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Abstract

Background: Sentiment analysis of alternative tobacco products discussed on social media is crucial in tobacco control research.
Large language models (LLMs) are artificial intelligence models that were trained on extensive text data to emulate the linguistic
patterns of humans. LLMs may hold the potential to streamline the time-consuming and labor-intensive process of human sentiment
analysis.

Objective: This study aimed to examine the accuracy of LLMs in replicating human sentiment evaluation of social media
messages relevant to heated tobacco products (HTPs).

Methods: GPT-3.5 and GPT-4 Turbo (OpenAI) were used to classify 500 Facebook (Meta Platforms) and 500 Twitter
(subsequently rebranded X) messages. Each set consisted of 200 human-labeled anti-HTPs, 200 pro-HTPs, and 100 neutral
messages. The models evaluated each message up to 20 times to generate multiple response instances reporting its classification
decisions. The majority of the labels from these responses were assigned as a model’s decision for the message. The models’
classification decisions were then compared with those of human evaluators.

Results: GPT-3.5 accurately replicated human sentiment evaluation in 61.2% of Facebook messages and 57% of Twitter
messages. GPT-4 Turbo demonstrated higher accuracies overall, with 81.7% for Facebook messages and 77% for Twitter messages.
GPT-4 Turbo’s accuracy with 3 response instances reached 99% of the accuracy achieved with 20 response instances. GPT-4
Turbo’s accuracy was higher for human-labeled anti- and pro-HTP messages compared with neutral messages. Most of the
GPT-3.5 misclassifications occurred when anti- or pro-HTP messages were incorrectly classified as neutral or irrelevant by the
model, whereas GPT-4 Turbo showed improvements across all sentiment categories and reduced misclassifications, especially
in incorrectly categorized messages as irrelevant.

Conclusions: LLMs can be used to analyze sentiment in social media messages about HTPs. Results from GPT-4 Turbo suggest
that accuracy can reach approximately 80% compared with the results of human experts, even with a small number of labeling
decisions generated by the model. A potential risk of using LLMs is the misrepresentation of the overall sentiment due to the
differences in accuracy across sentiment categories. Although this issue could be reduced with the newer language model, future
efforts should explore the mechanisms underlying the discrepancies and how to address them systematically.
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Introduction

Heated tobacco products (HTPs) are emerging tobacco products
that heat processed tobacco leaves, enabling users to breathe
nicotine into their lungs [1]. As these products gain global
market share at a rapid pace, their potential impacts on tobacco
prevention and cessation initiatives are becoming an important
topic of public debate [2].

Social media platforms are where a wide range of stakeholders
of tobacco regulations distribute their messages, such as policy
announcements, product advertisements, and product user
feedback [3-5]. Analyses of social media discourses on HTPs
provide opportunities to observe and identify the dynamics of
these messages, which could affect the public’s perception of
these products and relevant regulatory issues [3-7].

Sentiment analysis is a widely adopted method to understand
the attitudes of the public toward tobacco-related issues by
evaluating social media messages [8-11]. Prior research has
specifically focused on positive and negative sentiments due to
their possible associations with tobacco cessation and prevention
outcomes, such as the use of tobacco products and support for
tobacco regulations [11-13].

In past sentiment analyses of large-scale social media content
data, human evaluators often examined a subset of the dataset
rather than analyzing the entire dataset. The subset was then
used as a representative sample to inform the sentiment of the
whole dataset [8,9] or as a reference for machine learning
classifiers tasked with analyzing the entire dataset [14]. This
approach stems from the time-consuming and labor-intensive
nature of human sentiment evaluation, which involves recruiting,
training, and coordinating multiple evaluators. This complexity
arises from the fact that latent coding, including sentiment
analysis, requires understanding the underlying meanings and
subtleties in the text, which can substantially vary depending
on the context and across coders [15].

