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Abstract

Background: Mobile health care is rapidly expanding in China, making the enhancement of eHealth literacy a crucial strategy
for improving public health. However, the persistent urban-rural divide may contribute to disparities in eHealth literacy between
urban and rural university students, potentially affecting their health-related behaviors and outcomes.

Objective: This study aims to examine disparities in eHealth literacy between university students in urban and rural China,
identifying key influencing factors and their contributions. The findings will help bridge these gaps, promote social equity, enhance
overall health and well-being, and inform future advancements in the digital health era.

Methods: The eHealth Literacy Scale (eHEALS) was used to assess eHealth literacy levels among 7230 university students
from diverse schools and majors across 10 regions, including Guangdong Province, Shanghai Municipality, and Jiangsu Province.
Descriptive statistics summarized demographic, sociological, and lifestyle characteristics. Chi-square tests examined the distribution
of eHealth literacy between urban and rural students. A binary logistic regression model identified key influencing factors, while
a Fairlie decomposition model quantified their contributions to the observed disparities.

Results: The average eHealth literacy score among Chinese university students was 29.22 (SD 6.68), with 4135 out of 7230
(57.19%) scoring below the passing mark. Rural students had a significantly higher proportion of inadequate eHealth literacy
(2837/4510, 62.90%) compared with urban students (1298/2720, 47.72%; P<.001). The Fairlie decomposition analysis showed
that 71.4% of the disparity in eHealth literacy was attributable to urban-rural factors and unobserved variables, while 28.6%
resulted from observed factors. The primary contributors were monthly per capita household income (13.4%), exercise habits
(11.7%), and 9-item Patient Health Questionnaire (PHQ-9) scores (2.1%).

Conclusions: Rural university students exhibit lower eHealth literacy levels than their urban counterparts, a disparity influenced
by differences in socioeconomic status, individual lifestyles, and personal health status. These findings highlight the need for
targeted intervention strategies, including (1) improving access to eHealth resources in rural and underserved areas; (2) fostering
an environment that encourages physical activity to promote healthy behaviors; (3) expanding school-based mental health services
to enhance health information processing capacity; and (4) implementing systematic eHealth literacy training with ongoing
evaluation. These strategies will support equitable access to and utilization of eHealth resources for all students, regardless of
their geographic location.
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Introduction

Health literacy is a midstream determinant of health that can
improve outcomes, reduce inequalities, and promote
health-related behaviors [1]. Today, the internet is widely used
due to its accessibility, broad information coverage, ease of use,
affordability, and anonymity [2]. It has become a key platform
for disseminating health information, particularly in middle-
and high-income countries such as China, where health care
resources and face-to-face medical appointments are limited
[3]. However, the widespread availability of the internet has
also exposed shortcomings in online health information,
especially concerning its quality [4]. Individuals frequently
encounter false or dubious health information online, a challenge
that is not new [5]. eHealth literacy extends the concept of health
literacy into the digital domain. It was first introduced by
Norman and Skinner [6]. Gilstad [7] later expanded its definition
to encompass the ability to address health problems by
communicating, locating, understanding, evaluating, and
applying health information and digital technologies within
specific cultural and social contexts [8]. It should be emphasized
that eHealth literacy requires not only the ability to access
necessary information but also the ability to assess the quality
of eHealth information and distinguish between reliable and
unreliable sources [6]. eHealth literacy is essential for
maintaining good health and preventing disease. Improving
eHealth literacy enables individuals to access health information
for disease prevention, treatment, and health promotion [9].
People with strong eHealth literacy can make informed
decisions, select appropriate health services, and manage their
health effectively. This includes monitoring their health status,
following medical advice, and taking preventive measures
against disease. Furthermore, eHealth literacy can enhance
communication between patients and physicians, improving the
effectiveness and overall satisfaction of medical services [10].

As the future builders and pillars of development in their home
countries, the health status of young people and their ability to
maintain it deserve attention. Their knowledge, attitudes, and
behaviors not only impact their own lives but also influence
society as a whole [11,12]. For university students transitioning
to adulthood, the development of health behaviors during this
stage is crucial for maintaining a healthy lifestyle throughout
adulthood [13,14]. However, they are exposed to various health
risks [15-17]. At the same time, even students in good health
often engage in risky health behaviors [18]. This highlights an
increased need for reliable health information. Conducting an
internet search may align with young people’s desire for
autonomy and self-sufficiency [19]. Currently, it is estimated
that most university students (99%) rely on the internet as their
primary source of health-related information [20]. The eHealth
Literacy Scale (eHEALS) has emerged as a valid measurement
and intervention tool for promoting healthy behaviors among
adolescents [21]. Improving eHealth literacy can encourage

students to adopt healthier behaviors [22], better manage their
health, and maintain both their physical and mental well-being
[23,24]. However, despite frequently using digital media to
access health information, a significant proportion of university
students lack adequate eHealth literacy [25,26], which severely
hinders disease prevention and the effectiveness of health
services [27]. Stellefson et al [9] demonstrated that while
students are confident in their ability to use the internet, their
practical eHealth literacy is often insufficient. Moreover, another
study found that a considerable proportion of students struggle
to critically evaluate the health information they encounter
online [26].

