we used deep learning methods to leverage their
power of internal feature representation. Although these
algorithms can accurately predict the identity of muscles based
on MEP signals, the specific criteria that these algorithms use
to make their predictions are not well understood [15-17]. For
research in the field of IONM, this explanatory information is
probably at least as important as the predictions themselves, as
it can provide new insights into the mechanisms of
neurophysiological changes. For this reason, we used methods
from the emerging field of explainable artificial intelligence
(XAI) [18,19]. The aim was to combine methods to ensure
comprehensive interpretability of our different models’
decisions.

Our study provides a robust framework for classifying MEPs
recorded in routine neurosurgical procedures according to their

muscle identity with high accuracy and we validated the methods
using data from two independent study centers. Importantly,
we elucidate the decision-making processes of our ML models
through post hoc analyses, thereby enabling their effective
application to previously unseen data and novel situations. These
algorithms could act as a safety mechanism in the operating
room by detecting mislabeling of muscles and by focusing on
new intrinsic features of MEPs. Thus, they may enhance the
usage and acceptance of artificial intelligence (AI) in medical
decision-making through their interpretability.

Methods

Ethical Considerations
This retrospective study was approved by the cantonal ethics
committee of Bern, Switzerland (BASEC-ID 2023–00277). All
included patients gave their informed written consent for further
use and publication of their anonymized data. The routinely
collected data are dated from 2018 to 2022 and coded for the
analysis of this paper. Only patients over the age of 18 were
included in the study, all received neurosurgical interventions
and were not stratified according to their clinical outcome since
the outcome prediction of the study was muscle identification.
The muscle recordings are set routinely independent of
sociodemographic or clinical factors.

In the following, we describe the datasets collected, the
preselection approach applied to the data, the methods used for
signal data representation, and the analytical techniques used,
including XAI approaches to elucidate MEP feature importance.

MEP Data and Signal Recordings
The MEP data used in this study were obtained during routine
neurosurgical procedures and were retrospectively collected
and analyzed. This study was exploratory in nature, and no
formal protocol was prepared. Recordings from 151 surgeries
on 144 patients at one center (Inselspital, University Hospital
Bern, Switzerland), “center T1” were used for training and
validation, and recordings from 58 surgeries on 57 patients at
an independent center (Cantonal Hospital in Lucerne,
Switzerland), “center T2” were used for testing (see Figure 1A).
In total, there were 94 females and 107 males and the median
age at surgery was 61 years (see Table 1 for distribution between
centers). Overall, 182 patients underwent surgery for a brain
tumor and 19 for vascular pathologies. The total number of
MEP signals was 36,992 for center T1 and 24,298 for center T2,
with at least 3000 samples for each predicted class (see Table
1 for detailed information on classes). This sample size was
determined by the number of routine interventions and ensures
that any complexity of the ML models used can appropriately
be trained, tested, and validated.
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Figure 1. Data analysis pipeline. (A) Bicentric training, validation, and testing setup. (B) Data representation and the algorithms used on each
representation. CNN: convolutional neural network.

IONM was performed according to a standardized protocol, as
previously described [8,20]. The MEPs were elicited either
through transcranial electric stimulation (TES) via corkscrew
electrodes or direct cortical stimulation (DCS) via strip
electrodes placed directly on the cortex and recorded via needle
electrodes in the muscle belly. Stimulation to elicit MEPs was
conducted under general anesthesia using a train of 5 anodal
stimuli with a pulse duration of 0.5 milliseconds, and an
interstimulus interval of 4 milliseconds, known as the short train
method. Both centers used ISIS Systems to record the MEPs.
The sampling frequency was set at 20 kHz, with hardware high-
and low-pass filters at 30 Hz and 5 kHz, respectively. TES was
used in all the surgeries performed in center T1 and in 95% (55
of 58) of those performed in center T2 to elicit MEPs. In

addition, DCS was used to elicit MEPs in 134 of the 151 (89%)
surgeries performed in center T1 and 17 of 58 (30%) surgeries
performed in center T2. The recordings consist of 2000 data
points, corresponding to 100-millisecond windows for each
signal. We selected MEP signals from the following 4 muscles:
Extensor digitorum (EXT), abductor pollicis brevis (APB),
tibialis anterior (TA), and abductor hallucis (AH). These muscles
are routinely monitored during supratentorial surgeries, and the
corresponding signals were available for most of the included
patients from both sides. As the neurophysiologist labels the
recording channels at the start of the surgery, the MEP data are
automatically labeled upon saving.