Large language models (LLMs), such as OpenAI’s Generative
Pre-trained Transformer and Google’s Gemini, may be able to
alleviate the burdens of human sentiment evaluation. LLMs are
artificial intelligence (AI) models that were trained on extensive
text data to emulate the linguistic patterns of humans [16,17].
Recent LLMs are known to achieve precision at the level of
human decisions on several intellectual tasks [18]. As LLMs
become increasingly accessible and available, expectations are
growing about the feasibility of using these technologies in
public health and social science research [19]. Several examples
include analyzing health and medical information [20,21],
pretesting the effect of health campaign messages [22],
predicting psychological experimental results [23], and
simulating sociodemographic groups and their reactions to social
issues [24].

We investigate the accuracy of LLMs in analyzing sentiment
in social media messages about HTPs. The current research
focuses on OpenAI’s GPT, given its high accessibility,
availability, and popularity. GPT models are easily accessible
through chatbot services such as ChatGPT, Microsoft Copilot,
and Apple Intelligence and are estimated to have the largest

user base worldwide. For instance, ChatGPT has more than 200
million weekly active users as of August 2024 [25]. These
aspects contribute to the attractiveness of GPT as an analytic
tool for tobacco researchers, especially those with limited
budgets and resources.

This study examines the accuracy of GPT-3.5 and GPT-4 Turbo
in emulating human sentiment evaluations of social media
messages related to HTPs. GPT-3.5 is a milestone model that
powered ChatGPT when the service was launched [26]; GPT-4
Turbo is one of the most recent GPT-4 models as of 2024, with
a particular development focus on improvements in processing
text prompts [27]. This study conducted direct comparisons of
the sentiment evaluations made by human coders and these
language models based on social media messages gathered from
multiple platforms. This investigation could ultimately
contribute to assessing the ability of LLMs in examining how
the public views alternative tobacco products.

Methods

Data Collection
Messages relevant to HTPs were collected from 2 social media
platforms that provide distinct message formats: Facebook (long
format) and Twitter (short format). Facebook posts were
collected using CrowdTangle (CT)’s keyword search feature.
CT was a social media analytic tool provided by Facebook’s
parent company, Meta. It allowed researchers to access the
historical data of Facebook [28]. Tweets were gathered using
Twitter’s application programming interface 2.0, which could
access the historical Twitter dataset through the company’s
academic research access program [29]. This study focused on
messages written in English.

In April 2022, a keyword search was conducted using the
following search query: “heat not burn” OR “heat-not-burn”
OR “heated tobacco” OR “tobacco heating” OR ((htp OR hnb)
AND (smoking OR smoke OR vaping OR vape OR tobacco
OR cig OR nicotine)) OR iqos. This query was designed to find
tweets and Facebook posts meeting at least one of the following
conditions: (1) Containing “heat not burn” in its entirety; (2)
containing “heat-not-burn” in its entirety; (3) containing “heated
tobacco” in its entirety; (4) containing “tobacco heating” in its
entirety; (5) containing at least one of “htp” and “hnb,” only
when it also contains one of “smoking,” “smoke,” “vaping,”
“vape,” “tobacco,” “cig,” and “nicotine;” and (6) containing
“iqos.” This search yielded 16,284 Facebook posts that were
published between January 2014 and December 2021 and 60,031
tweets published in the same period.

Human Evaluation
The procedures for preparing samples for human sentiment
evaluations were adapted from sentiment analyses of
tobacco-related mass and social media discussions [8-11]. A
team of 3 human coders evaluated the sentiment of 1250
Facebook posts and 1200 tweets sampled from the entire pool
of keyword-searched social media messages (ie, 16,284
Facebook posts and 60,031 tweets). Those messages were
human-labeled as one of the following 5 categories: ANTI
(anti-HTP messages), PRO (pro-HTP messages), NEU (neutral
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messages), MIX (messages containing a mixture of positive
and negative attitudes on HTPs), and IR (messages irrelevant
to HTPs).

The messages were sampled through a multistep process
designed to increase the likelihood of including both potentially
negative and positive messages, ensuring their inclusion in the
selected messages for human annotation. The details of the
sampling and coding procedures are reported in Multimedia
Appendix 1.

