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Abstract

Background: While the COVID-19 pandemic has induced massive discussion of available medications on social media,
traditional studies focused only on limited aspects, such as public opinions, and endured reporting biases, inefficiency, and long
collection times.

Objective: Harnessing drug-related data posted on social media in real-time can offer insights into how the pandemic impacts
drug use and monitor misinformation. This study aimed to develop a natural language processing (NLP) pipeline tailored for the
analysis of social media discourse on COVID-19–related drugs.

Methods: This study constructed a full pipeline for COVID-19–related drug tweet analysis, using pretrained language model–based
NLP techniques as the backbone. This pipeline is architecturally composed of 4 core modules: named entity recognition and
normalization to identify medical entities from relevant tweets and standardize them to uniform medication names for time trend
analysis, target sentiment analysis to reveal sentiment polarities associated with the entities, topic modeling to understand
underlying themes discussed by the population, and drug network analysis to dig potential adverse drug reactions (ADR) and
drug-drug interactions (DDI). The pipeline was deployed to analyze tweets related to the COVID-19 pandemic and drug therapies
between February 1, 2020, and April 30, 2022.

Results: From a dataset comprising 169,659,956 COVID-19–related tweets from 103,682,686 users, our named entity recognition
model identified 2,124,757 relevant tweets sourced from 1,800,372 unique users, and the top 5 most-discussed drugs: ivermectin,
hydroxychloroquine, remdesivir, zinc, and vitamin D. Time trend analysis revealed that the public focused mostly on repurposed
drugs (ie, hydroxychloroquine and ivermectin), and least on remdesivir, the only officially approved drug among the 5. Sentiment
analysis of the top 5 most-discussed drugs revealed that public perception was predominantly shaped by celebrity endorsements,
media hot spots, and governmental directives rather than empirical evidence of drug efficacy. Topic analysis obtained 15 general
topics of overall drug-related tweets, with “clinical treatment effects of drugs” and “physical symptoms” emerging as the most
frequently discussed topics. Co-occurrence matrices and complex network analysis further identified emerging patterns of DDI
and ADR that could be critical for public health surveillance like better safeguarding public safety in medicines use.

Conclusions: This study shows that an NLP-based pipeline can be a robust tool for large-scale public health monitoring and
can offer valuable supplementary data for traditional epidemiological studies concerning DDI and ADR. The framework presented
here aspires to serve as a cornerstone for future social media–based public health analytics.
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Introduction

The emergence of the COVID-19 pandemic has induced an
immediate need for effective pharmacotherapies. While the
development and application of such therapies are critically
important, they are also influenced by an array of political,
economic, and social factors. Meanwhile, an overabundance of
drug-related information during the COVID-19 pandemic has
rapidly proliferated across social media platforms, drawing
significant attention from governments and health organizations.
This phenomenon, referred to as an “infodemic,” has
exacerbated the pandemic’s impact, caused additional harm to
individuals, and undermined the effectiveness and sustainability
of the global health system [1,2]. For example, public
pronouncements by high-profile figures, such as former US
President Donald Trump’s endorsement of hydroxychloroquine,
have led to its irrational use and consequential public health
crises [3]. Traditional pharmacovigilance mechanisms, reliant
on clinical trials and formal reporting systems like MedWatch
and DrugBank [4-6], offer valuable but lagged information.
These traditional approaches are plagued by inefficiencies,
reporting biases, and a lack of timeliness, thereby lacking
comprehensive coverage of the population’s sentiments and
experiences [7-10].

In this context, real-time public comments on pharmacotherapies
such as medications on social media provide a valuable resource
for complementing research on drug use or repositioning for
the COVID-19 pandemic. In addition to the fast accessibility,
timeliness, and comprehensive population coverage, social
media can also supply real-world evidence on how people
respond to different drugs, thus helping researchers mine novel
drug potency or side effects [11-13]. Social media also offer
data on drugs not typically included in pharmacovigilance
datasets, such as over-the-counter drugs [14], herbal remedies
[15], and other nontraditional treatments [16]. However, the
sheer volume and noise in social media data require robust
computational methodologies for effective analysis [17].

Natural language processing (NLP) technologies offer a solution
to these challenges. Earlier studies, such as the study conducted
by Aramaki et al [18] in 2011, demonstrated that Twitter
(subsequently rebranded X) data could be mined to monitor
influenza outbreaks using machine learning and rudimentary
NLP techniques. Contemporary research in this domain has
benefitted immensely from technological advancements, such
as deep-learning–based NLP tools specifically for analyzing
social media data [19-22]. These have made it increasingly

feasible to understand large volumes of colloquial, noisy text
for the extraction of meaningful insights on public health.

Substantial efforts such as topic modeling and sentiment analysis
have been made to analyze pharmacotherapy-related topics
during the COVID-19 pandemic. Notably, existing research
lacked of data-driven pipeline with state-of-the-art NLP tools
and other big data analysis techniques [23-27] or just involved
longitudinal data with a small time span [28]. There is still a
gap in how to automatically and accurately extract drug
information through social media data for longitudinal
monitoring of the drug infodemic.

To address these gaps, this study uses NLP methodologies and
network analysis for an extensive assessment of COVID-19
drug-related discourse on social media. We contribute to the
existing literature in several ways:

(1) Using deep learning methodologies for named entity
recognition (NER), thereby reducing the false positives
associated with traditional keyword matching.