We used custom-made Python 3.0 scripts for all the data analysis
and classification tasks.
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Table 1. Surgery, patient, and recording characteristics. The percentage of clinical outcome is calculated in relation to the total number of patients,
while the percentage of TES and DCS stimulations is calculated with respect to the total number of surgeries (including redo operations).

Center T2Center T1Categories

Demography, n

57144Patients

2978Ma

2866Fb

5862Agec

Pathology, n

80Meningioma

20Schwannoma

27Oligodendroglioma

1016Astrocytoma

1073Glioblastoma

444Metastasis

130Aneurysm

41AVMd

12Cavernoma

30Trigeminal neuralgia

01Radio necrosis

Clinical outcome, n (%)

9 (16)29 (19)Deficits at discharge

4 (7)9 (6)Deficits at follow-up

Neurophysiology

58151Surgeries, n

55 (95)151 (100)TESe stimulation, n (%)

17 (30)134 (89)DCSf stimulation, n (%)

24,29836,992MEPg signals, n

3628 (14.5)11,958 (31.8)EXTh signals, n (%)

10,670 (42.6)15,800 (42.9)APBi signals, n (%)

4970 (21.4)5773 (15.7)TAj signals, n (%)

5030 (21.6)3461 (9.6)AHk signals, n (%)

aM: male.
bF: female.
cAge is the median age of all patients.
dAVM: arteriovenous malformation.
eTES: transcranial electric stimulation.
fDCS: direct cortical stimulation.
gMEP: motor-evoked potential.
hEXT: extensor digitorum.
iAPB: abductor pollicis brevis.
jTA: tibialis anterior.
kAH: abductor hallucis.
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Preprocessing and Data Representation

Preselection
An automatic MEP selection algorithm was written to determine
whether a given recording contained an MEP [12]. To remove
stimulation artifacts from the train of 5, we excluded the first
400 data points (corresponding to 20 milliseconds). Then, two
features were computed: the onset latency and duration of the
signal. Onset latency is defined as 1 millisecond (empirically
determined) before the trace crosses the mean of the baseline
(the last 5 milliseconds of the recording) plus or minus the SD
of the entire recording. The end of the signal was calculated
similarly, by starting from the end of the recording. We defined
the duration as the end of signal latency minus onset latency.
In addition, the time interval between the first and last peak was
determined using the scipy.signal function find_peaks. A
recording was considered to contain an MEP if at least one peak
was detected, the duration was less than 40 milliseconds, and
the interval from the first to last peak was less than 35
milliseconds (in accordance with clinical experience).

In our analysis pipeline, we used three distinct representations
of MEP data (see Figure 1B): time, feature, and time-frequency,
each tailored to optimize the performance of our ML classifiers.

Time Representation
A finite-impulse response bandpass filter with 30- and 1000-Hz
cutoff frequencies was applied to the 1600-dimensional signal
vector. These frequency settings align with MEP visualization
practices using the monitoring machine at center T1 (ie, the
software filters). The signal vectors are then normalized with
respect to the absolute maximum MEP value in each patient.
This filtered and normalized time representation of the data was
used to train, validate, and test a random forest (RF) classifier,
as well as a 1-dimensional convolutional neural network
(1D-CNN).

Feature Representation
We used a customized feature extraction algorithm to condense
each filtered and normalized MEP signal into characteristic
features. The initial choice of predictors is a combination of
clinically used predictors (eg, latency, amplitude, minimum,
and maximum) and routinely used features in general
neurophysiological literature (spectral entropy, frequency, etc).
After a correlation analysis (see Multimedia Appendix 1), we
chose five features that showed no correlation describing
relevant domains of the signal: peak latency, maximum signal
value, number of peaks, main frequency, and slope.

