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Abstract

Due to the complicated nature of Parkinson disease (PD), a number of subjective considerations (eg, staging schemes, clinical
assessment tools, or questionnaires) on how best to assess clinical deficits and monitor clinical progression have been published;
however, none of these considerations include a comprehensive, objective assessment of all functional areas of neurocognition
affected by PD (eg, motor, memory, speech, language, executive function, autonomic function, sensory function, behavior, and
sleep). This paper highlights the increasing use of digital health technology (eg, smartphones, tablets, and wearable devices) for
the classification, staging, and monitoring of PD. Furthermore, this Viewpoint proposes a foundation for a new staging schema
that builds from multiple clinically implemented scales (eg, Hoehn and Yahr Scale and Berg Balance Scale) for ease and
homogeneity, while also implementing digital health technology to expand current staging protocols. This proposed staging
system foundation aims to provide an objective, symptom-specific assessment of all functional areas of neurocognition via inherent
device capabilities (eg, device sensors and human-device interactions). As individuals with PD may manifest different symptoms
at different times across the spectrum of neurocognition, the modernization of assessments that include objective, symptom-specific
monitoring is imperative for providing personalized medicine and maintaining individual quality of life.
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Introduction

Neurodegenerative disorders are now the leading cause of
disability in the world, the fastest growing being Parkinson
disease (PD), which it is estimated will impact 14.2 million
people worldwide by the year 2040 [1]. PD is often described

as a “designer disease, ” meaning that individuals with PD
manifest different neurocognitive symptoms (ie, motor, memory,
speech, language, executive function, autonomic function,
sensory function, behavior, and sleep problems [2]) at different
times and to a variable extent across the spectrum of
neurocognition and each individual’s course of their disease
[3]. Due to this variability in presentation, an early and accurate
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diagnosis of PD can be difficult [4,5]. Given this difficulty,
every effort must be made to improve diagnostic accuracy in
PD [6] to provide individuals with PD with more accurate
prognostic information, facilitate enrollment in early
disease-modifying trials in PD, and initiate therapeutics to
improve quality of life.

Fortunately, the pervasiveness of digital health technology (eg,
smartphones, tablets, and wearable devices) and the substantial
increase in its use in clinical settings (ie, with a more than 5-fold
increase over the past 5 years and an expected 10-fold growth
in the next 3 to 5 years [7]) provides a prudent opportunity to
address this problem by implementing (1) innovative sensing
modalities (eg, device sensors and human-device interactions
[8]), (2) accurate PD detection through advanced
computer-assisted techniques (eg, artificial intelligence [AI] [9]
and machine learning [ML] [10]), and (3) continuous monitoring
of PD in daily life across all functional areas of neurocognition
[11]. To deepen the understanding between digital health
technology (eg, for the collection and analysis of objective
sensor-based features) and the classification of PD and its stages,

we provide an inspired viewpoint at the nexus of these 2 research
topics. This paper is intended to identify both promising
approaches and gaps in the current research for clinicians and
researchers. Finally, this viewpoint proposes the foundation for
a new staging schema that addresses these promising approaches
and gaps via the implementation of digital health technology
in an effort to modernize current staging protocols such that
they encompass an objective assessment of all functional areas
of neurocognition.

Related Work

Clinical Assessment Techniques
Due to the complicated nature of PD, a number of subjective
considerations on how best to assess clinical deficits have been
published [12]. There are currently multiple staging schemes,
clinical assessment tools (eg, screening assessments and
functional movement assessments), and questionnaires used to
assess all necessary neurocognitive functions of interest as
presented in Table 1.

Table 1. Current assessments of Parkinson disease across all neurocognitive functions of interest.

AssessmentsFunctions

Patient-
reported
outcomes

Functional movement assessmentsComprehensiveScreeningStaging scales

PDQ-39l6MWTkTUGj

test
STSi

test
BBShDWNASgNFIfMoCAeMMSEdBSScMDS-UPDRSbH&Ya

✓✓✓✓✓✓✓✓✓✓✓mMotor

✓✓✓✓✓Memory

✓✓✓✓✓✓Speech

✓✓✓✓✓Language

✓✓✓✓✓Executive

✓✓Sensory

✓✓✓✓Behavioral

✓✓Sleep

✓✓Autonomic

aH&Y: Hoehn and Yahr Scale [13].
bMDS-UPDRS: Movement Disorder Society–Unified Parkinson’s Disease Rating Scale [14].
cBSS: Braak staging scheme [15].
dMMSE: Mini-Mental State Examination [16].
eMoCA: Montreal Cognitive Assessment [17].
fNFI: Neurobehavioral Functioning Inventory [18].
gDWNAS: Dean-Woodcock Neuropsychological Assessment System [19].
hBBS: Berg Balance Scale [20].
iSTS: sit-to-stand [21].
jTUG: timed up-and-go [22].
k6MWT: 6-minute walk test [23].
lPDQ-39: Parkinson’s Disease Questionnaire-39 [24].
mThe corresponding staging scale or assessment evaluates the associated function.