(2) Re-examining public sentiments and concerns regarding
COVID-19 medications, using target sentiment analysis (TSA)
and topic modeling.

(3) Conducting a comprehensive assessment of adverse drug
reactions (ADR) and drug-drug interactions (DDI) through
network analysis techniques.

We demonstrate that our integrated NLP pipeline can serve as
a robust framework for extracting and analyzing drug-related
information, thereby enhancing the scope and effectiveness of
social media–based pharmacotherapy analysis.

Methods

Overview
As shown in Figure 1, the study workflow is organized into
three primary stages: data collection, development of an NLP
pipeline, and subsequent data analysis using the constructed
pipeline. Initially, we curated a dataset of English tweets related
to the COVID-19 pandemic. After a preprocessing phase that
excluded tweets with URLs, an NLP pipeline was developed
to extract and normalize the drugs and symptoms mentioned in
these tweets. Finally, we examined the time trends of drug
mentions, public sentiment, and discussion topics toward drugs,
as well as the co-occurrence network of drug-drug and
drug-symptom pairs [22].
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Figure 1. Workflow of drug analysis with natural language processing on Twitter. LDA: latent Dirichlet allocation; METS-CoV: Medical Entity and
Targeted Sentiment on COVID-19 Related Tweets; NLP: natural language processing; NER dataset containing medical entities and targeted sentiments
from COVID-19–related tweets.

Data Collection and Preprocessing
COVID-19–related tweets from February 1, 2020, to April 30,
2022 were downloaded using Twitter’s application programming
interface (API) through unique tweet IDs, which were obtained
from a public dataset provided by Chen et al [29]. Due to the
privacy restrictions of Twitter data, the raw tweets were not
publicly available and could only be shared by tweet ID.
Therefore, we downloaded tweets by Twitter API based on the
provided tweet IDs. The downloaded data included full tweet
texts and corresponding metadata such as timestamps and user
information. Tweets containing URLs were excluded from the
analysis, as they often only contained summaries or quotations
of the original tweet. The data collection process adhered to
Twitter’s privacy and data use management policies.

NLP Pipeline Development
The NLP pipeline consists of 4 principal modules: NER, TSA,
topic modeling, and drug network analysis. For the NER and
TSA modules, we leveraged state-of-the-art models developed
in our previous work “Medical Entity and Targeted Sentiment
on COVID-19 Related Tweets (METS-CoV)” [22]. Details on
model construction can be found in Figure S1 in the Multimedia
Appendix 1.

Named Entity Recognition and Normalization
The NER model aims to extract drug entities from tweets. The
model we developed, CT-BERT-NER (COVID Twitter with
Bidirectional Encoder Representations from Transformers for
Named Entity Recognition) [22], was constructed using the
COVID-Twitter-BERT (CT-BERT), a widely adopted language
model pretrained on 160 million COVID-19–related tweets.

CT-BERT-NER was trained on the entire training set of the
NER subset of METS-CoV [22]. Upon evaluation, it showed
F1-scores of 86.35% for drug entity recognition and 81.85% for
symptom entity recognition on the corresponding test set,
respectively [22]. We used the model trained on all entity types
(ie, disease, drug, symptom, vaccine, person, location, and
organization) instead of on drug entities only to enable the
nuanced differentiation of drug entities from other types of
entities.

To standardize colloquial expressions of drugs among the
extracted entities, we manually searched Wikipedia for
NER-identified drug entities with a frequency of more than
1000 to map colloquial drug expressions and their standardized
concepts (ie, drug trade names, chemical names, and generic
names). We conducted an accuracy assessment using a random
sample of 100 tweets for each of the top 5 most frequently
mentioned drugs and symptoms, as identified through 2
methods: NER combined with lexicon-based extraction
(NER+lexicon) and lexicon-based extraction alone, with a total
of 1000 tweets being manual review. Our results demonstrated
that the NER+lexicon method achieved an accuracy rate of
97.8%, significantly surpassing the 89% accuracy achieved by

the lexicon-only approach (χ2
1=61.4, P<.001). Further details

on this comparison are available in Table S1 in Multimedia
Appendix 1.

Targeted Sentiment Analysis
The TSA module is designed to analyze users’ sentiments
toward specific drug entities within tweets. Inspired by
BERT-SPC [30], we first concatenate the original tweet and the
identified drug entity, separated by 1 special token “[SEP],” to
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form a combined tweet-entity sentence. The tweet-entity
sentence is then fed into a pretrained language model to capture
semantic features, which are subsequently passed to a linear
layer for 3-class sentiment prediction (positive, neutral, or
negative). Notably, instead of using the original BERT model,
we used CT-BERT, which has been further trained on 97 million
COVID-19–related tweets. This adaptation enhances its
understanding of COVID-19–related tweet data [22]. Therefore,
although there existed several sentiment-specific embeddings
and pretrained models [31-34], we chose the pretrained
CT-BERT model as it was trained to understand
COVID-19–related tweets. On the TSA test set of METS-COV,
the model achieved an F1-score of 62.67% and an accuracy rate
of 75.07% across 4 entity types: person, drug, disease, and
vaccine. For our own TSA study, we randomly selected 100
drug-related tweets and assessed their emotional orientation
toward drug entities using both model predictions and manual
review by a researcher with medical expertise. The results
indicated that the model’s accuracy, when compared to manual
review, was 77% (77/100), aligning closely with the TSA
model’s original accuracy of 75.07%. Furthermore, both our
hand-labeled fine-tuned dataset (METS-CoV) and the final
applied dataset (169,659,956 drug-related tweets) were derived
from the same source, ensuring the reliability and credibility of
the predictions.