Peak values were extracted with the scipy find_peaks function
with peak prominence defined as twice the SD of the signal.
The main frequency was calculated as the frequency at which
the Fourier transform of the filtered data attained its maximum
absolute value. Finally, the slope of the signal was computed
as the mean of the first derivative of the signal (using the NumPy
function gradient). The resulting 5-dimensional feature

representation of the data was then used to train, validate, and
test a RF classifier.

Time-Frequency Representation
Finally, employing the Python library PyWavelets (pywt), a
continuous wavelet transform with a Mexican hat mother
wavelet was applied to the data to transform them into 2D
time-frequency representations. Scales ranging from 2 to 30
were logarithmically spaced, while the time dimension was
undersampled to yield an array of dimensions 224×224. These
2D time-frequency representations were then used to train,
validate, and test a 2D-CNN.

Statistical Testing
Using custom Python scripts, Student t tests were applied to
compare the mean values of two different features. Specifically,
for each muscle, the means of the different features were
compared across the two centers. Statistical significance was
set at P=.05.

Machine and Deep Learning Pipeline
The Python library scikit-learn [21] was used for the RF
classifier, while tensorflow [22] and keras [23] were used to
obtain the 1D- and 2D-CNN models. Hyperparameter tuning
was carried out for the RF and 1D-CNN, while we used fixed
parameters for the 2D-CNN (see below). The hyperparameters
used in the grid search of the RF are the same as described in
Multimedia Appendix 1. The architecture of our 1D-CNN is
inspired by the model of Ahmed et al [24], and consists of two
consecutive 1D convolutional layers, followed by a MaxPooling
layer, a dropout layer, and a BatchNormalization layer. The
model then gets flattened, before adding a dense layer and
another dropout layer and finally ending in a dense output layer.
The structure of our 2D-CNN is inspired by the model of Wang
et al [25]. It consists of 4 blocks of 2D convolutional layers
followed by BatchNormalization layers, with a MaxPooling
layer after the second and third blocks and a GlobalMaxPooling
layer after the fourth block. The model is capped off by a dense
output layer. The specifics of these models are shown in
Multimedia Appendix 1.

The dataset from Center T1 was split into 70% for training and
30% for validation (stratified according to patients), while the
whole of the dataset from Center T2 was used for testing. In all
cases, we used class weighting [26] to deal with the class
imbalance problem (ie, the number of leg muscle MEPs is lower
than the number of arm muscle MEPs, see Wermelinger et al
[12] for a discussion of this issue).

Model Output and Outcome
All prediction models output probabilities of belonging to the
predicted class. The decision thresholds were set at a chance
level of 0.25 (likelihood of belonging to 1 of 4 classes of
muscles). They were systematically explored and reported (see
Figure 2B) for decision thresholds up to 0.9.
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Figure 2. Classification results and confidence. (A) Validation accuracy (center T1, white) and test accuracy (center T2, colored) of all models. (B)
Decision confidence. Solid lines are the accuracies (left y-axis) of the various models for different confidence thresholds. The dashed lines show the
proportion of data with these confidences (right y-axis). RFs have a higher increase in accuracy compared with CNNs but at a higher data cost. (C)
Bicentric confusion matrices: lower triangle (center T2), upper triangle (center T1) for both RF on feature representation (top) and 2D-CNN (bottom).
The RF is slightly more congruent across centers than the 2D-CNN. CNN: convolutional neural network; RF: random forest.

Accuracy was used as the primary performance metric, and the
confusion matrix was used to evaluate the performance of the
classification algorithm. The outcome assessment does not
require subjective interpretation, since the muscle identity is
objectively assessable, independent of sociodemographic
background and clinical outcome.

No model updating or recalibration was performed during the
model evaluation. While some variability in model performance
was observed across different centers (Figure 2), we opted to
retain the original model without adjustments. Future work may
explore model updating to enhance performance in these areas.

