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Abstract

Background: The emergence of new SARS-CoV-2 variants, the resulting reinfections, and post–COVID-19 condition continue
to impact many people’s lives. Tracking websites like the one at Johns Hopkins University no longer report the daily confirmed
cases, posing challenges to accurately determine the true extent of infections. Many COVID-19 cases with mild symptoms are
self-assessed at home and reported on social media, which provides an opportunity to monitor and understand the progression
and evolving trends of the disease.

Objective: We aim to build a publicly available database of COVID-19–related tweets and extracted information about symptoms
and recovery cycles from self-reported tweets. We have presented the results of our analysis of infection, reinfection, recovery,
and long-term effects of COVID-19 on a visualization website that refreshes data on a weekly basis.

Methods: We used Twitter (subsequently rebranded as X) to collect COVID-19–related data, from which 9 native English-speaking
annotators annotated a training dataset of COVID-19–positive self-reporters. We then used large language models to identify
positive self-reporters from other unannotated tweets. We used the Hibert transform to calculate the lead of the prediction curve
ahead of the reported curve. Finally, we presented our findings on symptoms, recovery, reinfections, and long-term effects of
COVID-19 on the Covlab website.

Results: We collected 7.3 million tweets related to COVID-19 between January 1, 2020, and April 1, 2024, including 262,278
self-reported cases. The predicted number of infection cases by our model is 7.63 days ahead of the official report. In addition
to common symptoms, we identified some symptoms that were not included in the list from the US Centers for Disease Control
and Prevention, such as lethargy and hallucinations. Repeat infections were commonly occurring, with rates of second and third
infections at 7.49% (19,644/262,278) and 1.37% (3593/262,278), respectively, whereas 0.45% (1180/262,278) also reported that
they had been infected >5 times. We identified 723 individuals who shared detailed recovery experiences through tweets, indicating
a substantially reduction in recovery time over the years. Specifically, the average recovery period decreased from around 30
days in 2020 to approximately 12 days in 2023. In addition, geographic information collected from confirmed individuals indicates
that the temporal patterns of confirmed cases in states such as California and Texas closely mirror the overall trajectory observed
across the United States.
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Conclusions: Although with some biases and limitations, self-reported tweet data serves as a valuable complement to clinical
data, especially in the postpandemic era dominated by mild cases. Our web-based analytic platform can play a significant role in
continuously tracking COVID-19, finding new uncommon symptoms, detecting and monitoring the manifestation of long-term
effects, and providing necessary insights to the public and decision-makers.

(J Med Internet Res 2025;27:e63190) doi: 10.2196/63190
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Introduction

Background
COVID-19 is one of the most severe infectious diseases in
human history. Although the World Health Organization
downgraded the COVID-19 pandemic, declaring it is no longer
a global emergency on May 5, 2023 [1], the threat of infection
and death remains. As of August 1, 2023, there have been
>300,000 confirmed cases weekly worldwide, resulting in >1000
deaths per week; however, major information-publishing
platforms, such as that at Johns Hopkins University, stopped
collecting and tracking COVID-19 data worldwide on March
10, 2023 [2]. Therefore, it has become more challenging to
identify the actual number and trends of COVID-19 infections
daily. Traditional public health monitoring methods face several
challenges, including delays in clinical data collection, lack of
real-time insights, and the underrepresentation of
population-level trends, particularly in regions with limited
health care reporting infrastructure [3,4]. New tools are required
to provide timely awareness and detection of COVID-19
transmission trends, reinfection patterns, and the long-term
health impact of the disease.

To supplement the shortage of clinical data and gain further
insights into the development trends and variant tendencies of
COVID-19, researchers have turned to social media, specifically
Twitter (subsequently rebranded as X). Social media data offer
unique advantages, such as rapid updates and a broad
geographical reach, which traditional clinical data often lack
[5,6]. Several studies [7-11] have explored the use of social
media for health monitoring, including sentiment analysis of
COVID-19–related tweets, the identification of emerging
symptoms, and the study of vaccine hesitancy. Early studies
[12-16] primarily focused on constructing COVID-19–related
tweet databases. However, these works do not provide in-depth
analysis of self-reported tweets, and the databases tended to be
collected over a short time frame, typically several months, and
cannot automatically update. Later, some research endeavors
[9,17-19] shifted their focus toward studying COVID-19
symptoms on the basis of tweets and reported the distribution
of symptoms in tweets. However, these studies included limited
numbers of collected self-reported cases. Some studies
[16,20-24] used tweets to study geographic distribution but did
not provide a corresponding time-series analysis or predict the
spread of COVID-19. Moreover, existing studies have not fully
leveraged user-generated content on social media to provide a
comprehensive, dynamic view of COVID-19 trends across
symptoms, geography, and time. This gap underscores the need

for a methodology capable of providing near–real-time insights
and broader geographical coverage [25]. As for the visualization
tools for COVID-19, some researchers [26-29] have developed
platforms or dashboards to study the trends of COVID-19, but
most were based on clinical data. A few tweet-based platforms
[27,29,30] showed limited information and failed to provide
timely updates.

Reinfection often refers to the phenomenon in which an
individual who has recovered from COVID-19 is again infected
with the virus [31]. Some researchers [32,33] considered that
reinfection is identified when an individual tests positive again
through polymerase chain reaction (PCR) testing after a
minimum of 90 days of a negative result. However, some studies
also suggest this duration should be 30 days [34,35]. Other
studies [34,36,37] considered reinfection to be a new positive
PCR following 2 consecutive negative PCR tests taken after
primary infection. Moreover, the periodicity of reinfection, the
reinfection rate, and the maximum number of infections are
uncertain. Existing studies on reinfection trends and periodicity
have primarily relied on clinical data, leaving gaps in
understanding population-level reinfection dynamics that may
be observable through self-reported data on social media [38].
In addition to reinfection, there is a growing concern about the
long-term effects of COVID-19, known as post–COVID19
condition, where patients report symptoms lasting months after
recovery [39,40]. Clinical data on long-term effects remain
limited [41], but social media offers a platform where
individuals can share ongoing symptoms, providing valuable
insights for public health research [42,43]. This further
highlights the potential of using self-reported data to investigate
the periodicity of reinfection, as well as long-term effects and
symptoms, complementing traditional clinical datasets.