Topic Model Analysis
To discern prevailing public interests in the most discussed
drugs, we implemented latent Dirichlet allocation (LDA) for
topic modeling, using the LdaModel function from the Gensim
package [35]. Topic numbers were determined based on
conventional evaluation metrics, including low perplexity [36]
and high coherence scores [37]. Detailed methodologies are
delineated in Figure S2 in Multimedia Appendix 1.

Drug Network Analysis
To illustrate potential relationships among drugs, we constructed
a drug network analysis module to generate incidence matrices
according to a previous study [38] and visualize co-occurrence
networks using Gephi [39] and ForceAtlas2 algorithm [40]. For
enhanced comprehensiveness, we incorporated a variant
supported by the Anatomical Therapeutic Chemical
classification system (ATC) [41], in addition to the Gephi-based
visualization. In addition, we used the NER model to extract
symptom entities and normalize them through a presummarized
lexicon list [42] to extend our analysis to drug-symptom
networks. The constructed networks feature nodes represented
drugs (Table S3 in Multimedia Appendix 1) or symptoms (Table
S4 in Multimedia Appendix 1). Node sizes displayed node
degrees (ie, the number of linked entities). Edge weights denoted
the cosine similarity score of 2 linked nodes. As our focus is
not on causal relationships but rather on the interplay between
entities, we used undirected graphs and semantic cosine
similarity [43] as the distance metric just as we did in the
previous work [38]. Cosine similarity is a widely implemented
metric in information retrieval and related studies [44]. In our
study, each drug or symptom entity can be represented as a
vector, with each dimension of the vector corresponding to 1

tweet text. Details for calculation can be found in Methods in
Multimedia Appendix 1.

Pipeline Deployment
Upon completion of the NLP pipeline, we proceeded to its
deployment on the preprocessed dataset of COVID-19–related
tweets. We first applied the NER and normalization module on
the preprocessed dataset (ie, removing URLs) to extract and
standardize drug entities to drug concepts. Then we filtered the
preprocessed COVID-19–related tweets dataset to get the
drug-related tweets dataset according to these drug concepts.
Following this standardization, we conducted a distributional
analysis of drug mentions to discern time trends, thereby
capturing the evolving popularity of these drugs. We also gather
related news and the trend of weekly new COVID-19 cases to
show a more holistic view of the shift in drug popularity over
time. For clarity and simplicity, we only illustrate the top 5 most
discussed drugs.

Subsequently, we used the TSA model for drug-related tweets
of the top 5 drugs mentioned above to assign each drug entity
a sentiment type. To gain a deeper understanding, we also
conducted a time-trend analysis on the positive and negative
tweets for the 5 drugs and visualized the results. Building upon
our understanding of public sentiment, we turned to topic
modeling via LDA in all drug-related tweets to explore the
thematic concentrations in the discourse surrounding drugs. The
model yielded the 20 most probable keywords and bigrams for
each identified topic, enabling us to summarize the primary
themes. We further analyzed the topic distribution associated
with each of the top 5 drugs.

Finally, we constructed co-occurrence networks for drug-drug
and drug-symptom interactions to provide a relational overview
that complements our earlier analyses. All 67 drugs with more
than 1000 mentions and 69 symptoms with more than 250
mentions over time were included in the analysis. Meanwhile,
we also zoomed in to analyze the 5 most-discussed drugs.

Statistical Analysis
The chi-square test was used to compare the accuracy
differences between NER combined with lexicon and
lexicon-based only. We used Python software (version 3.8) to
conduct the statistical analyses and chose a P value of .001 as
the statistically significant threshold.

Ethical Considerations
Ethical approval for this study was granted by the Institutional
Review Board of School of Public Health, Zhejiang University
(ZGL202201-2).

Results

Data Summary and Trends of Drug Mention Tweets
This study used a dataset consisting of 471,371,477
COVID-19–related tweets in English, which were collected
between February 1, 2020, and April 30, 2022. After excluding
tweets containing URLs, the final dataset used for this study
consisted of 169,659,956 (36.0%) tweets from 103,682,686
users. Using CT-BERT-NER, we identified 2,124,757
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drug-related tweets from 1,800,372 unique Twitter users,
accounting for approximately 1.25% of the raw
COVID-19–related tweets dataset. Table S2 in Multimedia
Appendix 1 provides more detailed statistical results of the
medical entity recognition.

Table S3 in Multimedia Appendix 1 presents the 67 most
frequently mentioned drugs, each with an occurrence exceeding
1000 times. The most frequent taxonomies are ATC [41] N
(nervous system drugs) and J (anti-infective drug). We ranked
the total occurrence of all drugs and identified the top 5

most-mentioned drugs: ivermectin, hydroxychloroquine,
remdesivir, zinc, and vitamin D to visualize their weekly time
trends. Figure 2 presents these temporal trends. The new case
counts were collected from the World Health Organization
(WHO) [37] on a weekly basis, beginning on February 1, 2020.
Given that the dataset is confined to English-language tweets,
the scope of new case counts was likewise restricted to the top
4 English-speaking nations with the highest Twitter activity:
the United States, the United Kingdom, the Philippines, and
Canada [38].