Staging methods, such as the Hoehn and Yahr Scale (H&Y)
[13] (an observational classification method based on accepted

cardinal motor signs: “rest” tremor, rigidity, bradykinesia, and
impaired postural and righting reflexes) and the Movement
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Disorder Society–Unified Parkinson’s Disease Rating Scale
(MDS-UPDRS) [14] (a scale developed to incorporate elements
from existing scales to provide an efficient, flexible, and
comprehensive means to monitor motor and self-reported
nonmotor PD symptoms), are commonly used to depict the
progression of PD. Other methods such as the Braak staging
scheme [15] (a neurobiological pathology approach to staging
PD) have been developed, although they are not commonly
used clinically. Assessment methods include both screening
and comprehensive tools. Screening assessment tools, which
include the Mini-Mental State Examination [16] and the
Montreal Cognitive Assessment [17], provide a quick general
assessment of an individual with suspected neurocognitive
impairment and identify areas needing further comprehensive
evaluation. These assessments focus on a range of
neurocognitive functions. More comprehensive assessments
such as the Neurobehavioral Functioning Inventory [18] and
Dean-Woodcock Neuropsychological Assessment System [19]
aim to assess additional neurocognitive areas of interest or
provide a more in-depth assessment. Functional movement
assessments, including the Berg Balance Scale [20], timed
up-and-go test [22], sit-to-stand test [21], and 6-minute walk
test [23], are all commonly used by clinicians (eg, physical
therapists and occupational therapists) to assess functional motor
performance. Finally, patient-reported outcomes (PROs) come
from specific questionnaires (eg, Parkinson’s Disease
Questionnaire-39) used in the routine monitoring of PD in which
the individual assesses their mobility, activities of daily living,
emotional well-being, stigma, social support, cognition,
communication, and bodily discomfort [24].

However, none of these staging schemes, clinical assessment
tools, or questionnaires include an objective assessment of all
functional areas of neurocognition affected by PD, and there is
a noted lack of consistency. All listed progression scales and
assessment tools differ in a multitude of ways, including the
type of classification being completed (eg, observational vs
pathological), the number of functional areas of neurocognition
assessed (eg, motor, memory, speech, language, executive
function, autonomic function, sensory function, behavior, and
sleep), the total number of classified stages in the scale being
used, and importantly the subjective manner (eg, via interrater
variability and variable performance of the practitioner) in which
the information for each individual was gathered and assessed.

Digital Health Technology
As the prevalence of digital health technology (eg, smartphones,
tablets, and wearable devices) and the subsequent collection of
large amounts of complex health data increase, mobile devices
provide clinicians (eg, epidemiologists, neurologists, physicians,

and other health care personnel) with a robust way to collect,
analyze, and interpret new digital biomarkers related to
neurodegenerative diseases [25,26]. Mobile device capabilities
allow for the expansion of clinically relevant functional
assessments and the collection of objective symptom-specific
information (eg, digital biomarkers) through the use of
device-based sensors (eg, accelerometers, gyroscopes, GPS,
microphones, cameras, and timers) and human-device
interactions (eg, screen interactions) [2,27-30]. Mobile devices
can also use opportunistic approaches to monitoring (eg, having
device sensors on in the background), which allows for the
collection of additional objective features [2]. In addition,
standardized health screenings, clinician observations, and PROs
can be collected via mobile devices to be used for individual
evaluation [31]. This combination of digital biomarkers,
clinician observations, and PROs allows for the collection of
relevant health information and monitoring of all functional
areas of neurocognition (eg, motor, memory, speech, language,
executive function, autonomic function, sensory function,
behavior, and sleep) [2]. With the increased volume of relevant
health data, novel ways to interact with and extract meaning
from the data emerge [26,32]. ML is a key technique that has
demonstrated the ability to translate these large health datasets
into actionable knowledge [33-35]. Specifically, supervised ML
and AI-enabled detection of health data has shown potential in
the area of disease prediction, classification, and monitoring of
overall progression [36-39]. Furthermore, with the increased
opportunity for users’ participation on their own devices and
the ability of the clinician to collect and analyze enhanced
objective datasets, the continued development and integration
of mobile health technologies into the routine assessment and
care of patients with PD can allow for more sophisticated
characterization of patients’ function, better tailoring of
symptomatic therapy, greater patient engagement and
self-assessment, and overall improved health care outcomes
[40].