GPT Evaluation
From each of the human-evaluated 1250 long-form and 1200
short-form messages, we randomly selected 200 PRO, 200
ANTI, and 100 NEU messages, totaling 1000 messages. All
these selected messages for GPT-3.5 and GPT-4 Turbo
sentiment classification were relevant to HTPs. A LLM prompt
was created for each message, including coding instructions,
the message, and the coding scheme. Since this study aims to
conduct direct comparisons between the sentiment evaluations
of human coders and the language models, the instructions and
the coding scheme for the language models were kept consistent
with those for human coders, aside from minor formatting
adjustments. The instructions included in the prompt directed
a language model to categorize a given message based on the
coding scheme and to format its response based on formatting
rules. The coding scheme, largely identical to the one given to
human evaluators, included the definitions and explanations of
HTPs and 5 sentiment categories (ANTI, PRO, NEU, MIX, and
IR).

LLMs generate a sequence of words by selecting each word
based on its preceding words, and the selection is done by
sampling a word from a large distribution of possible words
[16,17]. Because of the inherent randomness in this sampling
process, LLMs may produce different responses to the same
prompt. This potential variability can be accounted for by
generating multiple responses from an LLM using the same
prompt [30]. To be specific, we collected 20 instances of
responses for each message, referred to as “response instances.”
Each instance was obtained by initiating a new chat with a
language model, sending the prompt, and saving the response
from the model.

A language model’s decision for each message was determined
by randomly selecting m instances from a pool of 20 response
instances with replacement. Then, the majority within the
selected instances was identified. This majority outcome was
termed the “machine decision.” We assessed the machine
decision by varying the number of response instances (m=1, 3,
5, 7, 9, and 11). For example, m=5 simulates a scenario where
a user generates 5 response instances and identifies the majority

among them. m=1 corresponds to a “one-shot” determination,
where a single instance was generated and considered as the
machine decision. In the case of a tie, an extra response instance
was randomly selected until the tie was broken.

For each message and each value of m, the process of
determining a machine decision was iterated 1000 times. After
each iteration, a variable that we refer to as “human-machine
concurrence” was recorded as 1 if the machine decision aligned
with the human evaluation of the message. Otherwise, it was
recorded as 0. This variable was then averaged across all
iterations, yielding a value referred to as “accuracy.” Thus, the
accuracy in this study indicates how accurately the language
models classify the sentiment of a message based on the m
number of responses. Alternatively, the accuracy can be
interpreted as the proportion of messages classified by the
language models that match the human sentiment evaluation of
the same messages. For instance, if the accuracy of a language
model is 90% for ANTI message classification, this suggests
that nine-tenths of human-labeled ANTI messages are
categorized as ANTI by the model. To assess the overall
accuracy of the model in evaluating the sentiment of a specific
set of messages (eg, Facebook messages classified as ANTI by
human evaluators), we calculated the average accuracy across
messages in each set, denoted as Km. For example, K11 for ANTI
messages refers to the proportion of human-labeled ANTI
messages that were also classified as ANTI by a language model
based on 1000 iterations of the majority of randomly selected
11 responses out of the total of 20 responses. Examples of
human-labeled ANTI, PRO, and NEU messages, along with
the language models’ sentiment classification decisions on the
same messages, are provided in Table S16 in Multimedia
Appendix 1.

Results

GPT-3.5 Evaluation
The average accuracy, based on 20 response instances (K20),
was 0.612 (SE 0.02) for long-form and 0.570 (SE 0.02) for
short-form messages. However, the accuracy varied across
categories. For messages categorized as ANTI by human
evaluators, K20 was 0.755 (SE 0.028) for long-form and 0.696
(SE 0.03) for short-form messages. For messages categorized
as PRO by human evaluators, the accuracy was 0.544 (SE 0.033)
for long-form and 0.476 (SE 0.033) for short-form messages.
The language model’s average accuracy for messages classified
as NEU by human evaluators was 0.461 (SE 0.04) for long-form
and 0.507 (SE 0.042) for short-form messages. Table 1 presents
the accuracy of different sentiment labels with varying m.
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Table 1. Accuracy varying the number of response instances (GPT-3.5).