Figure 2. Weekly popularity trends of the top 5 most-mentioned drugs on Twitter examined with COVID-19–related tweets collected between February
1, 2020 and April 30, 2022. The left Y-axis represents the total number of tweets for each drug in a given week (unit: thousand tweets). The right Y-axis
represents the weekly new case count (unit: million cases). CDC: Centers for Disease Control and Prevention; FDA: Food and Drug Administration;
HCQ: hydroxychloroquine.

Among the 5 drugs, the public focused mostly on repurposed
drugs (ie, hydroxychloroquine and ivermectin), followed by
daily supplements (ie, zinc and vitamin D). The only officially
approved drug among the 5, remdesivir, received the least
attention. The frequency of discussion of hydroxychloroquine
and ivermectin fluctuated significantly across time, which
seemed to be related to relevant news events or policies (marked
in Figure 2). In the early stage of the pandemic, drug-related
discussions focused on hydroxychloroquine, with 2 prominent
peaks occurring on May 24, 2020, and August 2, 2020.
Discussion of ivermectin began to increase in the later stages
of the pandemic, with only 1 prominent peak located on
September 5, 2021. In contrast, remdesivir received the least
public attention, which increased only sporadically throughout
the pandemic, with no apparent pattern and a much lower peak
on May 3, 2020. As supplements to COVID-19 treatments,

vitamin D and zinc elicited much less public interest than
ivermectin and hydroxychloroquine, with no significant
outbreaks or visible patterns.

Changes in Sentiment for Five Most Frequent
Mentioned Drugs
We calculated the sentiment proportion for the 5 drugs and the
weekly time trends of positive and negative tweets. Figure 3A
shows the visualization of the overall attitude proportions. The
public tended to hold positive and neutral attitudes toward the
repurposed drugs, ivermectin and hydroxychloroquine. The
immune supplements, zinc and vitamin D, were frequently
mentioned with positive sentiments. The only COVID-19 drug
approved by the Food and Drug Administration (FDA),
remdesivir, received the lowest positive attitude, far lower than
those of the other drugs.
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Figure 3. Sentiment analyses of the 5 top-discussed drugs from February 1, 2020, to April 30, 2022, grouped according to their polarity, including (A)
sentiment distribution, (B) weekly ratio of positive tweets, and (C) weekly ratio of negative tweets. The denominator of the percentage was the entities
with sentiment. CDC: Centers for Disease Control and Prevention; EUA: emergency use authorization; FDA: Food and Drug Administration; HCQ:
hydroxychloroquine.

Figures 3B and 3C present weekly trends of tweets expressing
positive and negative attitudes, respectively. The major turning
points of the trends tend to coincide with new government
policies, major social events, and research findings. The
criticism of remdesivir (Figure 3C) and ivermectin increased
over time since September 2021, and the turning point for
remdesivir came at almost the same time as emerging studies
showing that the drug is ineffective [45] and has severe side
effects [46-48]. For ivermectin, public sentiment was associated
with announcements of health authorities and celebrity effects.
For example, the FDA denouncing the use of ivermectin for

COVID-19 on August 29t, 2021 had simultaneously increasing
negative discussions.

Topic Distributions of Drug-Mentioned Tweets
We applied the LDA topic model to all 2,124,757 drug-related
tweets and obtained 15 general topics based on their relatively
high topic coherence scores and low confusion levels (further
discussed in Figure S3 in Multimedia Appendix 1). We
displayed the corresponding top 20 most likely keywords in
Table 1 and assigned a theme for each topic from these
keywords. The topic “clinical treatment effect of drugs” included
288,967 related tweets and dominated the discussions,
accounting for 13.6% of all related tweets. In addition, 251,571
(11.84%) were related to “physical symptoms,” whereas 220,125
(10.36%), 197,177 (9.28%), 174,868 (8.23%), 172,955 (8.14%),
and 154,470 (7.27%) were related to “COVID-19 control,”
“causes of death,” “general treatment,” “immune response,”
and “daily supplement intake.” In addition to the overall topic
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summary, we explored the distribution of the 15 topics for the
5 drugs. Figure 4 shows a visualization of the distribution. For
ivermectin, the prominent theme was “immune response.” In
contrast, discussions of remdesivir centered on “hospital care.”
Hydroxychloroquine received relatively even attention among

the 3 topics “causes of death,” “drug scare,” and “COVID-19
control.” Vitamin D was frequently mentioned in tweets about
“daily life,” and the main topics about zinc focused on “hospital
care” and “COVID-19 control.”
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Table 1. Topic model on drug-related tweets.