Health natural language processing (NLP) is gaining increasing
attention for its essential role in both methodology development
and applications [44]. The technology has been widely applied
in areas such as information extraction from electronic health
records [45], adverse drug reaction analysis [46], clinical
decision support [47], and hospitalization prediction [48]. Using
techniques such as topic modeling, sentiment analysis, and deep
learning models such as Bidirectional Encoder Representations
from Transformers (BERT) [49], NLP can extract valuable
medical insights from unstructured text. Combined with
real-time analytics frameworks [50] and knowledge graphs [51],
these technologies can dynamically monitor COVID-19 trends,
identify previously unnoticed symptoms and long-term effects,
and provide scientific support for optimizing public health
strategies and resource allocation.
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Objectives
In this study, we address these gaps by leveraging self-reported
COVID-19 data from Twitter to provide near–real-time insights
into trends across symptoms, reinfection, recovery cycles, and
geographical distributions. The proposed approach not only fills
the limitations of traditional monitoring systems but also offers
a scalable, timely, and comprehensive method to track the
pandemic’s evolving dynamics. Our visualization tool updates
weekly and comprehensively analyzes information related to
COVID-19 symptoms, case distribution, reinfections, recoveries,
and long-term effects based on large language models (LLMs).
Figure 1 depicts our research objectives: (1) we aim to build a
publicly available database of >9,836,206 COVID-19–related
tweets, and this database is set to automatically update with
newly collected data weekly; (2) LLMs will be built to
automatically filter the tweets of self-reporters and extract their
mentioned symptoms and recovery cycles; and (3) we aim to
build a visualization website that refreshes data on a weekly
basis, Covlab [52], to track and analyze infection, reinfection,
recovery, and long-term effects of COVID-19.

As depicted in Figure 1, the workflow of Covlab comprised the
following steps: data collection, models training, tracking, and
visualization website. During data collection, COVID-19–related
tweets were collected using the Twitter application programming
interface (API) and filtered from a broader dataset of social
media posts. A subset of these tweets was manually labeled
through a specialized annotation tool, creating a high-quality
training set essential for developing machine learning models.
In addition, historical tweets and user ID databases were
incorporated to construct a comprehensive cohort of individuals

who self-reported COVID-19 infections, forming the
foundational dataset for subsequent tracking and analytical
tasks. In models training step, annotated datasets were used to
train a variety of machine learning and NLP models, including
support vector machine (SVM), logistic regression (LR), BERT,
GPT-2, and LLM meta AI 2 (Llama-2), to identify the most
effective model for detecting self-reported COVID-19 infection
tweets. After selecting the optimal model, it was applied to a
larger collection of COVID-19–related tweets to extract tweets
reporting personal COVID-19 infections. Throughout this
process, performance metrics such as cross-validation and
receiver operating characteristic (ROC) curve analysis, were
used to ensure the models provided robust and accurate
predictions. In the tracking step, the system conducted long-term
tracking of individuals who self-reported COVID-19 infections
in their tweets, focusing on analyzing symptoms such as
breathing difficulties, fever, headache, cough, and fatigue, as
well as recovery cycles, long-term effects (ie, sequelae), and
geographical trends. In addition, reinfection cases were
monitored to provide insights into the temporal dynamics of
COVID-19 experiences, helping to uncover patterns in symptom
progression, recovery, and recurring infections over time. In
the visualization website step, the results of the analyses were
presented on an interactive platform, Covlab, which provided
a variety of visualization tools, including word clouds, pie
charts, box plots, line graphs, geographic maps, and trend tables.
This platform enabled users to track epidemic trends, uncover
new or previously unreported symptoms, analyze recovery
durations, report reinfection statistics, and explore different
types of long-term effects (ie, sequelae), offering valuable
insights to researchers and public health officials.

Figure 1. Workflow for Covlab. BERT: Bidirectional Encoder Representations from Transformers; Llama-2: large language model meta AI 2; LR:
logistic regression; NLP: natural language processing; ROC: receiver operating characteristics; SVM: support vector machine.
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Methods

Data Collection and Preprocessing
We collected and processed tweet data from January 2020 to
April 2024 based on COVID-19–related keywords and hashtags
through the Twitter streaming API. The searching keywords
included “I.* tested[ed] positive for [covid | coronavirus |
covid19 | covid-19],” “My.* [covid | coronavirus | covid19 |
covid-19].* symptoms,” “#COVID” “#LongCovid” (all the
keywords can be found in Multimedia Appendix 1). The
following preprocessing operations were conducted on the
tweets collected based on keywords. We first converted all
words in the tweets to lowercase, standardized the tweets to
American Standard Code for Information Interchange encoding
using the Unicode library, and tokenized the tweets. Next, we
removed all Unicode symbols and punctuation marks, some
uninformative characters about usernames, such as @username,
all digits and line breaks in the tweets, all URLs, such as http://,
and all words contained in our stop word library (Multimedia
Appendix 2). We converted emoji expressions into their
corresponding textual expressions. To provide sufficient datasets
for subsequent model training, we constructed a self-reported
COVID-19 tweets dataset with manual labeling by 9 native
English-speaking annotators after obtaining ethics approval.
We also established a set of calibration criteria as shown in

Table 1 to ensure the consistency and reliability of the tweet
annotations. Two additional annotators conducted a secondary
annotation on the labeled data. If their new annotations were
inconsistent with the originals, all annotators would decide
through a voting process whether the tweet should be classified
as a self-reported COVID-19 positive tweet. The Fleiss κ index
[53] was used to measure the consistency among multiple
annotators to ensure the reliability of the annotations
(Multimedia Appendix 3). We also developed a web-based
annotation tool (Multimedia Appendix 4) to improve the
efficiency of manual annotation. We annotated 115,214 tweets,
of which 13,701 (11.89%) were positive samples that described
self-reported positive COVID-19 cases and 101,513 (88.11%)
were negative samples either not describing self-infection with
COVID-19 or irrelevant. Multimedia Appendix 5 presents the
types of tweets targeted in our study. The tweet depicted on the
left serves as a prototypical instance, delineating self-reported
information about COVID-19 infections. This includes the date
of diagnosis and a detailed account of the symptoms experienced
by the individual. Conversely, although the tweet shown on the
right also references a diagnosis of COVID-19 and details
associated symptoms, it diverges from our criteria for target
tweets because it recounts a diagnosis pertaining to a third party,
specifically a friend of the tweeter, rather than a self-reported
account. Therefore, it falls outside the scope of our target
dataset.
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Table 1. Labeling criteria for the tweets.