Modernizing the Staging of PD
Given the crossover nature of this viewpoint, Figure 1 was
created to present a timeline of the history of the classification
of PD alongside the history of digital health technology. In the
past 60 years, there has been a tangential modernization of both
classification and staging techniques and digital health
technology. To further preface the viewpoint expressed herein,
Figure 1 also fosters the premise that additional PD classification
developments should be explored, given the many convergent
advances in the field of digital health technology as well as the
expected growth of mobile-based health therapeutics in the next
3 to 5 years (7).

J Med Internet Res 2025 | vol. 27 | e63105 | p. 3https://www.jmir.org/2025/1/e63105
(page number not for citation purposes)

Templeton et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. Timeline of both the history of the classification of Parkinson disease (PD) and the history of digital health technology. ADL: activity of
daily living; IoT: Internet of Things; mHealth: mobile health; PDQ-39: Parkinson’s Disease Questionnaire-39.

Viewpoint Basis

To understand the highly diverse use of digital health technology
for the assessment and monitoring of PD, an extension of the
Related Work subsection is provided to set a foundation of
insights on the current state of technology, strategies of use,
and future opportunities. We acknowledge that the past 4 to 5
years are more relevant and interesting in terms of using novel

digital health technology for the assessment of PD; however,
studies from 2015 onward were reviewed to allow for the
depiction of efforts using digital health technology for the
assessment of PD (Figure 1).

As this extension of the Related Work subsection explores the
nexus of PD and digital health technology (eg, smartphones,
tablets, and wearable devices) specifically related to the
assessment of both motor and nonmotor functions associated
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with PD, this extended literature search used both PubMed and
IEEE Xplore databases due to their status as premier resources
in the fields of health and engineering, respectively. Specific
search queries incorporated the following keywords or terms
in both databases: (“Parkinson disease” AND “digital”) OR
(“Parkinson disease” AND “mobile”). Search results were
limited to English-language full-text articles published between
2015 and 2024. This time range was chosen to enable us to
focus on high-quality, state-of-the-art research studies at the
nexus of the digital revolution and health care (eg, using digital

devices and the Internet of Things to drive personalized
medicine via predictive analytics from big data).

Initially, 193 articles were collected from these databases. After
reviewing the titles and abstracts of the articles, 74 (38.3%) of
the 193 articles were excluded due to the reasons presented in
Textbox 1. Of the included 119 articles, Table 2 gives a
breakdown by article focus (eg, articles addressing only
nonmotor functions, articles addressing only motor functions,
and articles addressing both motor and nonmotor functions
associated with PD).

Textbox 1. Exclusion criteria used for literature selection.

Exclusion criteria

• Articles that are book chapters, magazines, company reports, white papers, or abstracts

• Studies wherein the digital or mobile focus is related to biological assays or medical imaging analysis (eg, manuscripts that strictly regard data
analysis from sources other than smartphones, tablets, or wearable devices)

• Studies wherein the digital or mobile focus is related to the usability of mobile devices for intended populations (eg, manuscripts that strictly
regard how a member of the affected population should use a device)

• Studies wherein the focus is related to the creation of digital or mobile stimulation tools to help treat movement disorders (eg, manuscripts that
strictly regard a mobile stimulation treatment protocol)

• Studies wherein the focus is related to the formation of digital or mobile adherence tools to help treat movement disorders (eg, manuscripts that
strictly regard using mobile devices to log treatment participation)

• Studies wherein the term mobile is solely related to mobility in exercise

• Duplicate articles

Table 2. Breakdown of systematic review results by article focus (n=119).