Number and Percent-
age of related tweets,
n (%)

ExampleKeywordsTopic

288,967 (13.60%)“@USERa Ivermectin is pretty safe but the evidence
for it being efficacious against SARS-CoV-2 is
lacking.”

treatment, covid, study, drug, effective, trial, hydrox-
ychloroquine, prove, safe, covid, evidence, prevent,
clinical, vaccine, recommend, cheap, infection, con-
tinue, antiviral, efficacy

Clinical treat-
ment effect of
drugs

251,571 (11.84%)“When I had covid, it was mild fever for a day,
&amp; it was gone”

day, test, symptom, week, covid, positive, feel,
month, steroid, bad, start, med, ago, sick, time, recov-
er, antibiotic, hour, fine, insulin

Physical symp-
toms

220,125 (10.36%)“@USERa I agree with you re lockdown. Just not on
HCQ and vaccines.”

cure, vaccine, spread, control, lie, people, drug, covid,
push, approve, hydroxychloroquine, claim, force,
medium, ban, talk, science, government, experimen-
tal, president

COVID-19 con-
trol

197,177 (9.28%)“@USERa Of course, if they died 30 minutes after
taking fentanyl but had a positive covid test, guess
what their official cause of death is listed as?”

death, people, die, covid, kill, reason, heart, drug,
cancer, cocaine, dead, trust, epidemic, rate, bad, cre-
ate, attack, sound, result, fentanyl

Causes of death

174,868 (8.23%)“@USERa migraines have a very specific causality
(i had them for like 20 years), I wonder if the Covid

doctor, treat, patient, steroid, risk, covid, covid, se-
vere, infection, blood, pill, medication, antibiotic,
receive, prescribe, illness, lung, hospitalize, prescrip-
tion, aspirin

General treat-
ment

version is one? -- I would try warm compress,
NSAIDs, and maybe nasal irrigation with like a neti
pot”

172,955 (8.14%)“In addition, mAbs have been shown to improve
survival in patients hospitalized with COVID-19 who
have not mounted their own immune response.”

virus, system, body, immune, corona, zinc, fight,
antibody, cure, immunity, bleach, deficiency, cell,
response, kill, covid, inject, injectingdisinfectant,
human, boost

Immune re-
sponse

154,470 (7.27%)“@USERa regularly take vitamins and a Vitamin D
supplement. I started taking the Vitamin D supple-

vitamin, people, level, covid, eat, healthy, cold, flu,
catch, protect, food, hand, low, stay, vit, survive, bad,
chance, common, worry

Daily supple-
ment intake

ment because I wasn't going outside as much at the
start of the pandemic. As soon as started taking the
Vitamin D supplement, my blood work started to
improve.”

149,583 (7.04%)“@USERa waste of time, politicians have organised
orgy’s with cocaine, male &amp; female hookers,

live, save, pandemic, life, start, lockdown, real, peo-
ple, buy, time, basicallystart, money, watch, steroid,
hit, hard, normal, deadly, cough, break

Public panic

during lockdown! like they give a fuck about a peti-
tion hahaha”

118,136 (5.56%)“Both hospitalized and treated immediately with
Oxygen &amp; Remdesivir for covid @ the same
time. Both went into heavy psychosis.”

patient, care, hospital, remdesivir, treatment, cocktail,
covid, covid, injection, require, oxygen, admit,
medical, lead, ventilator, pay, provide, health, re-
move, source

Hospital care

97,952 (4.61%)“Interesting situation. Got a call from a Mom, Family
of 4 lives in a house. Son and her drinks SOULTOX

drink, stay, hear, lose, family, wait, water, love, leave,
pandemic, friend, daily, close, rest, hope, lot, drop,
head, play, time

Daily life

everyday. Daughter and Dad don't. Dad got Covid,
then daughter. Mom and Son tested negative 4xs over
the 2 wks. Everyone is vaxed. Now she makes every-
one drink SOULTOX now.”

71,179 (3.35%)“@realDonaldTrump Hey Captain Covid I VOTED
FOR JOE BIDEN AND KAMALA HARRIS! The

dem, trump, fake, nursinghome, news, pandemic,
free, vote, ill, school, election, economy, release,
access, truth, guy, forget, sense, deny, hoax

Political elec-
tions

steroids and tranquilizers are making you more bat-
shit crazy than usual. You should go back to the
hospital.”

70,117 (3.30%)“@realDonaldTrump @USERa At least Putin just
poisons his political enemies -- Trump wants all

trump, people, person, infect, dangerous, true, covid,
condition, shit, happen, stock, send, woman, idea,
stupid, destroy, contract, completely, potus, tablet

Political crisis
and discussion

Americans to drink poisons such as hydroxychloro-
quine and oleandrin -- there just aren't enough dead
Americans from COVID-19 for Trump -- he wants
to kill more with poison -- Trump is a quack ...”

J Med Internet Res 2025 | vol. 27 | e63755 | p. 8https://www.jmir.org/2025/1/e63755
(page number not for citation purposes)

Li et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Number and Percent-
age of related tweets,
n (%)

ExampleKeywordsTopic

60,981 (2.87%)“Once the pandemic hit, stores really upped the prices
of aloe vera leaves like i wouldn’t notice smh”

country, low, rate, dexamethasone, cost, covid, drug,
recovery, black, base, reduce, sell, supply, explain,
mortality, expect, increase, panic, produce, improve

Drug scare

48,444 (2.28%)“@USER @USER @USERa Try working on your
immune system. Covid depletes zinc and vitamin D.
Try working from prevention instead of fear.”

mask, wear, medicine, social distance, add, avoid,
business, plasma, measure, spray, confirm, skin,
drive, advise, campaign, practice, oil, wash hand, air,
hourly

Personal precau-
tions

48,232 (2.27%)“@USERa Then, even hcq, zinc, and zithromax had
a estimated 50% success and the CDC and WHO
said it didnt, so it shouldnt be used. Imagine half of
the death tolls because of at least TRYING something
instead of shitcanning it just because you are an
“authority” that hates Trump.”

report, support, health, public, supplement, question,
kid, child, datum, stage, issue, american, answer,
term, prophylactic, mental, phase, safety, concern,
inflammation

Public health
care

aUsername and other sensitive information were masked off using @USER. Public figures such as @realdonaldtrump are shown in their usernames.