All (N=500)NEU (n=100)dPRO (n=200)cANTIb (n=200)

Platform (format)

and ma

Km/K20, %Km (SE)Km/K20, %Km (SE)Km/K20, %Km (SE)Km/K20, %Km
e (SE)

Facebook (Long format)

86.50.529
(0.015)

92.70.428
(0.024)

830.452
(0.025)

87.10.657
(0.023)

1

94.40.578
(0.017)

96.70.446
(0.030)

93.10.506
(0.029)

94.70.715
(0.025)

3

96.90.593
(0.018)

97.70.451
(0.033)

96.20.524
(0.030)

97.20.734
(0.026)

5

97.90.599
(0.018)

98.60.455
(0.034)

97.40.530
(0.031)

980.740
(0.027)

7

98.50.603
(0.019)

98.70.456
(0.036)

98.20.535
(0.031)

98.60.744
(0.027)

9

99.10.606
(0.019)

99.50.459
(0.037)

98.70.537
(0.032)

99.20.749
(0.027)

11

—0.612
(0.020)

—0.461
(0.040)

—0.544
(0.033)

—f0.755
(0.028)

20

Twitter (Short format)

87.50.499
(0.016)

87.60.444
(0.026)

86.40.411
(0.025)

88.30.614
(0.025)

1

94.80.540
(0.018)

94.80.481
(0.033)

94.30.449
(0.029)

95.10.662
(0.027)

3

96.90.552
(0.019)

97.10.492
(0.036)

96.50.459
(0.031)

97.00.675
(0.028)

5

97.80.557
(0.019)

97.90.496
(0.038)

97.60.465
(0.031)

97.90.681
(0.029)

7

98.60.562
(0.019)

98.90.502
(0.039)

98.60.469
(0.032)

98.40.685
(0.029)

9

98.90.564
(0.020)

990.502
(0.040)

98.80.470
(0.032)

990.688
(0.029)

11

—0.570
(0.020)

—0.507
(0.042)

—0.476
(0.033)

—0.696
(0.030)

20

am indicates the number of response instances used for majority determination. When m is greater than 1, machine decision is the majority among the
response instances. When m equals 1, the machine decision is equal to the response instance (1-shot determination).
banti-HTP messages.
cpro-HTP messages.
dneutral messages.
eKm indicates the average of the machine accuracy of n messages when the machine decision for each message was determined based on m response
instances.
fNot applicable.

Most discrepancies arose when the language model classified
messages as NEU or IR, whereas human evaluators identified
positive or negative sentiments in these messages. For instance,
the model misclassified 24.5% (49/200) of human-evaluated
long-form ANTI messages. Among these misclassified
messages, the language model classified 61.2% (30/49), 26.5%
(13/49), and 12.2% (6/49) as NEU, IR, and PRO. Tables S2,
S4-S7, and Figures S1 and S2 in Multimedia Appendix 1 provide
more detailed comparative descriptions of decisions made by
human evaluators and GPT-3.5.

The significance of differences in accuracy between sentiment
categories was examined. The results indicated that K20 for
human-evaluated ANTI messages was significantly higher than
that of human-labeled PRO (U=26483.5; P<.001) and NEU
(U=14675.5; P<.001) messages in long form. This was also true
for human-labeled short-form PRO (U=25876.5; P<.001) and
NEU (U=13312.5, P<.001) messages. These gaps in accuracy
were consistent across all m values and formats (see Tables S12
and S13 in Multimedia Appendix 1).
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The accuracy improved as m increased, as visualized in Figure
1. In Figure 1, error bars represent the mean (SE) of the mean,
and “m” refers to the number of response instances. However,
even with a few response instances, the accuracy was
comparable to the accuracy based on 20 response instances. For

example, even the average accuracy of 1-shot determination
(K1) for human-labeled ANTI, PRO, and NEU messages also
reached 87.1%, 83%, and 92.7% of K20 for long-form messages
and 88.3%, 86.4%, and 87.6% of K20 for short-form messages.