Articles, n (%)Focus

50 (43.1)Multiple neurocognitive (ie, motor and nonmotor) functions

45 (37.8)Only motor functions

24 (20.2)Only nonmotor functions

While key highlights of this historical crossover are presented
in Figure 1, specific points that emphasize and advocate for the
use of digital health technology (eg, smartphones, tablets, and
wearable devices) for the modernization of the assessment,
classification, staging, and longitudinal monitoring of PD are
presented in Tables S1-S3 in Multimedia Appendix 1
[4,7,8,11,25,40-115]. These key assertions propel the viewpoint
that digital health technology can and should become a
prominent driver in the modernization of clinical PD staging
protocols. Furthermore, the literature findings in Table 2
highlight that >62% (74/119, 62.2%) of the articles have a focus
on nonmotor functionality being assessed using digital health
technology, which expresses the need for current staging
protocols to be expanded and inclusive of all functional areas
of neurocognition (eg, motor, memory, speech, language,
executive function, autonomic function, sensory function,
behavior, and sleep [2]). Similarly, since the digital health
revolution in 2015, as previously noted, there has been a notable

increase in publications addressing the prevalence of the use of
digital health technology for assessing both motor and nonmotor
symptoms for PD (Figure 2). Finally, Table 3 presents a
reference-based depiction of the extended literature review
findings with a focus on various device sensors and
human-computer interactions for the objective assessment of
each functional area of neurocognition (eg, motor, memory,
speech, language, executive function, autonomic function,
sensory function, behavior, and sleep) as well as additional
auxiliary information.

Although Figure 2 and Tables 2 and 3 present a large
concentration of prior work in the assessment of motor-based
symptoms using digital devices, it is expressly noted that there
is a prominent shift into the quantitative assessment and analysis
of nonmotor symptoms for individuals with PD that are not yet
included in currently administered staging schemes (eg,
MDS-UPDRS).

J Med Internet Res 2025 | vol. 27 | e63105 | p. 5https://www.jmir.org/2025/1/e63105
(page number not for citation purposes)

Templeton et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 2. Chronological depiction of publications on digital health technology for the assessment of both motor and nonmotor symptoms of Parkinson
disease (PD), highlighting the emergence of “digital health” from 2015 to the present.
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Table 3. Cross-referenced list of device sensors and capabilities that allow for feature collection relating to each neurocognitive function in addition
to important auxiliary information.

Auxiliary informationFunctional areas of neurocognitionSensors or HCIa

Treat-
ment

SocialActivityAutonomicSleepBehavioralSensoryExecutiveLanguageSpeechMemoryMotor

Devices: smartphone and tablet

——[11,
41-45,

—[42][42]—[42]——b[42][11,
41-45,

Accelerome-
ter and gyro-
scope 116-

125]
116-
125]

——[41,125]————————[41,117]GPS

—————[11,41]—[116]—[4,42,
43,116,

——Microphone

118,
123,
126-
131]

——————[42,46]—————Speaker

—————————[48]—[42,47,
132]

Camera

——————[46][133]—[48,
127,
128]

[4, 133][43,
129]

Timer

—————[7]—[121,
133]

——[123,
133]

[41,49,
116,
118,

Touch inter-
face

121,
123,
130,
134,
135]

——————[46][11]———[11,42,
117,

Pressure

123,
129]

—[50,
119]

[50,
117,
139]

—[7,50,
139]

[50,51,
130]

—[45,50,
130]

[43,50,
130]

[43,50,
119,
130]

[45,50,
116,119,
130,136,
138]

[42-44,
50,57,
119,
122,
124,

App use

136,
137]

——[140]——[140]—————[42,
138,
140]

Device use

Devices: wearables

——[42]—[42,
50,

——————[11,42,
43,50,

Accelerome-
ter and gyro-
scope 117,

122,
52-54,
116-

125,119,
141,
146]

122-
125,
137,
139,
141-
145]

——[141]————————[141]GPS

—————————[25]——Microphone
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Auxiliary informationFunctional areas of neurocognitionSensors or HCIa

Treat-
ment

SocialActivityAutonomicSleepBehavioralSensoryExecutiveLanguageSpeechMemoryMotor

[43]———————————Touch inter-
face

—[50][50][50,117,
124,141]

[42][117]—————[42]PPGc

———[50,131,141]—[50]—————[42]EDAd

Digital survey

—[50,55][55][55]————————Personal in-
formation

[55,56,
119, 139]

[55][50, 55,
117]

[55,119,
123]

[55,
117]

[55,119][55,123][55,56,
130, 147]

[55,56,
130, 147]

[55,56,
130,
147]

[42,55,
56, 130,
147]

[42,50,
55,56,
117,
119,
138,
147]

Clinical in-
formation

—[42,45,
50, 55,
56,119,
123,
138,
147]

[42,45,
50,55,
56,119,
123,
138,
140,
147]