According to the latest data from the Chinese Ministry of
Education, the total number of students enrolled in various forms
of higher education in China in 2023 was 47.63 million [28].
Research on university students’ eHealth literacy is both
important and urgent, particularly given the lack of a strict
verification mechanism for health information on most websites
in China [29]. While research on health literacy in China began
relatively late, the widespread use of internet technology in
health care has gradually brought eHealth literacy into public
focus. As university students are a key demographic of internet
users, they have become a focal point of eHealth literacy
research due to their frequent use of digital tools and ability to
access information. One major area of research is the localized
adaptation of eHealth literacy measurement tools. In 2013, Guo
et al [30] pioneered the translation and adaptation of eHEALS
in China, focusing on adolescents, with a reported Cronbach
alpha coefficient of 0.913. Subsequent applications of this
version among university students have consistently
demonstrated high reliability and validity [31,32]. Another
important research direction is examining the current state of
students’ eHealth literacy and analyzing the factors that
influence it. Overall, the eHealth literacy of Chinese university
students appears to be at a relatively optimistic level. In recent
years, studies have shown that the average eHealth literacy
scores of university students typically range between 27 and 29
points [33-35], with variations influenced by the time and region
of the research. The key factors affecting university students’
eHealth literacy primarily include individual characteristics
such as gender, major, academic performance, and place of
origin (urban or rural). Family-related factors, such as income
and number of siblings, as well as the students’ own health
status, also play a significant role [36]. With the promotion of
initiatives such as the “Healthy China Strategy” and the “14th
Five-Year Plan for National Health Informatization,” the eHealth
literacy of university students has become a key issue,
highlighting the urgent need for intervention research. However,
existing studies are largely limited to single-region samples,
lacking large-scale cross-sectional surveys that cover multiple
regions. Additionally, research on the determinants of eHealth
literacy remains insufficient, with limited detailed data analysis
and stratified comparisons among students with different
characteristics. Furthermore, there is a lack of systematic
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comparisons on how variations in eHealth literacy impact health
outcomes, making it difficult to establish a concrete and reliable
empirical foundation for intervention research and policy
development.

Existing academic research on the role of the internet in health
communication and promotion often emphasizes macro-level
social inequalities, commonly referred to as the digital divide
[37,38]. eHealth literacy plays a crucial role in promoting health
equity, improving health outcomes, and reducing health care
costs [5], offering significant potential to bridge this divide.
This study highlights the widening digital gap between urban
and rural students in China, with a particular focus on the
challenges faced by rural students as a digitally disadvantaged
group. Specifically, it explores the following: (1) Are there
differences in eHealth literacy between urban and rural students?
(2) What similarities or differences exist in the factors
influencing their eHealth literacy? (3) How do these factors
contribute to the observed differences? The study’s results will
serve as a reference for developing intervention methods and
improvement strategies for eHealth literacy among students.
Additionally, it seeks to recognize and address these social
inequalities, ensuring that eHealth can truly benefit people
worldwide, including those in marginalized and underserved
areas.

Methods

Data Source
This study is a cross-sectional survey. From January to February
2023, the researcher distributed an anonymous electronic
questionnaire via the Questionnaire Star platform [39] using a
convenience sampling method. The questionnaire was
distributed to university students across 10 regions, including
Guangdong Province, Shanghai Municipality, and Jiangsu
Province, covering majors such as economics, medicine,
management, and literature.

To ensure data accuracy and reliability, the questionnaire
included 2 verification questions: a repetitive question and a
general knowledge question (“What is the capital of China?”).
If a respondent answered either question incorrectly, the
questionnaire was deemed invalid and excluded from further
analysis. A total of 7503 questionnaires were collected. After
screening, 253 questionnaires with anomalous response times
and 20 with irregular completion patterns were excluded,
resulting in 7230 valid questionnaires and an effective response
rate of 96.36%. Participants in this study were required to meet
the following inclusion criteria: (1) undergraduate students and
(2) normal cognitive function with the ability to complete the
questionnaire independently. The exclusion criterion was an
incorrect response to the verification questions. The exclusion
process is illustrated in Figure 1.