Figure 1. Accuracy across response instances and message formats (GPT-3.5). HTP: heated tobacco product. ANTI: anti-HTP; PRO: pro-HTP; NEU:
neutral.

GPT-4 Turbo Evaluation
GPT-4 Turbo demonstrated higher accuracy than GPT-3.5 across
all sentiment categories. The language model’s overall average
accuracy was 0.817 (SE 0.017) for long-form messages and
0.770 (SE 0.019) for short-form messages. Although accuracy
varied across categories, the gap between the accuracy in ANTI
and PRO sentiment classification decreased compared with
GPT-3.5. For human-labeled ANTI messages, K20 was 0.861

(SE 0.024) for long-form messages and 0.79 (SE 0.028) for
short-form messages. For human-labeled PRO messages, K20

was 0.84 (SE 0.025) for long-form messages and 0.783 (SE
0.029) for short-form messages. The accuracy for human-labeled
NEU message categorization also increased compared to
GPT-3.5. For NEU messages, K20 was 0.685 (SE 0.044) for
long-form messages and 0.703 (SE 0.045) for short-form
messages. The accuracy of sentiment categories with varying
m is reported in Table 2.
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Table 2. Accuracy varying the number of response instances (GPT-4 Turbo).

All (N=500)NEUd (n=100)PROc (n=200)ANTIb (n=200)

Platform (format)

and ma

Km/K20, %Km (SE)Km/K20, %Km (SE)Km/K20, %Km (SE)Km/K20, %Km
e (SE)

Facebook (Long format)

98.60.806
(0.016)

96.50.661
(0.038)

98.50.828
(0.024)

99.40.856
(0.023)

1

99.50.813
(0.016)

99.30.681
(0.041)

99.30.834
(0.025)

99.70.859
(0.024)

3

99.80.816
(0.016)

1000.685
(0.042)

99.60.837
(0.025)

99.90.860
(0.024)

5

99.80.816
(0.017)

1000.687
(0.042)

99.60.837
(0.025)

99.90.860
(0.024)

7

99.90.816
(0.017)

1000.687
(0.043)

99.70.838
(0.025)

99.90.860
(0.024)

9

1000.817
(0.017)

1000.688
(0.043)

99.80.838
(0.025)

99.90.860
(0.024)

11

—0.817
(0.017)

—0.685
(0.044)

—0.840
(0.025)

—f0.861
(0.024)

20

Twitter (Short format)

99.40.765
(0.018)

1000.704
(0.040)

98.70.773
(0.028)

99.90.789
(0.027)

1

99.80.768
(0.018)

1000.708
(0.042)

99.20.776
(0.028)

99.90.789
(0.028)

3

99.80.768
(0.018)

1000.707
(0.043)

99.40.778
(0.028)

99.90.789
(0.028)

5

99.90.769
(0.018)

1000.706
(0.043)

99.60.779
(0.028)

1000.790
(0.028)

7

99.90.769
(0.018)

1000.705
(0.044)

99.70.780
(0.029)

99.90.789
(0.028)

9

99.90.769
(0.018)

1000.705
(0.044)

99.70.781
(0.029)

99.90.789
(0.028)

11

—0.770
(0.019)

—0.703
(0.045)

—0.783
(0.029)

—0.790
(0.028)

20

am indicates the number of response instances used for majority determination. When m is greater than 1, machine decision is the majority among the
response instances. When m equals 1, the machine decision is equal to the response instance (1-shot determination).
banti-HTP messages.
cpro-HTP messages.
dneutral messages.
eKm indicates the average of the machine accuracy of n messages when the machine decision for each message was determined based on m response
instances.
fNot applicable.