DescriptionAnnotation guidelineIndex

Tweets must be a personal account by the author regarding their experience of contracting COVID-19. If the
tweet mentions someone other than the author being infected, such as friends, family, or others, it should be
labeled as a negative sample.

Self-reported infection1

Tweets should use first-person pronouns (eg, “I,” “me,” and “my”) to describe the author’s experience of
contracting COVID-19, not that of others.

First-person narrative2

Tweets should provide concrete details, including infection timeline, test results and medical treatments,
among others, rather than general discussions or speculations.

Concrete information3

Tweets should contain the patient’s personal descriptions of COVID-19 symptoms experienced, such as
fever, cough, or difficulty breathing.

Symptom description4

Tweets should mention how the author was confirmed to have contracted COVID-19, such as the type of

test conducted (PCRa and rapid antigen test), confirmation by a physician, or official institution validation.

Confirmation information5

Tweets should describe the author’s experience of treatment or recovery after self-contracting COVID-19,
including isolation, medication, deterioration, or improvement in their health.

Treatment experience6

Tweets should contain exact time points or time ranges of the infection rather than general discussions. Pro-
viding precise timing helps verify the author’s infection period.

Infection timeline7

Tweets should reference the author’s COVID-19 test results, such as testing positive or negative or other
relevant test outcomes.

Test results8

Tweets should mention whether the author received treatment or underwent COVID-19-related tests at a
medical facility, such as a hospital or clinic.

Medical Facility9

Tweets should discuss the author’s adoption of social distancing measures due to their infection, such as self-
isolation or notifying close contacts.

Social distancing measures10

Tweets should contain substantial evidence, such as medical records, official notices, or other documents
validating the author’s COVID-19 infection.

Substantial evidence11

Tweets emphasizing that the author did not transmit the virus to others may indicate a self-reported infection.Exclusion of transmission12

If 3 or more annotators provide inconsistent annotations for a particular tweet, a discussion among all anno-
tators should be initiated to reach a final consensus.

Consensus annotation13

aPCR: polymerase chain reaction.

Ethical Considerations
We have prioritized privacy and ethical considerations in our
use of self-reported COVID-19–related tweets from Twitter,
which, while publicly available, are processed with strict
anonymization measures to ensure that no personally identifiable
information can be traced back to individuals. The ethical
nuances of using such data are addressed by considering users’
implied consent when posting self-reports on a public platform.
To safeguard data security throughout collection, annotation,
and analysis, we have implemented encryption, controlled
access, and other technical measures, ensuring that the data are
strictly used for research purposes and never for commercial
activities. Furthermore, recognizing the inherent noise and biases
in social media data, we explicitly acknowledge the limitations
of our dataset and analysis. To mitigate potential risks of
misinterpretation or misuse, we emphasize that our findings are
intended for population-level trend analysis rather than
individual diagnosis, thereby maintaining the integrity and
appropriate application of the results. This study is exempt from
ethical approval because it only involves the analysis of
aggregate data, ensuring that no individual privacy information
is disclosed. All data have been fully deidentified, and
appropriate anonymization measures have been applied to
guarantee that no subject can be traced.

Self-Reported COVID-19–Positive Model
To select text-classification models to determine whether a
tweet is a self-reported COVID-19– positive tweet, we trained
both traditional machine learning methods and fine-tuned LLMs.
We divided the manually labeled dataset in which 80%
(92,171/115,214) was used as the training set, 10%
(11,521/115,214) as the validation set, and the remaining 10%
(11,521/115,214) as the test set. We used word frequency, term
frequency–inverse document frequency [54] vectors, and feature
hashing vectors as methods for text feature extraction, and we
adopted 10-fold cross-validation to ensure the reliability of the
results.

For conventional machine learning models, we used both linear
and nonlinear models to compare different classification
approaches. Because the amount of the manually annotated data
were relatively small and the text data features were relatively
simple, we experimented with machine learning methods such
as naive Bayes [55], SVMs [56], and LR [57]. In the SVM
method, we used the radial basis function as the kernel function
and set the penalty parameter to 1.2. We used an L2
regularization as the penalty term in LR, with a regularization
strength parameter (C) set to 1.0. As for LLMs, we used BERT
[49], robustly optimized BERT pretraining approach (RoBERTa)
[58], extreme language model [59], GPT-2 [60], Bigscience
Large Open-science Open-access Multilingual language model
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(BLOOM) [61], and Llama-2 [62] for training. These LLMs
are pretrained on large datasets using the masked language
model objective for BERT and RoBERTa; the permuted
language model objective for extreme language model; and the
causal language modeling objective for GPT-2, BLOOM, and
Llama-2. Because GPT-2, BLOOM, and Llama-2 are generative
models, they may generate nonuniform results, rendering result
interpretation difficult. These pretrained LLMs were originally
designed to process general text of varying lengths. Through
fine-tuning these LLMs on tweets, which are inherently short
texts, we adapted them to better handle short text-classification
tasks. We selected models pretrained on English corpora to
ensure appropriate language understanding. We borrowed the
idea from previous work [63], leveraging latent representations
from LLMs for supervised label prediction. Hence, we designed
different LLM-based classifiers integrated with various LLMs
and fully connected neural networks. Precisely, each LLM
serves as a backbone for encoding the tweets instead of
generating text. A fully connected neural network was integrated
on top of each LLM for stably accurate detection of self-reported
COVID-19 cases. Unlike traditional machine learning methods
requiring feature preprocessing, the LLM-based classifiers take
only the text of a tweet as input. The specific parameters of the
machine learning methods and LLMs can be found in
Multimedia Appendices 6 and 7.

To prevent catastrophic forgetting and ensure that LLMs have
a broad understanding of self-reported COVID-19 cases during
the training stage, we used low-rank adaptation (LoRA) [64] to
fine-tune the LLM-based classifiers. LoRA enables the
parameters of a model to learn effectively by introducing
trainable rank decomposition matrices into the transformer

architectures in the LLMs. To achieve this reparameterization,
we modified the projection matrices of query, key, value, and
feedforward network modules within the self-attention
mechanism of the transformer.