Explainability
To elucidate how the RF classifiers made their decisions, we
used feature importance and Shapley Additive Explanation
(SHAP) values. Feature importance values are provided by the
feature_importances_ attribute of the scikit-learn
RandomForestClassifier class, while the SHAP values are
calculated with the SHAP library [27]. The feature importance
values are determined by aggregating (mean and SD) the
impurity decrease within each decision tree. SHAP values
quantify the impact of each feature on prediction outcomes.

Positive values signify a positive influence, while negative
values indicate the opposite, with magnitude representing the
strength of the effect. SHAP values of the RF on feature
representation of the MEP data were computed on a random
sample containing 20% (5919 MEPs) of the training data set.
In the case of CNNs, we used gradient-weighted class activation
mapping (Grad-CAM). This is a type of attention map, a
visualization tool highlighting regions within an image
considered by the neural network to be pivotal for specific
predictions [28]. We adapted preexisting code to generate
Grad-CAMs for both 1D- and 2D-CNNs [29,30]. The
Grad-CAMs of all signals in the training data set were averaged
to obtain the corresponding plots for the 1D-CNN (overall) and
2D-CNN (for each muscle).

Results

Differences and Similarities of MEP Properties
Between Centers
Data from 151 surgeries from the training and validation center
T1 yielded a total of 36,992 MEPs (11,958 EXT, 15,800 APB,
5773 TA, and 3461 AH), and the data from 58 surgeries from
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the test center T2 yielded a total of 24,298 MEPs (3628 EXT,
10,670 APB, 4970 TA, and 5030 AH; Table 1).

The distribution of muscle recordings is illustrated in Table 1.
A notable discrepancy was observed in the proportion of MEPs
recorded from the upper extremities between centers T1 (75%,
27,758/36,992) and T2 (58.8%, 14,298/24,298). This variation
stems from differences in surgical procedures, montage
standards, and stimulation techniques. As shown in Table 1, the
proportion of MEPs elicited via DCS was significantly higher

in center T1 (89%, 134/151) than in center T2 (30%, 17/58).
One striking difference in the MEP data was the significantly
shorter onset latencies across all muscles for center T1 (P<.001;
Figure 3B). It is crucial to consider these disparities when
interpreting the classification results. Furthermore, Figure 3C
reveals differences in main frequency patterns between proximal
muscles (EXT and TA) and distal muscles (APB and AH) for
both centers, adding another layer of complexity to the MEP
data analysis.

Figure 3. MEP properties across the 2 centers. (A) Latency distribution for both centers and for each muscle. The latencies of all muscles are significantly
shorter at center T1. (B) Main frequency distribution for both centers and each muscle. At both centers, the distal muscles (APB and AH) exhibit a
higher main frequency than the proximal muscles (EXT and TA). AH: abductor hallucis; APB: abductor pollicis brevis; EXT: extensor digitorum; TA:
tibialis anterior.

With time representation of the MEPs, the RF classifier achieved
87.9% accuracy on the validation dataset from center T1 and
80% on the test set from center T2. The 1D-CNN achieved a
validation accuracy of 87.8% and a test accuracy of 78.4%. On
the feature representation, the RF achieved 80.3% validation
accuracy and 74.5% test accuracy. Finally, the 2D-CNN
achieved 87.2% validation accuracy and 81.9% test accuracy
on the time-frequency representation of the MEPs (see Figure
2A). Examination of the confusion matrices (Figure 2C and
Multimedia Appendix 2) revealed subtle variations in
decision-making patterns across muscles for different data
representations and models. Generally, the more
high-dimensional data input (time and time-frequency
representation) performed better at the classification task than
the feature representation of the data. Comparing the
performances overall muscles between the RF on the feature
representation and the 2D-CNN on the time-frequency
representation, the former has a lower overall accuracy than the
latter. However, when evaluating performance consistency
across muscles, the feature representation demonstrated slightly
less variability, evidenced by a lower SD (6.44% for RF on
feature representation vs 7.3% for 2D-CNN) and coefficient of
variation (8.15 vs 8.56, respectively), of performances.