Figure 1. Participant screening flowchart.

eHealth Literacy
This study used the Chinese version of the eHEALS to assess
university students’ eHealth literacy levels. The eHEALS was
developed by Norman et al [6] in 2006, based on the concept
of eHealth literacy and Lily’s model for evaluating an
individual’s ability to search for, screen, understand, assess,
and utilize health information [6]. Since its inception, eHEALS
has become the most widely used scale for measuring eHealth
literacy across different populations in contemporary studies

[40]. The Cronbach alpha coefficient for eHEALS is high across
numerous studies involving diverse populations, typically
ranging from 0.84 to 0.94. This indicates that the scale
demonstrates strong internal consistency and reliability. The
scale consists of 8 items, categorized into 3 competency areas
related to the use of online health information and services:
application competencies (items 1-5), judgmental competencies
(items 6 and 7), and decision-making competencies (item 8).
The scale uses a 5-point Likert scale, with scores ranging from
1 (very poorly met) to 5 (very well met). The total score for the
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8 items ranges from 8 to 40, with higher scores indicating a
higher level of eHealth literacy. In this study, the widely
recognized cut-off score of 32 was used to classify the eHealth
literacy of urban and rural university students into 2 categories:
“qualified” (≥32 points) and “unqualified” (<32 points) [33,41].
The overall Cronbach α coefficient for this study was 0.974,
with 0.973 for the rural university student group and 0.974 for
the urban university student group.

Ethics Approval
The study was approved by the Biomedical Ethics Committee
of Southern Medical University (Ethics Review Board [2023]
No. 46). All participants signed an informed consent form before
the survey began. The distribution, collection, and storage of
questionnaires were managed via the Questionnaire Star
platform. Data access was restricted to the researcher, and the
information was tamper-proof to ensure security and integrity.
This study strictly adhered to relevant laws and regulations. To
protect participant privacy, all public reports will exclude
personal identifiers. The final data set was exported in EpiData
format for subsequent statistical analysis.

Grouping Variables
Respondents were classified as rural or urban based on the
household type they reported in the survey.

Covariates
To obtain more reliable results, a range of potential confounding
variables were controlled for, including demographic and
sociological characteristics, personal lifestyles, and mental
health status—factors previously considered in studies on
eHealth literacy levels.

Demographic Characteristics
Participants were classified based on 2 variables: gender (male
or female) and personal religious belief (yes or no).

Sociological Characteristics
Respondents were classified into 4 groups based on their
academic performance, determined by class ranking: below
25%, 25%-50%, 50%-75%, and above 75%. Additionally,
monthly per capita household income was categorized into 4
groups: less than 2500 RMB (1 RMB=US $0.14), 2500-<5000
RMB, 5000-10,000 RMB, and above 10,000 RMB.

Personal Lifestyle
The variables of exercise, smoking, and alcohol use were
dichotomized into a binary format, with responses categorized
as “yes” or “no.” “Exercise” was defined as engaging in physical
activity at least three times in the past month, with each session
lasting a minimum of 30 minutes. Additionally, the use of
tobacco products and alcoholic beverages (including distilled
spirits, beer, wine, and rice wine) in the past month was recorded
as a dichotomous variable (yes or no).

Mental Health Status
The 7-item Generalized Anxiety Disorder (GAD-7) tool was
used to assess the prevalence and severity of anxiety symptoms
among study participants. This tool consists of 7 items, each
rated on a 4-point scale ranging from 0 to 3: 0=“not at all,” 1=“a

few days,” 2=“more than half the time,” and 3=“almost every
day.” A score below 5 indicates the absence of anxiety
symptoms, while a score of 5 or higher suggests the presence
of anxiety symptoms [42]. In this study, the GAD-7
demonstrated a Cronbach α coefficient of 0.944.

The 9-item Patient Health Questionnaire (PHQ-9) was used to
assess depressive symptoms among participants. This tool
consists of 9 items and follows the same scoring method as the
GAD-7. A score below 5 indicates the absence of depressive
symptoms, whereas a score of 5 or higher suggests their presence
[43]. In this study, the PHQ-9 demonstrated a Cronbach α
coefficient of 0.931.

Statistical Analysis
The demographic characteristics and lifestyles of the study
population were analyzed descriptively. Continuous variables
were presented as mean (SD), while categorical variables were
expressed as percentages. A chi-square test was used to examine
the distribution of eHealth literacy levels among urban and rural
university students. Subsequently, a binary logistic regression
model was constructed to identify key determinants of eHealth
literacy levels in these groups. The outcome variable was
defined as a binary classification of eHealth literacy
(qualified/unqualified), while independent variables were
selected from 4 domains: demographic characteristics,
sociological characteristics, personal lifestyle, and mental health
status. Initially, variables were screened using univariate analysis
(retention criterion: P<.05) and subsequently included in the
multivariate model. Statistically significant predictors (P<.05)
were retained in the final model. All statistical analyses were
performed using SPSS Statistics 23 (IBM Corp.). To examine
the factors contributing to discrepancies in eHealth literacy
levels between urban and rural university students, the Fairley
model was applied using Stata MP 18.0 (StataCorp). The
significance level was set at .05.