GPT-4 Turbo showed fewer false selections of the IR label
across all sentiment categories. When examined with 3 randomly
selected response instances (m=3), the model misclassified only
10 out of the entire 1000 sample messages as IR. This impacted
the pattern of mismatches between human and language model
sentiment classification. For instance, the model categorized
14% (28/200) of human-labeled ANTI messages as one of the
other labels. Of these mismatches, 93% (26/28) were classified
as NEU. Multimedia Appendix 1 includes contingency tables
(Tables S3 and S8-S11) as well as flow charts (Figure S2)

providing more detailed comparative descriptions of human
and language model sentiment labeling.

For long-form messages, the model’s accuracy of ANTI
classification based on 20 response instances was significantly
higher than NEU classification (U=12,561.5; P<.001) but not
significantly different from the accuracy of PRO classification
(U=20,810.5; P=.30). PRO classification also showed
significantly higher accuracy compared with NEU classification
(U=12,176; P<.001). This pattern was observed across all m
values. For short-form messages with lower m values, the
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accuracy of ANTI and PRO classification was significantly
greater than NEU labeling. For example, the 1-shot
determination (K1) for ANTI and PRO classification was
significantly higher than for NEU classification (ANTI vs NEU:
U=11,829; P<.001 and PRO vs NEU: U=11,625; P<.001).
However, these differences diminished as m increased; K20 was
not significantly different across the 3 sentiment categories.

The difference test results across all m values are provided in
Multimedia Appendix 1 (Table S14 and S15).

The model’s accuracy in 1-shot cases was already comparable
with that of 20 instances, as shown in Figure 2. Error bars
represent the mean (SE) of the mean, and “m” refers to the
number of response instances. Table 2 above presented that the
accuracy of the 1-shot determination (K1) reached at least 96.5%
accuracy based on 20 response instances (K20).

Figure 2. Accuracy across response instances and message formats (GPT-4 Turbo). HTP: heated tobacco product; ANTI: anti-HTP; PRO: pro-HTP;
NEU: neutral.

Discussion

GPT-4 Turbo accurately replicated 81.7% of human sentiment
evaluations for long-form messages and 77% for short-form
messages, based on 20 AI responses. In comparison, GPT-3.5’s
K20 indicated that the model’s labeling decisions matched human
coders’ evaluations with 61.2% accuracy for long-form
messages and 57% accuracy for short-form messages. In sum,
GPT-4 Turbo showed improvements in accuracy compared to
GPT-3.5 due to increased accuracy across all sentiment
categories.

Focusing on GPT-4 Turbo, which showed better overall
accuracy, the LLM demonstrated already high accuracy with a
small number of responses. The difference in accuracy between
a small number of responses (eg, m=1, 3) and a high number
of responses (eg, m=20) was not statistically significant. For all
sentiment categories, the language model’s K3 reached at least
99.2% of K20. The model demonstrated similar levels of
accuracy for ANTI and PRO labels for both long-form and
short-form messages. While the accuracy of NEU classification
was lower than that of ANTI and PRO classification, it increased
by approximately 20 percentage points compared with GPT-3.5.
These findings suggest that GPT-4 Turbo can yield more
accurate sentiment classification decisions, even with a small
number of response instances, such as 3.

GPT-3.5 showed discrepancies in accuracy across sentiment
categories. Specifically, the accuracy of the ANTI classification
was better than the PRO classification. This finding suggests
the possibility of a relative underrepresentation of messages

with positive sentiment compared with negative sentiment when
using LLMs for sentiment analysis of tobacco-related social
media discourses. This issue calls for further exploration of
approaches, techniques, and procedures to assess, mitigate, or
compensate for LLMs’potential inconsistencies across different
sentiment categories, as well as the reasons underlying these
discrepancies.