Figure 4. Topic distribution of 5 top-discussed drugs.

Co-Occurrence Networks
We visualized the co-occurrence network for drug-drug and
drug-symptom relations in Figure 5. The nodes represented
either drugs (as shown in Table S3 in Multimedia Appendix 1)

or symptoms (as shown in Table S4 in Multimedia Appendix
1). The size of each node corresponded to its degree, which
referred to the number of connections it has. The weights of the
edges indicated the cosine similarity score between two
connected nodes.

J Med Internet Res 2025 | vol. 27 | e63755 | p. 9https://www.jmir.org/2025/1/e63755
(page number not for citation purposes)

Li et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 5. Visualization of drug-related co-occurrence networks by Gephi, including (A) drug-drug associations based on Gephi clustering (τ=0.005),
(B) drug-drug associations based on ATC (τ=0.005), and (C) drug-symptom associations (τ=0.05). The color dots on the lower right of the figure
represent the ATC categories for (B). ATC: Anatomical Therapeutic Chemical classification system.

Drug-Drug Network
The origin drug-drug network contained 67 drugs (nodes) with
more than 1000 mentions and 1103 relations (edges) among
them. A predefined similarity threshold (τ) was established to
only visualize relationships with substantial co-occurrence, as
measured by cosine similarities exceeding τ. After filtering it
with a τ of 0.005, 62 drugs and 317 relations remained in the
network. By using the Fast Unfolding (Louvain) algorithm built
in Gephi for modularity classification [49], the drugs were
clustered into 5 categories and were colored in Figure 5A. The
same network with drugs colored by ATC classification (12
types) was shown in Figure 5B for comparison. Drugs in the
same group are denoted with the same color. Both figures share
similar clustering characteristics, especially in psychotropic
drugs ATC-N (Anatomical Therapeutic Chemical classification
system, psychotropic drugs; eg, fentanyl, opium, and morphine)

and anti-infectious agent ATC-J (Anatomical Therapeutic
Chemical classification system, anti-infectious agents; eg,
lopinavir, ritonavir, and azithromycin). However, drugs in the
ATC-P (Anatomical Therapeutic Chemical classification system,
antiparasitic drugs) group (ie, ivermectin, hydroxychloroquine,
quinine, and chloroquine) are clustered with the ATC A group
in Figure 5A. The reason may partially lie in the fact that most
parasites are intestinal [50], so most people who need to take
antiparasitic drugs (ie, ATC-P drugs) often present concomitant
digestive manifestations [51], thus necessitating the use of
digestive medications (ie, ATC A drugs), therefore the 2 drug
groups are closely related. Association between some of the
significant drug-drug pairs like 2 HIV protease inhibitors
ritonavir and lopinavir has been widely studied [52]. In addition,
through the co-occurrence network, we observed several unusual
drug pairings, such as midazolam and morphine, salbutamol
and prednisone, and zinc and quinine. These strong
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co-occurrences suggest potential unexplored synergistic effects,
adverse reactions, or other public health concerns that warrant
further investigation. For instance, we noted a distinct
correlation between morphine and midazolam, drugs not
typically combined in direct COVID-19 treatment. An analysis
of all 376 tweets mentioning both drugs revealed that most
discussions focused on end-of-life management for patients
with COVID-19 and on conspiracy theories about the intentional
misuse of these drugs, leading to deaths attributed to causes
other than COVID-19 infection.

Drug-Symptom Network
The original drug-symptom network had 136 nodes (ie, 69 drugs
and 67 symptoms) and 3099 edges. After filtering by τ of 0.05,
50 nodes and 71 edges remained and are shown in Figure 5C.
We observed that the edges often represented symptoms and
corresponding treatments, such as Tylenol for fever medication,
suggesting the reliability of our association network. We also
observed some side effect relations, such as remdesivir to acute
kidney failure [46] and some novel associations receiving no
clinical investigation like molnupiravir to circulatory failure,
cocaine to chest cold, and vitamin D to malaise. We visualized
the top 10 closest drugs and symptoms with co-occurrence
relationships to the 5 drugs under investigation (Figure S4 in
Multimedia Appendix 1). These networks revealed the great
relevance between hydroxychloroquine, ivermectin, and
azithromycin from each other. Furthermore, remdesivir was
also significantly associated with dexamethasone and
tocilizumab.

Discussion

Principal Results
Leveraging new advances in NLP, we constructed a pretrained
language model driven by the drug entity recognition model
and a new targeted sentiment analysis model for the polarity
prediction of target drugs. Based on over 2 years of relevant
data, our comprehensive NLP pipeline demonstrates advanced
accuracy and completeness in collecting and analyzing data for
social media-based drug studies. Our NER model identified the
top 5 most-discussed drugs and sentiment and topic analysis
revealed that public perception concerning these drugs was
predominantly shaped by celebrity endorsements, media hot
spots, and governmental directives rather than empirical
evidence of drug efficacy. Furthermore, network analysis
identified emerging patterns of DDI and ADR (ie, molnupiravir
to circulatory failure) that could be critical for public health
surveillance like better safeguarding public safety in medicines
use. Our pipeline is open-sourced and it can serve as a
comprehensive tool to enhance drug safety control, provide
crucial guidance for formulating drug usage policies, and support
public health decision-making after the outbreak of infectious
diseases.