[41,42,50,
119,131,
138,147]

[41,
42,
50,
117,
119,
123,
131,
138,
147]

[41,42,45,
50,56,119,
123, 131,
138, 140,
147]

[41,42,
50,119,
131,
138,
147]

[41,42,
45,56,
119, 131,
138, 147]

[41,42,
56, 119,
131, 138,
147]

[41,42,
45,56,
119,
131,
138,
147]

[41,42,
56, 119,
131, 138,
147]

[45,50,
56,
123,
138,
140,
147]

Quality of
life

—[138,
147]

[50,138,
147]

[147][147][147][50,147][147][147][147][147][147]Caretaker
survey

aHCI: human-computer interaction.
bNot applicable.
cPPG: photoplethysmography.
dEDA: electrodermal activity.

Proposed Schema

Given the gaps in current staging schemes (ie, the inability to
provide an objective assessment of all functional areas of
neurocognition affected by PD), the use of mobile devices (eg,
for the collection and analysis of objective digital biomarkers
across all functional areas of neurocognition) is available and
imperative for the augmentation of traditional assessments into
a comprehensive, symptom-specific, and longitudinal approach
to the monitoring of PD [40]. Proposed methods for the
integration of mobile devices include regularly scheduled
clinical assessments, telemedicine-based interactions (eg, for
supplemental clinical visits), opportunistic collections (eg, to
gather ample, fine-grained health data with little to no interaction
from the user), intervention protocol assessments (eg, to
understand the short- and long-term benefits of different
pharmacological cycles and intervention therapies), and ML
methods (eg, for disease prediction, classification, and
intervention recommendation). Furthermore, ML can be used

for the creation of a novel, comprehensive staging protocol
encompassing all areas of neurocognition. This protocol would
emerge through the analysis and interpretation of the patterns
found in objective symptom-specific features, PROs, and
clinician observations, all of which can be collected using
mobile devices. These mobile device capabilities ultimately
allow for the collection of far more data over time (eg, compared
to biannual or annual clinical visits) and provide more accurate
measures using device sensors, in addition to reducing bias and
interrater variability [117]).

Therefore, a proposed foundation for a novel staging schema,
encompassing all functional areas of neurocognition, is
presented in Figure 3. The foundation of this proposed staging
schema builds from multiple clinically implemented scales (eg,
H&Y [13], MDS-UPDRS [14], and Berg Balance Scale [20])
for ease and homogeneity while also including objective,
symptom-specific assessments of each functional area of
neurocognition via inherent device capabilities (eg, device
sensors and human-device interactions).
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Figure 3. A proposed foundation for a staging schema that builds on the structure of clinically implemented scales (eg, Hoehn and Yahoo Scale,
Movement Disorder Society–Unified Parkinsons Disease Rating Scale and Berg Balance Scale) that emphasize motor functionality—fine motor, gross
motor, balance, and reflexes—while also integrating all other functional areas of neurocognition related to Parkinson disease (PD; eg, memory, speech,
language, executive function, autonomic function, behavior, sleep, and sensory function). This schema would allow for a nuanced, weighted approach
to tracking PD progression while also enabling greater insights into the possible subtyping of PD through the use of digitized assessment tools for the
collection of objective data. PRO: patient-reported outcome.

As the cardinal symptoms of PD are motor in nature,
predominant staging methods (eg, H&Y) use motor function to
measure how PD symptoms progress and depict the level of
clinical disability. The H&Y stages PD as follows:

1. Symptoms are present on 1 side only (unilateral).
2. Symptoms are present on both sides, but there is no

impairment of balance.
3. There are balance impairments (eg, anterior or posterior

postural instability as assessed by the pull test) as well as
mild to moderate disease progression.

4. There is severe disability, but the patient is still able to walk
or stand unassisted.

5. Patient needs a wheelchair or is bedridden unless assisted.

Accordingly, this proposed schema foundation provides a
weighted scoring approach that allows for an emphasis to still
be placed on motor functionality. This is depicted in Figure 3
in the separation of motor function into the subcategories of
fine motor (eg, involving the movement of the small muscle
groups in the hands, fingers, and wrists), gross motor (eg,
involving the movement of large muscle groups for functional
mobility such as gait), balance (eg, assessing the person’s ability