Fairlie Decomposition Model
In this study, we applied a multivariate Fairlie decomposition
analysis (FDA) based on a binary regression model. FDA is a
decomposition technique used in multivariate models to quantify
the contribution of predicted differences between 2 groups to
an outcome variable. It extends the Blinder-Oaxaca
decomposition, which has been widely criticized for its
inefficiency in handling logit and probit models. FDA was
specifically developed for nonlinear regression models,
including logit and probit models [44]. The FDA quantifies the
contribution of independent variables to differences between
groups by calculating the change in the mean predicted
probability when substituting 1 independent variable at a time
in 1 group (eg, rural university students) while holding other
variables constant in the other group (eg, urban university
students). The Fairlie decomposition technique ensures that the
predicted probability remains within the range of 0-1. Studies
have shown that the FDA provides a more precise quantification
of variable contributions and significance levels in nonlinear
regression models [45-47]. Given that the dependent variable
was dichotomous, we applied Fairlie nonlinear decomposition
to attribute differences in university students’ eHealth literacy
to various contributing factors. As outlined by Fairlie [48], the
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decomposition of the nonlinear equation can be expressed as
follows:

The symbols represent the mean probabilities of the 2
binary outcomes. The F is used to indicate the cumulative
distribution function of the logistic distribution. Ye-Yw represents

the total difference in the differences between the 2 groups; Ne

and Nw represent the sample sizes of the 2 samples. In equation
1, the first term in parentheses represents the portion of the gap
attributable to differences in observed characteristics, while the
second term denotes the portion of the gap explained by
differences in estimated coefficients.

Results

Basic Characteristics of the Study Participants
The study included a total of 7230 participants. The mean
eHealth literacy score among university students was 29.22 (SD

6.68; Table 1). Prior research on eHealth literacy among Chinese
university students has established a passing threshold of 32
points [33], with scores below this cutoff indicating insufficient
eHealth literacy. As shown in Table 2, 4135 out of 7230
(57.19%) students did not meet the eHealth literacy standard,
while 3095 out of 7230 (42.81%) students qualified. Notably,
a higher proportion of rural university students (2837/4510,
62.90%) failed to meet the standard compared with their urban
counterparts (1298/2720, 47.72%; P<.001).

The chi-square test results in Table 2 indicate significant
differences in the distribution of 8 covariates between urban
and rural university students. These covariates include gender
(P<.001), religion (P<.001), class ranking (P=.02), monthly per
capita household income (P<.001), exercise (P<.001), drinking
(P<.001), GAD-7 scores (P=.002), and PHQ-9 scores (P=.04).
However, no significant difference was observed in the
distribution of smoking (P=.93).

Table 1. eHealth literacy score for university students.

Urban, mean (SD)Rural, mean (SD)Overall, mean (SD)Item

3.86 (0.94)3.59 (0.91)3.69 (0.93)Q1: I know how to find helpful health resources on the internet

3.85 (0.93)3.57 (0.90)3.67 (0.92)Q2: I know how to use the internet to answer my health questions

3.82 (0.91)3.53 (0.89)3.64 (0.91)Q3: I know what health resources are available on the internet

3.83 (0.91)3.54 (0.88)3.65 (0.90)Q4: I know where to find helpful health resources on the internet

3.86 (0.91)3.58 (0.87)3.69 (0.89)Q5: I know how to use the health information I find on the internet to help me

3.81 (0.92)3.52 (0.87)3.63 (0.90)Q6: I have the skills I need to evaluate the health resources I find on the internet

3.86 (0.90)3.55 (0.88)3.67 (0.90)Q7: I can tell high-quality from low-quality health resources on the internet

3.76 (0.92)3.48 (0.88)3.59 (0.90)Q8: I feel confident in using information from the internet to make health decisions

30.65 (6.75)28.36 (6.48)29.22 (6.68)Total score
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Table 2. Distribution of the variables in rural and urban respondents.

P valueChi-square (df)Urban (n=2720), n (%)Rural (n=4510), n (%)Variable

<.001159.781 (1)eHealth literacy

1422 (52.28)1673 (37.10)≥32

1298 (47.72)2837 (62.90)<32

<.00158.356 (1)Gender

1055 (38.79)1355 (30.04)Male

1665 (61.21)3155 (69.96)Female

<.00118.783 (1)Religious belief

110 (4.04)291 (6.45)Yes

2610 (95.96)4219 (93.55)No

.029.832 (3)Class ranking

781 (28.71)1217 (26.98)<25.0%

1026 (37.72)1623 (35.99)25.0%-<50.0%

658 (24.19)1233 (27.34)50.0%-<75.0%

255 (9.38)437 (9.69)≥75.0%

<.00110002.180 (3)Monthly per capita household income

(RMBa)

219 (8.05)1158 (25.68)<2500

852 (31.32)2163 (47.96)2500-<5000

1030 (37.87)952 (21.11)5000-<10,000

619 (22.76)237 (5.25)≥10,000

<.00128.080 (1)Exercise

2016 (74.12)3078 (68.25)Yes

704 (25.88)1432 (31.75)No

.930.008 (1)Smoking

84 (3.09)141 (3.13)Yes

2636 (96.91)4369 (96.87)No

<.00149.534 (1)Drinking

549 (20.18)626 (13.88)Yes

2171 (79.82)3884 (86.12)No

.0028.135 (1)7-item Generalized Anxiety Disorder

1001 (36.80)1812 (40.18)≥5

1719 (63.20)2698 (59.82)<5

.044.420 (1)9-item Patient Health Questionnaire

1222 (44.93)2141 (47.47)≥5

1498 (55.07)2369 (52.53)<5

a1 RMB=US $0.14.