Evaluating Decision Confidence
In intraoperative clinical settings, the confidence with which
decisions are made is important. To assess this aspect in our

classification task, we examined the confidence of our
algorithms in categorizing muscles. Figure 2B illustrates the
relationship between the proportion of confident predictions
(those meeting a specific confidence threshold) and the
corresponding test accuracy (see also Multimedia Appendix 2).
For a four-class problem, the chance level is 25%. Notably, our
models consistently outperform this baseline, showing robust
performance. However, as confidence thresholds increase, the
proportion of data that meet these criteria diminishes, albeit
resulting in enhanced accuracy. The RF models incur a
proportionally higher data cost for achieving this accuracy
enhancement compared with CNNs.

Insights Into Model Decision-Making

Explicit Feature Representation
Although algorithms using explicit feature representations
showed poorer performance (80% test accuracy), they provided
key insights into the decision-making process. Feature
importance analysis (Figure 4A) revealed that peak latency, a
primary factor in clinical decision-making, was the main driver
of classification. Main frequency was the next most important,
despite typically not being used by clinicians. This was followed
in order of importance by maximum signal value, while slope
and number of peaks were the least important features.
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Figure 4. Model decisions according to muscle classification. (A) SHAP feature importances of the RF on feature representation. (B) Beeswarm plot
of SHAP values for each muscle classification of the RF on data with feature representation. The features are ordered by importance (top to bottom).
Feature values are color-coded (black: high value, yellow: low value). Being on the right (positive SHAP values) means that the feature contributes to
the (not necessarily correct) prediction of that particular class. Latency is the most important feature in this situation, with short latencies indicating
upper extremity muscles, and long latencies lower extremity muscles. The second most important feature is the main frequency, with high frequencies
leading to a decision toward distal muscles (APB and AH), whereas low frequencies push the decision toward proximal muscles (EXT and TA). AH:
abductor hallucis; APB: abductor pollicis brevis; EXT: extensor digitorum; SHAP: Shapley Additive Explanation; TA: tibialis anterior.

SHAP values from the RF model using feature representation
elucidated how different parameters influenced the model’s
decisions for each class (Figure 4B). In all four muscles, peak
latencies were crucial. For the upper extremity, short latencies
favored correct predictions, whereas long latencies were accurate
indicators for the lower extremity classes. Interestingly, the
main frequencies did not exhibit this pattern. High main
frequency values favored predictions for distal muscles (APB
and AH), whereas low frequencies were associated with
proximal muscles (EXT and TA).

Implicit Feature Representation in CNNs
When presented with complex data, such as time-series and
wavelet transforms, ML algorithms use internal feature

representations to guide their decision-making. For CNNs, these
features can be visualized using attention maps, which highlight
the areas of the input data that are most salient and decisive for
classification. In the depicted Grad-CAMs, these areas
correspond to where the signal occurs (see Figure 5B). The
insights from explicit feature representation regarding main
frequencies are also evident in the Grad-CAMs, since attention
for proximal muscles focuses on lower frequencies compared
with distal muscles. Similarly, in the feature importance analysis
of the RF using the time representation, and in the average (over
all signals and all muscles) of the Grad-CAMs of the 1D-CNN,
the highest importance is assigned to the time points when the
signals occur (see Figure 5A).

Figure 5. Feature insights for time-series and time-frequency models. (A) Top: The feature importance values of the random forest on time representation
motor-evoked potential (MEP) data. Bottom: Averaged Grad-CAM values (over all muscles and all signals) for the 1D convolutional neural network
(CNN). In both cases, the most important features are the data points where the MEP occurs (depending on the extremity, between 20 and 60 ms). (B)
Average wavelet transform (left, black and white) and average Grad-CAM plots (right, in color) for each muscle. Yellow color and black contour
indicate high-attention areas of the CNN. The attention is earlier in the time domain for upper than for lower extremity muscles, whereas the lower
bound of the attention contour along the frequency dimension is higher for distal muscles (APB and AH) than for proximal muscles (EXT and TA).
AH: abductor hallucis; APB: abductor pollicis brevis; EXT: extensor digitorum; TA: tibialis anterior.
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Discussion