Employing a newer model may be the most straightforward
solution, as shown by the comparison between older (GPT-3.5)
and newer (GPT-4 Turbo) models. The newer model not only
improved accuracy across all sentiment categories but also
showed no significant difference in accuracy between ANTI
and PRO classifications. This is particularly important for
tobacco prevention researchers, as the detection of ANTI and
PRO sentiments is important due to their possible associations
with tobacco prevention outcomes [11,12,31]. However, a more
recent model may not always perform better than its
predecessors. For example, GPT-4 Turbo experienced a
“laziness” issue, where the model does not complete user
requests [32]. Therefore, the performance of new language
models on specific tasks should also be rigorously tested.

Using language models specialized for health and medical
information analyses, such as Google’s Med-PaLM [33] and
Stanford University’s BioMedLM (previously PubMedGPT)
[34], may influence accuracy. Research in this area is still
emerging, with limited evidence on the application of these
specialized LLMs for sentiment analysis. Previous studies have
primarily used standard GPT models [35-38]. In addition, using
these specialized models could be more difficult than widely
used platforms like ChatGPT. Still, their performance in
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analyzing the sentiment of public health-related social media
messages warrants future investigations, considering their
capabilities in handling content from the general public, not just
academic researchers and professionals.

Prompt engineering could be another strategy for improving
the accuracy of LLMs in sentiment analysis and reducing
discrepancies across categories. In line with the objective of
this study to facilitate a straightforward comparison between
human coders’ and language models’ labeling decisions, we
used a prompt that closely mirrored the coding scheme for
human evaluators. However, different prompting techniques
can lead to different results for similar requests [39,40].
Techniques such as few-shot prompting, which involves
including task-related examples within the prompts, may
enhance accuracy. For instance, rather than only defining
sentiment labels, the coding scheme can provide several example
messages for each label. Although these techniques complicate
direct comparisons between human and machine classification,
they possibly offer potential accuracy gains worth exploring.

Establishing and adopting coding procedures for LLM-involved
coding is also worthwhile. A study investigating LLMs as
substitutes for human coders in labeling texts on political topics
serves as a good example [30]. The authors proposed a “hybrid”
model where disagreements between the “GPT-4 first run” and
the “GPT-4 second run” are resolved by a human coder. Their
findings demonstrated that the hybrid approach can be optimized
with minimal additional human effort and boosted the accuracy
of GPT-4’s annotations. This hybrid approach can potentially
be adapted for the analysis of sentiment about health topics,
and other coding procedures should be explored to further
enhance the accuracy and efficiency.

The implications and future applications of our findings should
be discussed with caution. First, this study is a focused case
study on OpenAI’s GPT, examining sentiment analysis on
Twitter and Facebook messages related to HTPs. Future research
can extend beyond this specific focus to evaluate the accuracy
of LLMs in analyzing the sentiment of health-related
information across a broader range of topics and platforms.
Second, while the differences in accuracy for ANTI and PRO
sentiment classifications that were present in GPT-3.5
disappeared in GPT-4 Turbo, and the accuracy of NEU
classification increased by 20%, the NEU classification accuracy
remained lower. A simple explanation might be the
underperformance of the models. For instance, GPT-4 Turbo
misclassified a human-labeled NEU message, which used HTPs
as examples to explain an economic principle, as irrelevant.
Alternatively, this difference might stem from the inherent
complexity of evaluating neutrality [15,41]. For example, human
coders classified a message as NEU, describing IQOS (Philip
Morris International) as a device that uses a “patented
heat-control technology.” In contrast, GPT-4 Turbo classified
the same message as PRO, interpreting “patented heat-control
technology” to have positive connotations. It may be worthwhile
for future research to explore the patterns of misclassifications
by LLMs. Third, this study did not address the potential ethical
issues of using LLMs for sentiment analysis of social media
content. Ethical considerations, such as security, privacy
protection, and data ownership, are important when using LLMs
to analyze social media messages [42,43]. These issues require
careful attention when analyzing health-related information
using LLMs, too [44,45]. Future research should use LLMs
while carefully considering the potential ethical issues
surrounding their content analyses.
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