Compared with traditional pharmacovigilance research, the
study of drug-related information on social media exhibits
distinctive characteristics and advantages. Social media
platforms offer real-time and immediate data, enabling the rapid
reflection of drug usage patterns and patient feedback,
facilitating the prompt identification of potential risks and

benefits [53-55]. Furthermore, social media captures the
viewpoints and experiences of patients, thus furnishing critical
insights for the formulation of patient-centered care [56,57].
For example, understanding patient’s preference for drugs and
disease burden can improve drug development strategies,
enabling pharmaceutical companies to better focus on specific
drugs that meet patient needs and preferences [58]. In contrast
to previous COVID-19 social media studies [59-62], this work
extracted more rigorous data covering a more extended study
period and identified the five most discussed drugs to be
investigated through a fully data-driven method. The substantial
volume of social media data allows for large-scale real-time
dynamic analysis, and it also covers a broader population than
electronic health records, which are confined to hospitalized
individuals and have restricted access [63]. Social media datasets
could also provide large-scale samples for the detection of rare
events and the examination of specific population responses,
which are challenges in electronic health records–based analysis.

Sentiment analysis on drugs can highlight patient
misconceptions and disagreements about a specific medication,
enabling pharmaceutical companies and public health agencies
to address public anxiety and reduce misinformation about
drugs. Our results confirmed findings from Hua et al [59] that
the public concern and polarity for ivermectin and
hydroxychloroquine, which received the most social media
attention, are highly correlated with emotional and political
factors, such as personal political orientation, presidential
elections, and conspiracy theories. For instance, there was a
surge of approximately 200% in acquisitions of medication
alternatives such as hydroxychloroquine within 2 days after the
press briefing conducted by Donald Trump on March 19, 2020
[3]. The topic distribution indicated possible effects or side
effects of ivermectin on the immune system and the wide
in-hospital treatment use of remdesivir, but the sentiment
analysis showed most opposing stances toward remdesivir which
climbed significantly as the crisis unfolded. It was due to
shortages, emergency needs, inefficiency [64], and potential
side effects of remdesivir like bradycardia [65], and increased
risk of hepatic, renal, and cardiovascular reactions [66,67]. Some
people even hyped up on Twitter that remdesivir was approved
solely for the purposes of reaping big profits for Anthony Fauci
and the democidal cabal that he fronts, bilking the taxpayers of
billions, and all while quietly euthanizing an unwitting public.
Furthermore, we also found that daily supplements like zinc
and vitamin D did not attract much public attention, but their
immune-enhancing properties make them significantly more
commended by the public than the other three drugs, especially
remdesivir.

Analyzing social media data helps identify patterns of drug
abuse, adverse reactions, and epidemics, thereby improving
health policy planning and resource allocation to address
emerging challenges [68,69]. For example, social media plays
a pivotal role in addressing drug-related outbreaks and trends,
enabling policy makers to respond swiftly and enhance public
safety. Its interactive nature fosters direct engagement with the
public, allowing policy makers to better understand community
needs and concerns. Since public trust in policy makers is
critical, for instance, the successful promotion of drugs and
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vaccines relies heavily on public confidence [70,71], tracking
public sentiment through social media in real time enables policy
makers to align policies with public attitudes, so as to increase
their acceptance and effectiveness. In addition, this approach
helps in combating misinformation about drugs and vaccines
[72]. For public health agencies, timely monitoring of
drug-related concerns on social media is especially crucial when
managing new drug candidates during pandemics. Specifically,
our pipeline allows for real-time monitoring of public opinion
on social media, which can be an important tool for public health
agencies and organizations to implement clear communication
plans, physical and mental health interventions, and a
coordinated emergency response [73,74]. It could also help
conduct rapid and dynamic screening of special populations
[60] during public health emergencies, enable targeted
communication [75], and combat public health misinformation
[72,76].

Our work found that Twitter discussion topics of drugs during
the COVID-19 pandemic were consistent with relevant studies
focusing on non-drug COVID-19–related topics [25,77,78].
Similar to them, this study uncovered public concerns about
“public health measures” and “treatment and recovery.” In
addition, by focusing on drugs, we discovered new drug-specific
concerns, such as “drug panic” and “immune response.” The
focus on “drug panic” may reflect societal uncertainty and
anxiety about drug use during the epidemic. Understanding
these anxieties can be instrumental in enabling mental health
professionals and policy makers to take measures to support
mental health and implement interventions to alleviate anxiety.
Care about the “immune response” may be indicative of public
concerns about the immune system, including vaccines and
immunotherapies. This can help health agencies better
communicate information about vaccinations and immunization
support to increase public awareness of immunization.