The LLM-based classifiers were trained end-to-end with the
AdamW [65] optimizer with a cross-entropy objective function.
During the training stage, the parameters introduced by LoRA
within the pretrained model were updated with gradients, and
all remaining parameters were frozen. Early stopping to monitor
the accuracy of the validation dataset was implemented during
training. All runs were trained on the Nvidia A100 graphical
processing unit with a batch size of 5 for Llama-2 and 32 for
other models.

We evaluated the performance of each model and chose the one
that achieved the best results for predicting the daily number
of self-reported confirmed cases. Subsequently, we applied a
named entity recognition [66,67] method such as SpaCy [68]
and BERT-based models to extract essential symptom-related
keywords from the tweets. The model was trained or fine-tuned
using a labeled dataset specifically curated for health-related
text, which included annotations for COVID-19 symptoms such
as fever, cough, fatigue, and loss of smell or taste. For the
definition of symptoms, we referred to the descriptions of
symptoms within the systematized nomenclature of medicine
clinical terms [69] as shown in Table 2. To make our system
operational, we deployed the trained model on a server. We
used a script program to continuously collect COVID-19–related
tweets from Twitter. The collected tweets were then analyzed
using the deployed model, and the results were displayed weekly
on the Covlab website. This provided users with up-to-date,
analyzed information regarding COVID-19 development.
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Table 2. Symptoms and their expression found in self-reported tweets.

Descriptions (with their IDs in clinical terms)Symptoms

Febrile (386661006), fever (386661006), feverish (103001002), mill fever (85761009), hyperthermia (1197782006), hay
fever (21719001), degrees Fahrenheit (258712004), temperature (722490005), high temperature (285717004), high body
temperature (50177009), body temperature above reference range (50177009), increased body temperature (50177009),
elevated temperature (50177009), raised temperature (50177009), increased skin temperature (17038008), feeling hot
(373932008), feeling hot and cold (103002009), and feeling hot and sweaty (373939004)

Fever

Chills (43724002), chills and fever (274640006), chillness (43724002), shivering (43724002), shivering or rigors
(248456009), rigor (38880002), brass founders’ ague (74800004), algor (425681008), shakes (26079004), shaking
(26079004), trembling (267079009), cold (82272006), head cold (82272006), freeze (48103003), freezing (48103003),
and frigid (48103003)

Chills

Sweat (74616000), sweating (415691001), cold sweat (83547004), hot sweat (224962007), hemopoiesis (445961003),
hidrosis (415691001), diaphoresis (52613005), perspiration (415691001), perspire (74616000), perspire profusely
(74616000), started to perspire (74616000), perspire all over (74616000), perspire during sleep (74616000), excessive
sweating (52613005), profuse sweating (52613005), and sweating profusely (52613005)

Sweating

Sniffle (275280004), nose running (267101005), running nose (267101005), nose dripping (267101005), nasal discharge
(267101005), and snotty (267101005)

Runny nose

Nasal congestion (68235000), congested nose (68235000), stuffed-up nose (68235000), congestion (85804007), stuffed-
up nose (68235000), stuffed nose (68235000), rhinobyon (68235000), nasal obstruction (232209000), nasal airway obstruc-
tion (232209000), and stuffiness (232209000)

Nasal congestion

Nosebleed (249366005), nose bleeds (249366005), nose bleeding (249366005), bleeding from nose (249366005), nosebleed
(249366005), nasal hemorrhage (249366005), epistaxis (249366005), and nasal hemorrhage (249366005)

Nosebleed

Cough (49727002), coughing (49727002), nonproductive cough (11833005), hacking cough (59994004), tussiculation,
dry cough (11833005), persistent cough (284523002) acute cough (49727002), bad cough (49727002), coughing all night
(161933007), evening cough (161933007), morning cough (161932002), coughing up blood (66857006), coughing and
deep breathing (371605008), and begma (49727002)

Cough

Headache (25064002), migraine (37796009), sick headache (193028008), tension-type headache (398057008), and cluster-
headache syndrome (193031009)

Headache

Sneeze (76067001), sneezing (76067001), sneezing symptom (162367006), sternutation (76067001), niesen (76067001),
and achoo (76067001)

Sneezing

Eye pain (41652007), pain in eye (41652007), ocular pain (41652007), ocular headache (86925001), ocular dryness
(162290004), dry eye (162290004), cephalalgia (25064002), diplopia (24982008), double vision (24982008), and eyelid
edema (89091004)

Eye pain

Smell (397686008), taste (397627001), lost sense of smell (44169009), absent smell (44169009), sense of smell absent
(44169009), anosmia (44169009), can’t smell (44169009), smell nothing (44169009), disorder of taste (399993004), loss
of taste (36955009), absence of sense of taste (36955009), and ageusia (36955009)

Loss of taste or smell

Sputum (45710003), expectoration (45710003), productive cough (28743005), productive cough–green sputum (161924005),
productive cough–yellow sputum (161925006), and phlegm (52024008)

Sputum

Respiratory disorder (50043002), respiratory disease (50043002), breath (11891009), shortness of breath (267036007),
dyspnea (267036007), short breath (267036007), breathless (267036007), difficulty in breathing (230145002), breathing
difficult (230145002), labored breathing (248549001), difficulty breath (230145002), and breathing painful (75483001)

Shortness of breath

Sore throat (267102003), throat sore (162388002), throat pain (162388002), pain in throat (162397003), and pain throat
(162397003)

Sore throat

Dizzy (267102003), throat soreness (267102003), dizzy spells (315018008), and dizziness (404640003)Dizziness

Intolerance of light (1285284009), photophobia (409668002), eye sensitive to light (1285284009), light sensitive
(1285284009), and light sensitivity (1285284009)

Intolerance to light

Pains of ears (301354004), earache (301354004), otalgia (301354004), ears pop (162346006), popping sensation in ear
(162346006), tinnitus (60862001), and noise in ears (60862001)

Hearing findings

Poor appetite (64379006), decrease in appetite (64379006), inappetence (64379006), lost my appetite (64379006), loss of
appetite (79890006), no appetite (79890006), anorexia (79890006), and off food (79890006)