Comparison of Variables’ Distribution
Table 3 presents the relationship between covariate distribution
and eHealth literacy qualification status among urban and rural
university students. The data indicate that certain covariate

distributions share similar characteristics among students who
passed or failed the eHealth literacy assessment. Gender,
religious belief, monthly per capita household income, and
drinking were identified as factors associated with eHealth
literacy among university students.
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Table 3. Distribution of the variables in unqualified eHealth literacy and qualified eHealth literacy respondents.

Qualified eHealth literacyUnqualified eHealth literacyVariable

P valueChi-square
(df)

Urban
(n=1422), n (%)

Rural (n=1673),
n (%)

P valueChi-square
(df)

Urban
(n=1298), n (%)

Rural (n=2837),
n (%)

<.00119.263 (1)<.00130.794 (1)Gender

574 (40.37)548 (32.76)481 (37.06)807 (28.45)Male

848 (59.63)1125 (67.24)817 (62.94)2030 (71.55)Female

.034.876 (1)<.00115.514 (1)Religious belief

65 (4.57)107 (6.40)45 (3.47)184 (6.49)Yes

1357 (95.43)1566 (93.60)1253 (96.53)2653 (93.51)No

.175.043 (3).273.912 (3)Class ranking

445 (31.29)504 (30.13)336 (25.89)713 (25.13)<25.0%

539 (37.90)591 (35.33)487 (37.52)1032 (36.38)25.0%-<50.0%

328 (23.07)431 (25.76)330 (25.42)802 (28.27)50.0%-<75.0%

110 (7.74)147 (8.79)145 (11.17)290 (10.22)≥75.0%

<.001389.931 (3)<.001536.789 (3)Monthly per capita house-

hold income (RMBa)

102 (7.17)369 (22.06)117 (9.01)789 (27.81)<2500

394 (27.71)757 (45.25)458 (35.29)1406 (49.56)2500-5000

565 (39.73)429 (25.64)465 (35.82)523 (18.43)5000-10,000

361 (25.39)118 (7.05)258 (19.88)119 (4.19)≥10,000

.370.791 (1).132.261 (1)Exercise

1228 (86.36)1426 (85.24)788 (60.71)1652 (58.23)Yes

194 (13.64)247 (14.76)510 (39.29)1185 (41.77)No

.590.298 (1).760.092 (1)Smoking

42 (2.95)44 (2.63)42 (3.24)97 (3.42)Yes

1380 (97.05)1629 (97.37)1256 (96.76)2740 (96.58)No

<.00118.871 (1)<.00131.217 (1)Drinking

279 (19.62)231 (13.81)270 (20.80)395 (13.92)Yes

1143 (80.38)1442 (86.19)1028 (79.20)2442 (86.08)No

.450.572 (1).430.612 (1)7-item Generalized Anxi-
ety Disorder

430 (30.24)527 (31.50)571 (43.99)1285 (45.29)≥5

992 (69.76)1146 (68.50)727 (56.01)1552 (54.71)<5

.970.002 (1).970.002 (1)9-item Patient Health
Questionnaire

522 (36.71)613 (36.64)700 (53.93)1528 (53.86)≥5

900 (63.29)1060 (63.36)598 (46.07)1309 (46.14)<5

a1 RMB=US $0.14.

Logistic Model Results
Table 4 presents the results of logistic modeling for eHealth
literacy qualification among urban and rural university students.
Among rural university students, the following were identified
as risk factors for failing to meet the eHealth literacy standard:
female gender (odds ratio [OR] 0.847), class ranking in the
25.0%-49.9% and 50.0%-74.9% ranges (both OR 0.788), a

PHQ-9 score of ≤5 (OR 0.648), and lack of exercise (OR 0.260).
Conversely, higher monthly per capita household income was
identified as a protective factor (5000-10,000 RMB: OR 1.607;
≥10,000 RMB: OR 1.944). Among urban university students,
risk factors included class ranking in the top 25% (OR 0.708),
a PHQ-9 score of <5 (OR 0.603), and lack of exercise (OR
0.267).
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In conclusion, the discrepancies in eHealth literacy between
urban and rural university students were primarily reflected in
2 key areas. First, gender was a significant factor only in rural
settings, where being female was associated with a lower
likelihood of meeting the eHealth literacy standard (OR 0.847).

Second, higher monthly per capita household income
(5000-10,000 RMB: OR 1.607; ≥10,000 RMB: OR 1.944)
served as a protective factor in rural contexts but was not
significant in urban ones.

Table 4. Logistic regression results for sociodemographic characteristics associated with eHealth literacy levels.