Key Findings

Overview
Our study demonstrates the high performance of ML models,
such as RF, 1D-CNN, and 2D-CNN, in classifying MEPs
recorded during IONM. Notably, the RF classifier achieved
87.9% validation accuracy and 80% test accuracy using time
representation data, while the 1D-CNN and 2D-CNN achieved
comparable performances with slightly increased variations in
accuracy across different datasets.

Furthermore, our analysis revealed that frequency is a critical
feature that these algorithms use for decision-making, with
different frequency ranges (low vs high frequencies) being
decisive depending on the muscle group involved (proximal vs
distal, respectively). This is an important finding, which should
encourage clinicians to investigate this feature for potential
warning criteria. Since there are still disagreements when it
comes to warning criteria during intraoperative monitoring of
motor evoked potentials, our results may already provide an
opportunity to increase patient safety during surgical procedures.

Source of Data Differences and Bias in ML Applications
Significant differences in MEP latencies between datasets from
centers T1 and T2 (see Figure 3A) may highlight the influence
of different stimulation techniques. The higher number of MEPs
induced by DCS at center T1 might explain this difference, but
other factors might also influence these findings, such as data
collection methods, types of surgical procedures, and
characteristics of the selected patient population including
height, age, disease, etc. For example, the higher proportion of
upper extremity MEPs in the data from center T1 is due to
different surgical focuses at center T1 compared with center T2.
Understanding these differences is crucial for interpreting ML
model performance and ensuring generalizability across centers.
Including more centers and more extensive data collection can
mitigate biases and advance research in the field.

Frequency Differences in Proximal Versus Distal Muscle
Groups
Our findings indicate significant differences in MEP frequencies
between distal and proximal muscle groups. Distal muscles
exhibit higher MEP frequencies compared with proximal
muscles, a trend that was effectively used by various of our
tested models in their decision-making processes. The
underlying neurophysiological mechanisms contributing to these
differences are not fully understood. Although the general
pathway of distal and proximal MEPs are similar—upper motor
neurons synapsing on lower motor neurons that innervate muscle
fibers at the neuromuscular junction—anatomical and
physiological differences between distal and proximal muscles
may explain the observed frequency variations. The following
physiological and anatomical characteristics outline potential
factors contributing to these differences.

First, distal muscles, involved in fine motor control, possess a
higher density of smaller motor units compared with proximal

muscles. The smaller motor units of distal muscles have lower
activation thresholds but generate less force than the larger
motor units found in proximal muscles [31-33]. Furthermore,
distal hand muscles contain a greater proportion of slow motor
units, which are more fatigue-resistant [34,35].

Secondly, the temporal dispersion of electrical activity differs
between muscle groups. Distal muscles, such as those in the
hand and foot, exhibit more synchronous and temporally
concentrated MEP responses, whereas proximal muscles display
greater temporal dispersion. This increased synchrony in
proximal muscle MEPs likely contributes to the higher
frequency distribution observed in distal muscle MEPs.

Thirdly, the cortical representation of distal muscles is
significantly larger than that of proximal muscles, reflecting
the dense corticospinal innervation of these areas. Hand muscles
receive among the strongest corticospinal inputs, highlighting
their critical role in precise motor control [36-38].

In addition, various motor control pathways interact differently
with distal and proximal muscle groups, further influencing the
MEP frequency characteristics. These interactions likely involve
contributions from both corticospinal and other descending
motor pathways, though their exact contributions require further
investigation [39].

The functional relevance of high and low-frequency bands
within MEPs remains uncertain. While our findings suggest
that MEP characteristics are largely determined by
muscle-specific neurophysiology, it is essential to consider the
potential role of top-down modulation from cortical and
subcortical regions. These central mechanisms could influence
observed frequency differences and may contribute to the
observed MEP variations between distal and proximal muscles.