Loss of appetite

Hallucinations (7,011,001), illusion (5,152,006), illusionary (5,152,006), auditory hallucination (45150006), visual hallu-
cination (64269007), and see things (64269007)

Hallucinations

Phase Difference Calculation
Because it took time to provide the official report, the
COVID-19 occurrence derived from Twitter (ie, predicted curve)

was expected ahead of the official report dates (ie, actual curve).
Our research used the Hilbert transform (HT) [70] method to
calculate the phase difference between the actual and predicted
curves. HT is a method used for analyzing time-varying signals
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[71]. It can transform a real-valued signal into a complex-valued
signal, rendering it convenient for phase analysis. In signal
analysis, HT is often used to calculate the instantaneous phase
of a signal, which can be used to compare the phase difference
between 2 signals. HT was selected for its ability to compute
instantaneous phase and amplitude in the time domain, making
it ideal for analyzing temporal alignment and detecting phase
shifts between predicted and actual signals. Unlike Fourier
transform, which is limited by global frequency components,
HT offers a more accurate and intuitive method for capturing
time-varying phase relationships. It is particularly useful for
nonstationary signals, as it can analyze phase dynamics without
assumptions of stationarity or periodicity. The phase spectrum
of Fourier transform may have discontinuous jumps in some
cases, which can lead to incorrect results when calculating phase
differences. HT can accurately calculate the instantaneous phase
of a signal and avoid this problem.

The daily predicted cases curve f(t) and the daily actual cases
curve g(t) share the same time sequence. To calculate the phase
difference between them by performing the HT, we can first
transform them into their complex-valued signals:

(1)

(2)

Here, [H] represents the HT operator, and i is the imaginary
unit. We can then calculate the instantaneous phase of each
signal, usually using the arctan function to compute the phase
angle:

(3)

(4)

Finally, we subtracted the phase angles of the 2 signals to obtain
the phase difference :

(5)

In addition to calculating the phase difference between the 2
curves, we also conducted stationarity tests on both curves.
Stationarity verification is an important step in time-series
analysis and is used to determine whether a time series is
stationary. We used 3 methods, the augmented Dickey-Fuller
test [72], the Kwiatkowski-Phillips-Schmidt-Shin test [73], and
the Phillips-Perron test [74], to verify the stationarity of the 2
curves. We used the TimesNet [75] approach from prior research
to predict the current trends in COVID-19 development based
on the time-series relationships between the self-reported case
numbers and the actual case numbers.

Evaluation of the Model
Our evaluation of the model used the following methodology.
True positive is the number of correct predictions in positive
samples, false positive is the number of incorrect predictions
in positive samples, true negative is the number of correct
predictions in negative samples, and false negative is the number
of incorrect predictions in negative samples. Precision is the
proportion of positive predictions in all positive samples.
Precision is defined as follows:

(6)

Recall is the proportion of correct predictions in the total
samples. Recall is defined as follows:

(7)

Accuracy is defined as the percentage of correctly predicted
results out of the total sample.

(8)

F1-score is defined as follows:

(9)

To measure the performance under the unbalanced data
distribution, in this work, we used the precision-recall (PR)
curve and ROC curve to display the performance. The ROC
curve is a curve of sensitivity versus 1–specificity on all possible
prediction thresholds. Similarly, the PR curve plots precision
versus recall on all possible prediction thresholds. In addition,
average precision (AP) and area under the curve (AUC) derived
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from the PR curve and the ROC curve are also generated for
quantitative comparisons in this work.

Results

Model Performance for Self-Reporting COVID-19
Cases
We evaluated the models with AUC, AUC-PR, accuracy,
precision, recall, and F1-score. RoBERTa and BERT achieved
the best performance with an AUC of 0.98 and an AP of 0.97,

as depicted in Figure 2. Notably, all LLMs outperformed
traditional machine learning models in AUC and AP, exhibiting
an AUC gain from 0.01 to 0.10 and an AP gain from 0.07 to
0.09. According to the benchmark results in Table 3, BLOOM
performed the best compared with other models in accuracy
and precision with 0.948 and 0.941, whereas the SVM
outperformed others in recall and F1-score with 0.9362 and
0.9329, respectively. Combining AUC, accuracy, and recall,
we believe that the BLOOM model has the best performance.
Subsequently, we used the trained model to assist us in selecting
self-reported positive tweets from all COVID-19–related tweets.

Figure 2. Performance of various machine learning methods. (A) Receiver operating characteristics (ROC) curve with area values. The area under the
curve (AUC) values, provided in the legend, quantify the overall performance of the models, with higher values indicating superior discriminative
ability. (B) Precision-recall curve with average precision. AP: average precision; BERT: Bidirectional Encoder Representations from Transformers;
BLOOM: Bigscience Large Open-science Open-access Multilingual language model; Llama-2: large language model meta AI 2; LR: logistic regression;
NB: naive Bayes; RoBERTa: robustly optimized BERT pretraining approach; SVM: support vector machine; XLNet: extreme language model.
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Table 3. Performance comparison of various machine learning models and large language models.

F1-score (%)Recall (%)Precision (%)Accuracy (%)

Machine learning

58.2952.4365.6286.86Naive Bayes [55]

92.1892.6491.7392.57Logistic regression [57]

93.2993.6292.9693.62Support vector machine [56]

Large language models

91.7091.0092.5093.80BERTa [49]

91.5091.8091.2093.60RoBERTab [58]

90.8091.3090.4093.00XLNetc [59]

92.6091.0092.0094.30GPT-2 [60]

93.0092.0094.1094.80BLOOMd [61]

92.3091.3093.3094.20Llama-2e (7b) [62]

aBERT: Bidirectional Encoder Representations from Transformers.
bRoBERTa: robustly optimized BERT pretraining approach.
cXLNet: extreme language model.
dBLOOM: Bigscience Large Open-science Open-access Multilingual language model.
eLlama-2: large language model meta AI 2.

Predicted Trend of COVID-19 Cases
From January 1, 2020, to April 1, 2023, we used the trained
BLOOM model to evaluate all the collected COVID-19–related
tweets and filtered out the tweets that the model predicted as
self-reported positive cases of COVID-19. Among 7.3 million
COVID-19–related tweets, we identified 317,500 self-reported
tweets. Using unique user IDs, we considered multiple tweets
reporting a COVID-19 diagnosis by the same user to be a single
case, resulting in 262,278 unique self-reported cases. The IDs
of these unique confirmed users have been stored separately in
an in-house database named the COVID-19 patient database
(CPD), and the daily predicted number of confirmed cases by
the model has been stored according to Coordinated Universal
Time.