Urban, odds ratio (95% CI)Rural, odds ratio (95% CI)Overall, odds ratio (95% CI)Variable

Gender

ReferenceReferenceReferenceMale

0.893 (0.754-1.058)0.847a (0.733-0.980)0.843a (0.755-0.940)Female

Religious belief

ReferenceReferenceReferenceYes

0.688 (0.454-1.042)1.003 (0.772-1.303)0.935 (0.752-1.163)No

Class ranking

ReferenceReferenceReference<25.0%

0.864 (0.708-1.054)0.788a (0.670-0.926)0.816a (0.720-0.924)25.0%-<50.0%

0.830 (0.664-1.037)0.788a (0.662-0.938)0.798a (0.696-0.915)50.0%-<75.0%

0.708a (0.521-0.962)0.839 (0.655-1.074)0.791a (0.653-0.958)≥75.0%

Monthly per capita household income (RMBb)

ReferenceReferenceReference<2500

0.861 (0.626-1.184)1.061 (0.904-1.246)1.081 (0.939-1.245)2500-5000

1.161 (0.848-1.589)1.607c (1.331-1.940)1.712c (1.472-1.992)5000-10,000

1.273 (0.914-1.774)1.944c (1.439-2.626)2.079c (1.727-2.503)≥10,000

Exercise

ReferenceReferenceReferenceYes

0.267c (0.220-0.324)0.260c (0.222-0.304)0.262c (0.232-0.296)No

Smoking

ReferenceReferenceReferenceYes

0.897 (0.554-1.452)0.802 (0.532-1.209)0.828 (0.608-1.128)No

Drinking

ReferenceReferenceReferenceYes

1.015 (0.826-1.249)1.007 (0.826-1.228)1.041 (0.903-1.200)No

7-item Generalized Anxiety Disorder

ReferenceReferenceReference≥5

0.920 (0.727-1.165)0.839 (0.694-1.013)0.867 (0.748-1.003)<5

9-item Patient Health Questionnaire

ReferenceReferenceReference≥5

0.603c (0.480-0.758)0.648c (0.539-0.780)0.638c (0.553-0.736)<5

aSignificant at P<.05.
b1 RMB=US $0.14.
cSignificant at P<.01.
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Decomposition Analysis Results
To ensure the stability of the results, the decomposition model
was repeated 100 times using the Stata MP 18.0 (StataCorp).
Multimedia Appendix 1 presents the decomposition model
results for differences in eHealth literacy levels between urban
and rural university students. The findings indicate that observed
factors accounted for 28.6% of the disparity, while 71.4% was
attributed to urban-rural differences and unobserved factors.
Significant contributors to the eHealth literacy gap (P<.001)
included monthly per capita household income (13.4%; P=.007),
exercise habits (11.7%; P<.001), and PHQ-9 scores (2.1%;
P<.001).

Discussion

Principal Findings
This study explores the relationship between eHealth literacy
among urban and rural university students in China and factors
such as sociodemographic characteristics, personal lifestyle,
and psychological health. It quantifies the extent to which these
factors contribute to disparities in eHealth literacy between the
2 groups. Our findings confirm significant differences in eHealth
literacy levels between urban and rural students, influenced by
multiple factors.

The study found that 57.2% of university students had eHealth
literacy below the passing threshold, with an average score of
29.22 (6.68). These scores were comparable to those reported
for Chinese university students (mean 30.16, SD 6.31) [34],
higher than those of students from other Asian countries [49,50],
and similar to those of their European and American peers
[51,52]. However, all average scores remained below the
qualifying standard, highlighting a concerning issue: overall
eHealth literacy levels among university students are
insufficient. Previous research by Bailey et al [53], Chesser et
al [54], Gustafson et al [55], Mengestie et al [56], and others
have documented disparities in eHealth literacy between urban
and rural populations. Our study found that a significantly higher
proportion of rural university students (2837/4510, 62.90%) did
not meet eHealth literacy standards compared with their urban
counterparts (1298/2720, 47.72%; P<.001). These findings
highlight substantial urban-rural disparities in eHealth literacy
among Chinese university students, aligning with previous
research by Chinese scholars [57]. The study identified a 15.2%
point gap between urban and rural students failing to meet
eHealth literacy standards, emphasizing the critical role of the
upbringing environment in shaping eHealth literacy. Enhancing
eHealth literacy among rural students should be a priority to
address and potentially mitigate these disparities. Notably, the
study by Giger et al [58] found that eHEALS scores were not
influenced by rural status or gender. This outcome may stem
from uncertainties in the theoretical framework of eHealth
literacy, potentially leading to misinterpretations of data
measured by the eHEALS scale. Additionally, the lack of
variation in scores could be due to a somewhat biased study
population.