Given that intraoperative changes in MEPs are considered
critical warning signs of upper and lower motor neuron
impairment, further investigation is necessary to clarify the
relationship between MEP frequency components and both
muscle neurophysiology and neuronal modulation mechanisms.

Explaining Decisions: How SHAP and Grad-CAM
Uncover MEP Feature Importance
ML models, particularly those designed to handle complex data,
consistently achieve high performance, but their lack of
transparency can hinder interpretability and therefore acceptance
in clinical processes. Specifically, we attained 80% accuracy
with our five features per signal, compared with 87% accuracy
with 1600 data points per signal. To address interpretability,
we applied two complementary explainability techniques: SHAP
and Grad-CAM, each offering unique insights into model
behavior.

SHAP provides a feature attribution approach, assigning precise
numerical contributions to each input feature—such as latency
or main frequency—to quantify its role in the prediction process.
This method is independent of the choice of ML model and
excels at identifying the relative importance of features and
offers consistent, interpretable insights, albeit being
computationally expensive. In contrast, Grad-CAM generates
attention maps that visually highlight which regions of the input
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signal influenced the model’s decisions. They are model-specific
and generally limited to CNNs. These visualizations are
particularly useful for validating whether the model focuses on
relevant, clinically meaningful areas of the MEP signal.

The combination of SHAP and Grad-CAM allowed us to
cross-validate findings, ensuring that the observed importance
of main frequency was both quantitatively consistent and
visually evident. Compared with other interpretability
techniques, such as LIME [40]. SHAP provides more robust
and consistent explanations by attributing specific contributions
of each feature to individual predictions (local interpretability)
while also summarizing feature importance across the entire
dataset to reveal overall model behavior (global interpretability).

Our complementary approach highlights the importance of main
frequency as a decisive MEP feature and demonstrates how
XAI methods can uncover meaningful insights that warrant
further testing in basic research and clinical trials. Moreover,
the trade-off between explainability and complexity must be
carefully considered. In intraoperative settings, where clinical
trust is crucial, Grad-CAM’s intuitive attention maps may be
favored for transparency. Conversely, SHAP’s precise
attributions offer deeper insights for research applications
requiring feature-level understanding.

Ultimately, the choice of method depends on the context. Highly
accurate yet less interpretable models should not be dismissed
if extensively validated on diverse populations. In practice,
balancing explainability and accuracy through complementary
methods ensures optimal utility, whether for guiding clinical
decisions or advancing research.

Confidence in Intraoperative Decision-Making and
Implications for Clinical Practice
Accurately identifying muscles and avoiding labeling mistakes
is critical in IONM, with previous studies highlighting the
consequences of such errors that harm the patients we seek to
protect [41,42]. During the IONM setup, mislabeling of muscles
has caused false negative alarms, in missing MEP alterations
of a presumed unaffected muscle. These incidences have caused
potentially avoidable motor deficits during surgery and
consequently resulted in legal actions. Nevertheless, we have
to acknowledge that the IONM setup in the operating room
environment is prone to errors as it is a high-pressure
environment [43]. Safety checklists have been implemented;
however, an automated ML safety check would increase the
avoidance of mislabeling. Those algorithms may be
implemented in an existing IONM software.

Further, our results suggest that expanding the search for
warning criteria to the frequency domain is essential, as different
muscles may require tailored approaches. Once these muscle
classification models have been validated on more data and
more centers, they could be implemented as a safety mechanism
at baseline recordings in surgeries.

When analyzing the confidence of our algorithms (see Figure
2B), it became apparent that signal quality and recording modes
might limit high-confidence decisions, even with optimal
algorithms. This trade-off between data volume and accuracy
necessitates either better-trained models or higher-quality

recordings. Investing in improved surveillance methods or stable
recording techniques, such as averaging or selecting the best
MEPs from multiple recordings, could be an essential step. This
might affect how MEP monitoring will be done in the future.