Many previous studies aimed to detect potential DDI and ADR
from social media [79-81] or online literature [82] but largely
depended on external vocabulary for keyword-matching and
little visualization was performed. This study used advanced
pretrained language models to identify drug mentions and
classify the corresponding sentiments from social media text,
ensuring the accuracy of information extraction and sentiment
prediction. As the pretrained language model is the main NLP
structure in our pipeline, it can be easily extended by integrating
better large language models (LLMs) [83-85] that have a similar
deep learning network structure but with larger parameters,
given enough computational resources. The visualization module
could illustrate associations between drugs, drug-symptoms
pairs, and possible clusters or patterns intuitively and clearly,
making it easier for researchers to understand and interpret the
findings for DDI and ADR [86]. In addition, our co-occurrence
network analysis found many widely studied drug-drug and
drug-symptom pairs which could verify the reliability of network
analysis. The clustering results are consistent with the
classification of the general clinic (ie, ATC) to a certain extent,
such as the similar clustering characteristics in psychotropic
drugs (ie, ATC N) and anti-infectious agent (ie, ATC J),
suggesting its potential to capture similarities and associations
between drugs. Notably, we also found many drug pairs with

not widely examined associations, such as zinc and quercetin.
Their complex (Q/Zn) is considered a potential new drug therapy
for improving glycemic control and pulmonary dysfunction in
diabetes mellitus [87], which needs to be further investigated.
We found new drug-related associations, such as rheumatoid
drugs (hydroxychloroquine, dexamethasone, etc.) may affect
COVID-19 treatment due to drug repositioning. For these novel
drug-drug and drug-symptom pairs, researchers interested in
further exploration may undertake additional studies, such as
cross-study analyses using multiple data sources or more
detailed quantitative studies. We expect studies could examine
the novel associations and provide more robust evidence in
future work. Furthermore, networks of the top 5 drugs revealed
the significant associations between them such as the
co-medication of ivermectin, hydroxychloroquine, and
azithromycin for COVID-19 infection. Our network analysis
also indicated the combination of remdesivir and tocilizumab
or dexamethasone, and a randomized controlled trial showed
their efficacy for the treatment of severe COVID-19 infection
[88-90].

In essence, the use of NLP techniques and network analysis in
our pipeline to analyze vast amounts of social media data is an
emerging research approach in pharmacovigilance [91,92]. It
holds immense potential in various areas such as the monitoring
of ADR, the analysis of drug usage trends, the prediction of
epidemics, and the evaluation of drug treatment effects. This
novel method could serve pharmaceutical firms, regulatory
agencies, and the health care fields with more precise and timely
information to enhance their efforts in safeguarding public
health.

Limitations
Certain limitations apply to this study. First, social media users
can’t represent the general population. For example, Twitter
users in the United States are younger, more democratic in their
political affiliations, and the most prolific 10% of users create
80% of tweets [93] and older people with lower socioeconomic
status may have limited access to social media [94], which may
result in bias of our observations. The specific events,
geographical contexts, and the dynamic nature of social media
usage may also influence the observations. Second, although
we tried to automate the information extraction with deep
learning, we still relied on an empirical lexicon to cluster
different concept representations. This allowed us to effectively
reduce false positives but not to avoid false negatives. Third,
manual checks for symptom recognition suggested that
approximately 2%-3% of the tweets may still be false positive
(eg, lexical ambiguity like an American fever dream), which
would lead to fake associations, despite the combination of
rigorous rules and advanced NLP models based on deep
learning. Data accuracy, as well as the reliability of the network
analysis, are also limited by the authenticity of social media
data and the influence of noisy information and misinformation.
However, the primary advantage of social media information
is its vast scale and timeliness, which offers opportunities for
advancing valuable research directions, such as identifying
novel drug interactions. Finally, due to the relatively low
accuracy of the TSA module (ie, 75.07%), future work should
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develop more effective NLP solutions to facilitate opinion
mining.

Comparison With Previous Works
Hua et al [59] used BERT models to examine public perceptions
of approved and off-label medications for COVID-19 infection
and found these perceptions to be heavily skewed by
misinformation and biases. However, the study suffered from
methodological limitations, including a narrow and subjectively
chosen selection of drugs, manual lexicon-based extraction, and
a small time span. Similarly, Wu et al [38] made the very first
attempt to construct co-occurrence networks to study symptoms
during COVID-19 infection, but their technique was solely
based on lexicon matching. Both of them relied solely on
lexicons for extraction and, as a result, suffered from insufficient
accuracy and a lack of generalizability. In contrast, this study
combined advanced deep learning models with lexicon-match

to improve the accuracy of entity recognition and sentiment
analysis, creating a comprehensive and generalized pipeline to
streamline information tracking in public health emergencies.

Conclusion
Our study proposed a pipeline of using social media data and
NLP techniques to mine potential drug information, timely track
drug-related hot events, facilitate public health stakeholders to
conduct reasonable policy enactment, monitor drug public
opinion, and avoid malignant events during a public health
emergency period. In addition, it can supplement the existing
ADR and DDI databases by constructing multiple medical entity
co-occurrence networks to provide real-world clues for future
research. Our framework applies not only to the COVID-19
pandemic but also to other periods of epidemics or major social
events. It can also target other public health care foci such as
vaccination.

Data Availability
Due to the privacy restrictions of Twitter, only tweet IDs can be released. Tweet IDs can be obtained from
https://github.com/echen102/COVID-19-TweetIDs. The source code and pipeline tutorial of this paper are available at
https://github.com/zju-liwanxin/covid-twitter-drug. Datasets and models for NER and TSA models are publicly available at
https://github.com/YLab-Open/METS-CoV. All codes are based on Python software (version 3.8) and the NER, and TSA models
are developed by PyTorch (version 1.0).
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