The logistic regression analysis revealed both similarities and
differences in the covariates influencing eHealth literacy among
Chinese urban and rural university students. Class ranking,

exercise, and PHQ-9 scores were significant factors in both
groups. Notably, better academic performance emerged as a
protective factor for higher eHealth literacy. To some extent,
higher grades indicate better information access and
comprehension skills, aligning with findings from previous
studies [12,23]. Exercise is a common protective factor,
consistent with findings from Tsukahara et al [49], Mitsutake
et al [21], and others. Exercise habits reflect an individual’s
greater health awareness and willingness to seek information.
Additionally, many physical activities facilitate social interaction
and information sharing. Individuals with high eHealth literacy
are also more likely to engage in regular exercise [59], which
collectively contributes to the accumulation and enhancement
of health literacy. Conversely, PHQ-9 scores were identified as
a risk factor for eHealth literacy among both urban and rural
students, a finding supported by previous studies [59-61].
Extensive research has confirmed that depressive symptoms
negatively impact cognitive function [62], information
processing, and health decision-making. Furthermore, depression
directly undermines self-efficacy [63], which in turn influences
health literacy both directly and indirectly [64], ultimately
hindering its development and maintenance.

The covariates influencing eHealth literacy levels differ between
urban and rural students. This study found that gender
significantly affects rural students, with rural female students
exhibiting lower eHealth literacy levels. The existing literature
presents mixed findings on this issue. In countries with prevalent
gender inequalities, women tend to have lower health literacy,
whereas in some Western nations, women demonstrate higher
health literacy levels [65,66]. In the context of this study, these
results may partially reflect the persistent gender gap in
education in rural China, as well as traditional societal views
on gender roles. This disparity objectively limits rural female
students’ access to and use of health information, while also
indirectly influencing their health awareness, needs, and
confidence in using eHealth resources. Additionally, potential
gender differences in health needs, attitudes, and communication
patterns underscore the importance of tailored interventions and
support. By contrast, urban students do not exhibit significant
gender differences, likely due to relatively greater resource
availability and a more equitable social environment, where
information dissemination is more diverse and access to
electronic tools and health information is more convenient. In
addition, monthly per capita household income serves as a
protective factor for eHealth literacy among rural students but
not among urban students. This may be because high-income
rural families can better support students in accessing and
utilizing eHealth information resources, whereas in urban
settings, the impact of income differences is mitigated by greater
environmental support and resource availability. The study [67]
highlights the importance of tailoring eHealth literacy
interventions to specific populations.

The results of the Fairlie decomposition model indicate that
28.6% of the difference in eHealth literacy between urban and
rural students can be attributed to observed factors, primarily
monthly per capita family income (13.4%), exercise habits
(11.7%), and PHQ-9 scores (2.1%). These factors not only
demonstrate statistical significance in the empirical data but
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also have clear, real-life implications, which is common in
logistic regression analyses. Several studies have shown that
family income is a key determinant of health literacy, both in
the general population and among students [68], as it directly
influences their ability to access health information. Students
from higher-income families are more likely to afford smart
devices and internet services, facilitating easier access to online
medical resources [69]. Exercise, by contrast, reflects students’
healthy habits, which are not only positively correlated with
health literacy but also subconsciously motivate them to seek
more health knowledge [70]. Additionally, the PHQ-9 score,
as a self-report measure of depressive states, suggests that
students with higher scores may be less likely to engage with
and comprehend health information due to low mood, a
relationship that has been confirmed in studies on mental health
and health literacy [71].

In this study, 71.4% of the difference in eHealth literacy between
urban and rural students was attributed to unobserved factors,
which may be linked to structural disparities between urban and
rural areas. Health inequalities between urban and rural
populations remain a global issue, with developing countries
experiencing more pronounced disparities than developed
countries [72]. Strengthening health services in rural
communities is widely recognized as a priority. Multiple factors
contribute to the observed disparities in health outcomes
between rural and urban areas [73]. The pervasive
socioeconomic disadvantages endemic to rural areas often result
in reduced access to health care services, perpetuating a cycle
of disadvantage. Geographic isolation and a shortage of health
care providers further exacerbate this issue. Additionally, rural
populations face higher risks of injury, encounter significant
barriers related to transportation and communication, and are
affected by diseconomies of scale due to their sparse
distribution. Collectively, these factors negatively impact the
health outcomes of individuals living in nonmetropolitan areas.
Nevertheless, evidence suggests that even after geographic
barriers are removed, health service utilization remains low in
some rural communities [74]. Additionally, studies indicate that
barriers to self-management—such as limited formal education
and poverty—may be further exacerbated in areas with fewer
health care professionals and weaker health infrastructure [75].
Patterson et al [76] found that adjusting for socioeconomic status
did not fully account for the observed differences in health risk
factors between rural and urban populations. Moreover, other
factors that differ between these regions may further contribute
to disparities in health outcomes. Given the critical role of
eHealth literacy in health outcomes, it is plausible that it
represents one of these contributing factors.