Ensuring the trustworthiness of AI involves addressing ethical
and legal implications and incorporating decision confidence
metrics could bolster acceptance of AI. The question of
responsibility is important in a clinical setting and a transparent
decision process for any potential implementation of AI is
crucial in this regard. This becomes even more evident when
discussing legal aspects and accountability. Integrating ML
models with robust explainability attributes has the potential to
enhance decision-making accuracy. Disclosing the basis of the
algorithmic decisions to the neurophysiologists is key, as it
allows them to reason how their understanding differs from the
algorithm and oversee the intraoperative decision. In our
particular MEP muscle identity scenario, it can provide a safety
mechanism against muscle mislabeling and facilitate reliable
clinical decisions. By elucidating the prediction bases, XAI
supports understanding and trust in AI decisions, which is
crucial for the seamless implementation of ML tools in real-time
surgical environments. This could significantly increase
acceptance of AI and its utility in clinical contexts.

Future Directions and Limitations
Despite the promising results, our study is limited by the small
number of centers from which the data originated, potentially
introducing center-specific biases. Future research should focus
on expanding the dataset to involve more diverse clinical settings
and patient populations, thereby improving model robustness
and generalizability. This should include different IONM
devices, stimulation paradigms, and surgical practices. In
addition, further exploration of model interpretability techniques
could enhance our understanding of ML decision-making,
driving advancements in IONM practices. The next steps would
be optimizing feature engineering and investigating changes in
MEP features, especially the frequency domain during the
surgery to predict motor deficits. As we know from previous
studies, these frequency changes occur permanently in patients
with deficits [44].

Future research should adopt a structured, multitiered approach
to address remaining challenges and to advance the integration
of ML-based IONM solutions. Immediate next steps involve
expanding datasets, improving feature engineering, and
validating models across diverse populations and various centers
to enhance robustness and generalizability. Intermediate goals
include developing standardized platforms for real-time
integration, improving signal quality, and refining XAI
frameworks. The long-term vision aims for real-time AI-assisted
IONM systems to enhance decision-making, address legal and
ethical considerations, and improve surgical safety through
large-scale clinical trials and dynamic feedback mechanisms.

Conclusion
Our study highlights the potential of ML models, including RFs
and CNNs, for accurately classifying motor evoked potentials
across muscle groups during intraoperative neurophysiological
monitoring. By demonstrating robust performance across
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independent datasets, we underline the reliability and
generalizability of these models when applied to complex
surgical environments. Importantly, our results identify
frequency as a decisive feature, particularly in distinguishing
between distal and proximal muscles. While this provides
already an intraoperative safety mechanism against mislabeling,
our findings have wider implications. This overlooked parameter
offers a promising avenue for improving warning criteria during
surgeries and providing the opportunity for timely intervention.

Integrating XAI techniques, specifically SHAP and Grad-CAM,
provided critical transparency into model decisions. XAI
elucidates the underlying prediction bases, enhancing

interpretability and fostering clinical trust—key prerequisites
for successful deployment in real-time surgical settings. In the
context of IONM, this transparency serves as a safety
mechanism against muscle mislabeling, a persistent issue that
can lead to avoidable motor deficits and legal consequences.

By bridging the gap between model performance, clinical
interpretability, and real-world implementation, this research
paves the way for broader and more reliable AI applications in
IONM-guided surgery. Real-time AI-assisted MEP monitoring
holds the potential to transform intraoperative practices by
improving decision accuracy, mitigating human error, and
safeguarding patient outcomes.
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AH: abductor hallucis
AI: artificial intelligence
APB: abductor pollicis brevis
CNN: convolutional neural network
DCS: direct cortical stimulation
EXT: extensor digitorum
Grad-CAM: gradient class activation map
IONM: intraoperative neurophysiological monitoring
MEP: motor-evoked potential
ML: machine learning
RF: random forest
SHAP: Shapley Additive Explanation
TA: tibialis anterior
TES: transcranial electrical stimulation
TRIPOD-AI: Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or
Diagnosis–Artificial Intelligence
XAI: explainable artificial intelligence
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