To compare the predicted daily case counts with the actual daily
case counts, we obtained the actual daily case counts from public
platforms such as Johns Hopkins University and The New York
Times. Then, we plotted the actual daily case count and predicted
case count on a curve, as shown in Figure 3. The blue line
represents the daily actual case counts, and the red line
represents our predicted case counts. The red text in the figure
describes key events during the outbreak, and the brown text
represents the time the variant appeared. We used the HT
method to calculate the phase difference between the two curves

and found that the predicted curve was leading the actual curve
by approximately 7.63 days. The Augmented Dickey-Fuller test
results indicated values below the critical values of 1%, 5%,
and 10%, accompanied by simultaneous P values of <.001 and
<.001, which rejects the hypothesis of the existence of a unit
root. In addition, both the Phillips-Perron and
Kwiatkowski-Phillips-Schmidt-Shin tests exhibited P values
<.05. Collectively, the outcomes from these 3 tests consistently
pointed toward the smoothness of the time series under scrutiny
as shown in Multimedia Appendix 8.

There are 2 distinct peaks in the red curve. We examined the
data for the first peak of the predicted curve on October 2, 2020,
and the second peak on November 21, 2020. We found that the
first peak on October 2, 2020, was due to then US President
Donald Trump’s tweet announcing his positive COVID-19 test
result, which triggered many Twitter users to also report their
self-diagnosed cases on Twitter. On that day, there were 1495
tweets related to self-reported positive cases. As for the second
peak in the prediction curve, we examined the relevant tweets
on that day and found that most of them were related to the US
election results. Many users tweeted about their infection status
and discussed the US epidemic-prevention policies. There were
973 tweets on that day regarding self-reported cases of
COVID-19 infection out of all tweets.
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Figure 3. Real cases and predicted cases curves. The blue curve represents the actual daily confirmed cases, and the red curve represents the daily
predicted cases. The shaded areas above and below the red and blue curves represent the CI. The red text represents key events during the outbreak,
and the brown text represents the time the variant appeared. The blue shaded area on the right side represents the period during which actual confirmed
case data are missing. The solid red line represents the daily self-reported COVID-19 infection numbers, and the blue dotted line represents the predicted
actual infection numbers. JHU: Johns Hopkins University; WHO: World Health Organization.

Symptoms
We extracted the historical tweets of users from the CPD using
their unique user IDs. The temporal scope of these tweets
spanned a period from 1 month preceding the self-reported date
of symptom onset to 9 months after the diagnosis date,
encompassing a total duration of 10 months. Within a cohort
of 24,316 reporting COVID-19 symptoms, an analysis of
historical tweets identified the top 10 symptoms. Figure 4A
plots the temporal frequency of COVID-19 symptom mentions,
providing insight into how symptom prevalence evolved over
time. Notably, fever, headache, fatigue, and cough emerged as
consistently common symptoms. The trends observed in these
symptoms closely parallel the overall trend in confirmed
COVID-19 cases. We also identified that the onset of symptoms
such as loss of taste or smell and shortness of breath first
became prominent in September 2020, possibly correlating with
the emergence of the Beta variant. Similarly, the prevalence of
sore throat spiked in late 2021, potentially aligning with the
rise of the Omicron variant. The symptom difficulty breathing
maintained a steady presence across the timeline. Notably, less
commonly reported symptoms, such as hallucinations and eye
pain, not currently recognized by the US Centers for Disease
Control and Prevention (CDC), appeared sporadically in user
reports, suggesting their rarity in COVID-19 cases. As shown
in Figure 4B, these were fever (11,613/24,316, 47.76%
mentioned), headache (8347/24,316, 34.33%), cough

(7985/24,316, 32.84%), generalized body aches (6893/24,316,
28.35%), difficulty breathing (6169/24,316, 25.37%), fatigue
(5984/24,316, 24.61%), pain (5806/24,316, 23.88%), disorder
of smell and taste (5444/24,316, 22.39%), and sore throat
(5082/24,316, 20.9%), listed in descending order. Notably, all
symptoms except for eye pain (2541/24,316, 10.45%) aligned
with those recognized by the CDC. Additional symptoms, such
as lethargy (2176/24,316, 8.95%), dizziness (1451/24,316,
5.97%), and hallucinations (1086/24,316, 4.47%), although
mentioned by a minority group, are not currently acknowledged
as COVID-19 symptoms by the CDC.

In the dataset of historical tweets from diagnosed individuals,
we observed instances in which a patient mentioned multiple
symptoms concurrently. To quantify this, we calculated the
frequency of cooccurrence of any 2 symptoms and constructed
a dependency graph to illustrate these relationships. Figure 4C
elucidates the correlations among various symptoms,
highlighting that most individuals with the infection reported
experiencing a constellation of related symptoms, such as
headache, cough, and fever. Furthermore, Multimedia Appendix
9 presents a heat map that visualizes the Pearson correlation
coefficients [76] among these symptoms, offering a quantitative
view of their interdependencies. To visually represent the range
of self-reported symptoms, we used a word cloud. This graphical
representation provides an immediate overview of the
symptomatology as expressed by the users in our dataset.
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Figure 4. All symptoms mentioned by self-reporting tweets and the correlations among symptoms. (A) represents the number of mentions of COVID-19
symptoms in self-reported tweets over time. (B) represents the percentage of symptoms in all self-reporting COVID tweets, and multiple symptoms can
be mentioned in 1 tweet. (C) represents the correlations among symptoms mentioned by the same user. The width of the line between 2 symptoms
represents the number of tweets that mention both symptoms.