Existing research has confirmed the crucial role of mobile
technology in enhancing eHealth literacy and improving health
outcomes, particularly in rural areas and among disadvantaged
groups [77]. As health services continue to transition to digital
platforms, the need to promote eHealth literacy becomes
increasingly urgent. Our findings offer valuable insights for
policy makers. First, efforts should be made to improve access
to eHealth resources in rural and underserved areas.
Additionally, the government should implement measures to
enhance residents’ incomes and living conditions, thereby

addressing structural barriers to eHealth engagement. Given the
urban-rural divide, collaboration between the government and
educational institutions is essential to developing a multichannel
eHealth education platform. This platform should provide
tailored eHealth knowledge and telemedicine services, such as
live-streamed health lectures and regular dissemination of health
information, specifically targeting rural and resource-limited
areas to bridge the urban-rural information access gap.
Importantly, interventions should be designed with consideration
for less educated and lower-income populations, who have the
greatest need for such support [78]. Second, fostering a positive
environment for physical activity can help encourage the
adoption of healthy behaviors, as health literacy and healthy
behaviors are mutually reinforcing [79]. To encourage students
to develop healthy exercise habits, universities should
collaborate with local communities to establish well-equipped
sports facilities and organize regular sports events and
health-related activities. Additionally, implementing a reward
system—where students earn points for participating in sports
and health lectures, redeemable for incentives—could further
motivate engagement. Third, expanding on-campus mental
health services is crucial for enhancing students’ ability to
process health information. Given the significant impact of
mental health on eHealth literacy observed in this study,
universities should establish a comprehensive mental health
support system. This could include online psychological
counseling, crisis intervention services, and routine
psychological assessments to ensure early detection and support.
Universities should provide high-quality online mental health
resources through their health and counseling center websites
[80] and establish an integrated framework linking mental health
support with eHealth literacy training. This approach would
enhance students’ understanding and application of health
knowledge while effectively reducing barriers to accessing
health information. Finally, eHealth literacy training should be
systematic, with a structured approach to evaluating its
effectiveness. The influence of education on health is well
established [81], and numerous studies have shown that elective
courses can significantly impact students’ health literacy levels
[82,83]. Universities can implement targeted eHealth literacy
training programs that comprehensively cover all aspects of
eHealth literacy. Regular monitoring through surveys and
evaluations can help identify educational gaps and optimize the
curriculum accordingly. Additionally, fostering supportive
environments at home and school can enhance students’
self-efficacy and confidence, ultimately contributing to improved
health outcomes.

Strengths and Limitations
This study is the first to investigate disparities in eHealth literacy
between urban and rural university students in China. Using
Fairlie’s model for quantitative decomposition, we identified
key influencing factors and their specific contributions.
However, certain limitations must be acknowledged. First, as
this study is based on a cross-sectional questionnaire survey, it
does not capture dynamic changes in participants’ eHealth
literacy over time, limiting our ability to establish causal
relationships between eHealth literacy and urban-rural factors.
Second, although the eHEALS has been widely validated and
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is considered reliable across various cultural contexts and
countries, it remains a self-assessment tool and is therefore
susceptible to individual subjective biases. Notably, large-scale
epidemiological studies worldwide, such as the UK Biobank
and China Health and Retirement Longitudinal Study
(CHARLS) databases, often rely on self-reported data. These
subjective assessments can be supplemented with objective
indicators to provide a more comprehensive evaluation of actual
eHealth skill levels. Third, our sample size is relatively limited
compared with the overall population of university students.
Therefore, caution should be exercised when generalizing the
findings to a broader or global scale. To enhance the universality
of these results, future studies could refine the sampling method
and expand the survey scope. Comparative studies in other
countries could also provide insights into the similarities and
differences between China and other contexts. Finally, while
this study considered a broad range of demographic,
sociological, and personal lifestyle factors, eHealth literacy is
influenced by numerous variables. Future research should
explore additional influencing factors. Moreover, if disparities
in eHealth literacy between urban and rural students continue
to be observed, it will be crucial to develop scientifically sound,
context-specific interventions. Researchers should also focus
on validating, refining, and addressing potential shortcomings
in the implementation of these interventions.

Conclusions
The regression and decomposition analyses in this study
revealed that urban university students had higher eHealth
literacy levels than their rural counterparts. Key factors
contributing to this disparity included monthly per capita
household income, exercise habits, and PHQ-9 scores. The
Fairlie decomposition model indicated that 28.6% of the
difference in eHealth literacy between urban and rural students
could be attributed to observed factors, with monthly per capita
household income accounting for 13.4%, exercise for 11.7%,
and PHQ-9 scores for 2.1%. These findings provide novel
insights into urban-rural disparities in eHealth literacy among
Chinese university students, offering valuable guidance for
developing or refining policies to enhance eHealth literacy.

The policy strategies specifically include the following: (1)
improving access to eHealth resources in rural and underserved
areas; (2) fostering an environment that encourages physical
activity to promote healthy behaviors; (3) expanding
school-based mental health services to enhance health
information processing capacity; and (4) implementing
systematic eHealth literacy training with ongoing evaluation.
These strategies and policies will help promote equitable access
to and utilization of eHealth resources for all students, regardless
of their location.
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