Reinfection and Rehabilitation
We analyzed historical tweets from users who self-reported
COVID-19 infections, identifying 723 individuals who shared
their recovery experiences. The annual breakdown of these
individuals is as follows: 174 in 2020, 163 in 2021, 135 in 2022,
and 251 in 2023. The duration of recovery was primarily inferred
from the period mentioned in their tweets. In instances in which
the recovery period was not explicitly stated, we computed it
by calculating the interval between the date of confirmed
diagnosis and the date of reported recovery. The data on
self-reported recovery durations have been depicted through
the Kaplan-Meier recovery curve [77], as illustrated in Figure
5A. This graphical representation reveals a gradual decrease in
recovery time for patients with COVID-19 from 2020 to 2023.
Specifically, in 2020, most patients reported a recovery period
of around 30 days, with very few recovering in <30 days. In
contrast, by 2023, the trend had shifted significantly, with most
individuals reporting a recovery within approximately 12 days,
despite a minority group still experiencing recovery periods
extending beyond 30 days. Figure 5B presents a comprehensive
overview of the evolution of recovery periods from 2020 to

2023. In addition, this figure suggests that the prevalent
COVID-19 cases in 2023 were predominantly mild, indicating
a possible decrease in the virulence of the virus over time.

In this study, we defined a recurrent COVID-19 infection in an
individual as a self-reported reinfection occurring >30 days
after the initial confirmed positive diagnosis. We meticulously
tracked the historical tweets of all confirmed patients in CPD.
Figure 5C presents the distribution of the intervals between the
first and second infections alongside the corresponding case
counts. This analysis reveals a relatively low likelihood of a
repeat infection within 180 days. Most patients who had
recovered from an initial infection reported a second infection
approximately 260 days later. Moreover, repeat infections
occurring between 300 and 600 days after recovery were also
relatively frequent. The longest interval between repeat
infections documented in our study extended to 720 days. Of
262,278 patients who self-reported a positive COVID-19 test
result, 91.12% (n=238,993) indicated a single infection event,
and 6.83% (n=17,906) reported 2 infections. A smaller subset,
comprising 1.25% (n=3283) of individuals, reported 3 infections;
0.39% (n=1025) indicated 4 infections; 0.17% (n=445) reported
5 infections; 0.11% (n=301) of individuals reported 6 infections;
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and 0.12% (n=325) indicated ≥7 infections. Remarkably, the
highest number of reported reinfections was 9, with 7 individuals
documenting their ninth infection. Figure 5D shows that among
the 238,993 patients with a single infection, 7.49%
(17,906/238,993) reported a second infection. A further

breakdown shows that 1.37% (3283/238,993) reported a third
infection, 0.43% (1025/238,993) reported a fourth infection,
and 0.45% (1071/238,993) reported experiencing ≥5 infections.
We also performed a statistical analysis of the time intervals
between infections among users with multiple infections.

Figure 5. Overview of reinfections and recovery. (A) Kaplan-Meier estimates of cumulative recoveries. (B) Rehabilitation days in different years. (C)
Time to reinfection for 238,993 individuals. (D) Reinfection cases and rates.

Distribution of Cases
We extracted the geographic locations of the diagnosed users
in CPD, and the distribution of all confirmed patients is shown
in Figure 6A [52]. California had the highest number of
self-reported COVID-19 cases, with 8762 cases, followed by
Texas (6619 cases), Florida (4245 cases), New York (3566
cases), Illinois (2649 cases), Pennsylvania (2032 cases), Ohio
(1868 cases), Massachusetts (1793 cases), Georgia (1785 cases),
and Michigan (1677 cases), in descending order. Alabama and
Northern Mariana Islands had the least data, with only 1
self-reported case in each state.

The details of confirmed cases in each state are shown in Figure
6B, in which we provide the average case counts for the entire
country and each state as well as the number of self-reported
cases per 10 million people per week, the trend over the past 2
weeks, and the positivity rate of each state. For example, we
can see that California had the most self-reported COVID-19
cases in the past week, with at least 29 people reporting positive
test results. Approximately 7.34 people per 10 million reported

self-diagnosed COVID-19–positive status, and the average
positivity rate of self-reported cases was 26.69%. However,
compared with the previous 2 weeks, the number of self-reported
COVID-19 cases decreased by 10.93%. Due to insufficient data,
the trend of changes in the past 14 days was unavailable for
several states, such as the Virgin Islands and Wyoming.

We also plotted the time-varying curves for the confirmed cases
in the top 20 states in terms of confirmed cases, as shown in
Figure 6C and Multimedia Appendix 10. It is evident that the
changes in the number of confirmed cases in the top 4 states
with the highest number of cases closely resemble the overall
trend in the United States. Some states, such as Washington,
Arizona, Washington DC, and Indiana, exhibited relatively
consistent changes in the number of confirmed cases over time,
whereas states such as Nevada, Colorado, Alabama, and
Michigan had less-consistent curves, with some dates showing
no reported cases. The variation in results could have been
influenced by the differing numbers of Twitter users in each
state.
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Figure 6. Cases across the United States and by state. (A) Self-reported number of infections in each state, with darker colors representing higher
numbers. (B) Self-reported weekly number of infections, number of infections per 10 million people, change in trend over the previous 2 weeks, and
positivity rate for a subset of states (alphabetical order). (C) Infection curve for the top 20 states with the highest infection numbers.

Covlab Visualization Website
To disseminate timely information to the public and policy
makers, we have launched a visualization website, Covlab,
which features our trained models and a comprehensive data
pipeline. This platform consists of an automated script sequence
designed to update the data weekly. The home page of Covlab
offers users real-time access to the total number of tweets
collected to date, including those self-reported as
COVID-19–positive. On the Graphs page, users can explore
the most recent weekly growth trends in COVID-19 cases
alongside predictive models of actual confirmed cases. This
section also enables monitoring of infection trends across
various states in the United States as well as the prevailing
symptom patterns observed to the current date. Furthermore,

Covlab displays the proportions of reinfections and recovery
periods, with these metrics also being refreshed weekly. The
website’s dynamic graphs and tables serve as a valuable
resource, providing the public with up-to-date information on
the ongoing evolution of COVID-19, including insights into
the symptomatic expressions of emerging variants.

Discussion

Principal Findings
The analysis of self-reported COVID-19 tweets offers a valuable
perspective, reflecting the actual progression of the pandemic
to a considerable degree. The voluminous data generated by
self-reporting individuals on Twitter augment clinical datasets,
offering a complementary avenue for long-term observation
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and tracking. This approach is particularly beneficial in bridging
the data gap inherent in in-home self-testing scenarios. Our
research indicates that reinfections are relatively common, with
the likelihood of multiple infections diminishing over time.
Moreover, this dataset has proven instrumental in identifying
potential new symptoms that were not initially associated with
COVID-19, such as lethargy and hallucinations, offering an
early warning system for evolving clinical presentations. In
addition, the approach has enabled the detection of emerging
variants through geospatial clustering of self-reported cases
exhibiting distinctive symptom combinations. This tracking
capability enhances preparedness and enables timely public
health interventions. The breakdown by state of self-reported
COVID-19 tweets facilitates more efficient tracking of disease
trends. Furthermore, the approach used in this study could
potentially serve as a general pipeline for researching and
analyzing other infectious diseases.

Symptoms and Sequelae Study
Within the subset of Twitter users who self-reported as
COVID-19 positive, numerous accounts contained detailed
descriptions of symptoms experienced during the infection.
These firsthand accounts are a rich source of information. We
extracted and analyzed the symptomatology mentioned in these
tweets, compiling a list of the most prevalent symptoms reported
by patients. Our intriguing findings closely mirror the commonly
acknowledged COVID-19 symptoms listed by the CDC.
However, some symptoms mentioned by a subset of patients in
their tweets are not yet recognized as typical by the CDC. This
discrepancy highlights the significant role of our study in
identifying potential new symptoms of COVID-19 that have
not been widely recognized. Such findings could provide
valuable guidance for further clinical investigation into these
symptoms and their association with different COVID-19
variants. In addition, the CPD established through this study
offers a robust framework for long-term patient tracking. This
database not only complements existing clinical data but also
provides an invaluable resource for the study of post–COVID-19
sequelae and post–COVID-19 condition symptoms, thereby
enhancing our understanding of the virus’s long-term impacts.

Comparison With Traditional Tracking Tools
Traditional clinical data–driven tools, while offering high
specificity by relying on confirmed diagnoses, often
underrepresent asymptomatic or mild cases. In contrast, our
approach leverages self-reported data from social media
platforms, such as Twitter, to capture a broader spectrum of
cases, including those not reported in clinical settings. Although
this may introduce noise, advanced filtering and NLP techniques
effectively mitigate inaccuracies, ensuring meaningful insights.
Furthermore, clinical data collection and reporting are often
delayed due to testing and diagnosis, whereas our tool enables
near–real-time monitoring by analyzing self-reported cases as
they are posted, facilitating rapid identification of trends and
potential hot spots. In terms of coverage, traditional clinical
tracking tools may lack granularity, particularly in regions with
limited health care infrastructure or reporting capabilities. Using
social media, our tool significantly enhances coverage,
incorporating underrepresented populations and geographies to

provide a more comprehensive view of the pandemic’s spread.
A key contribution of this approach is the integration of
self-reported data, which captures personal narratives, symptom
progression, and public sentiment, thereby complementing
clinical data to offer a richer and more dynamic understanding
of the pandemic. Importantly, while our tool excels in timeliness
and coverage, its true potential lies in synergy with clinical
data–driven tools. We propose future efforts to integrate these
approaches, enabling cross-validation and improving overall
accuracy.

Limitations and Future Work
Although our method and website are highly useful, there are
some limitations. First, Twitter has a limited quota of public
APIs, which renders the platform hugely expensive to run.
Second, potential biases in data collection and the varying
distribution of Twitter users across different states may impact
the predictive accuracy. Furthermore, external factors,
particularly notable events in the United States that occurred in
2020, influenced our prediction outcomes. For instance, the 2
notable peaks in self-reported cases observed in 2020 did not
necessarily correlate with an actual increase in infections.
Instead, these peaks were primarily driven by external events,
prompting a surge in infection reporting on Twitter on those
specific days. Another significant constraint is the veracity of
the information in tweets. However, despite their questionable
reliability, these data offer informative trend analyses and
hypotheses valuable for future research and validation. Our
framework demonstrates significant versatility, with potential
applications extending beyond COVID-19 to monitor other
self-reported illnesses, such as influenza and respiratory
syncytial virus, as well as chronic conditions such as diabetes
and mental health issues. Its modular design facilitates easy
adaptation by allowing the customization of keywords and
analytical strategies tailored to specific diseases. To enhance
its functionality, we propose integrating Twitter data with other
real-time health data sources, such as wearable devices and
electronic health records, enabling a more comprehensive
approach to health trend monitoring. In this integration, social
media signals would serve as an initial screening mechanism,
effectively complementing clinical data. In future work, we plan
to integrate self-reported data from other social platforms, such
as Reddit, to reduce data limitations and biases, thereby
broadening the scope of our analysis. This expansion will
support the development of a platform capable of predicting
COVID-19 trends in real time based on self-reported content.
Furthermore, we aim to apply this pipeline to other infectious
diseases that may emerge in the future, facilitating the
understanding and tracking of their development and trends.
To maintain robustness and accuracy, we plan periodic retraining
of the model using updated data and incorporating LLMs to
better capture nuanced expressions in self-reported content. A
user feedback mechanism will also be implemented to address
false positives and negatives. In addition, we aim to expand the
tool’s global applicability by automating data pipelines to
support content in multiple languages, with a particular focus
on underrepresented regions. This global expansion will enable
the tool to capture disease trends across diverse geographic and
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cultural contexts, offering a more holistic view of global health
dynamics.

Conclusions
This study demonstrates the significant potential of using
self-reported COVID-19 tweets from social media platforms
for public health monitoring. By leveraging machine learning
and NLP techniques, we developed a tool capable of identifying
infection and recovery trends, providing valuable insights into
disease spread and public behavior. Our findings contribute to
the growing field of digital epidemiology, emphasizing that
social media can serve as an effective complementary data
source to traditional public health surveillance systems. Beyond
COVID-19, this approach holds promise for monitoring other

infectious diseases, mental health conditions, and chronic
illnesses by adapting the model to new health-related keywords
and contexts. Integrating such tools with existing health
infrastructure could enhance early detection, improve situational
awareness, and enable more proactive public health responses.
However, the ethical considerations of using publicly available
data and addressing biases inherent to social media platforms
must be prioritized to ensure responsible use. Overall, this work
highlights the evolving role of digital tools in public health
informatics and presents opportunities for future research to
further refine these methods. The integration of social
media–based monitoring with traditional data systems could
transform public health strategies, making them more adaptive,
responsive, and inclusive of diverse population segments.
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