to both statically and dynamically distribute weight evenly,
enabling them to remain steady), and reflexes (eg, involving a
reactionary motor response to an outside stimulus, which can
be tactile, visual, or aural). This proposed schema foundation
would maintain functionality for the representation of unilateral,
bilateral, and balance deficits in the lowering of fine motor,
gross motor, and balance scores while possibly also allowing
for greater discernment between the different types of motor
symptom effects (eg, tremor vs rigidity). Furthermore, this
foundation takes inspiration from the MDS-UPDRS [14] to
include the assessment of all remaining functional areas of
neurocognition (eg, memory, speech, language, executive
function, autonomic function, behavior, sleep, and sensory
function) via the use of objective digital biomarkers and features
from digital health technology (eg, smartphones, tablets, and
wearable devices), PROs, and clinician observations, all of
which are essential in the accurate staging of this
neurodegenerative disease.

This proposed system outlines a schema foundation that is
intended to be expanded upon with further insights from
clinicians, patients, and researchers. The main intent of this
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schema foundation is to emphasize the inclusion of objective
features related to all functional areas of neurocognition.
However, given the prevalence and expansion of digital health
technology in the neurocognitive assessment space, the
continued collection of novel health-related data (eg, digital
biomarkers and PROs), and the implementation of various ML
approaches (eg, neural networks, random forests, support vector
machines, and transformers) for the interpretation of collected
features, alongside clinician expertise, data-driven updates to
this proposed system would ultimately be both necessary and
proper. Subsequently, via the use of these ML approaches,
deeper analysis would be possible for understanding
comorbidities, treatment effects, and condition prognosis.
Further improvements, yielded from ML techniques and relating
to feature importance, would also include the updated weighting
of features (eg, digital biomarkers, clinician observations, and
PROs), allocation and reallocation of points between different
functional areas, the inclusion of additional relevant
subfunctional areas of neurocognition (eg, subcategories of
long- vs short-term memory), and changes to the cutoff score
threshold values, among others.

Discussion

Overview
Personalized medicine should always be a prioritized goal in
health care, and it is necessary to optimize this care for an
individual’s quality of life [118]. To achieve this type of
personalized medicine for individuals with PD, clinicians need
further knowledge on specific patient characteristics across all
functional areas of neurocognition to develop personalized
pharmacological and interventional protocols in an
evidenced-based manner [119]. However, current clinical
assessment protocols for the staging of PD use predominantly
motor functionality, and thus many neurocognitive functional
areas (eg, memory, speech, language, executive function,
behavior, autonomic function, sensory function, and sleep) are
overlooked. Although the cardinal symptoms of PD are
predominantly motor based (eg, bradykinesia, rigidity, tremor,
and postural instability) [120], it is now well recognized that
PD is far more than just a motor-deficit disorder (49). Nonmotor
symptoms have a significant impact on quality of life (perhaps
more so than motor symptoms), and they have prognostic
relevance with psychosis and dementia driving the need for
nursing home placement [121,122]. This is further addressed
by the extended literature review results in Table 2, which show
that >62% (74/119, 62.2%) of the articles have a focus on
nonmotor function being assessed using digital health
technology.

Given the proposed schema and the further integration of digital
health technology, expansive efforts as well as the impacts of
personalized medicine should be considered across different
clinical areas (eg, neurology, pharmacology, physical therapy,
speech-language pathology, and occupational therapy). This
includes use in disease classification, stage prediction, and the
possible categorization of different PD subtypes (similar to
amyotrophic lateral sclerosis [ALS], in which both limb and
bulbar presentations of the disease occur [123]) [41,45,124] or

to rule out PD mimics (eg, atypical parkinsonisms such as
multiple system atrophy, progressive supranuclear palsy, and
dementia with Lewy bodies). As personalized medicine
prioritization is necessary for advancing care for individuals
with PD, the objective assessment of each neurocognitive
function (eg, motor, memory, speech, language, executive
function, autonomic function, sensory function, behavior, and
sleep) is imperative in guiding and assessing each point of care
across clinical contexts while also providing patients with
improved clinical outcomes. As such, these clinical impacts are
directly related to the use of AI and ML to provide insights that
may supplement clinical expertise while also driving predictive
and personalized medicine–based approaches.

Neurology
As PD is one of the world’s fastest-growing neurological
disorders, where access to neurological care is a rare privilege
for millions of people worldwide, digital health technology
provides accessibility and continuous monitoring capabilities
[5,125,126]. Remote monitoring, using these technologies,
combined with telemedicine capabilities, can close the
accessibility gap. Currently, the standard of diagnosis and
staging requires in-person clinic visits where an expert (eg,
neurologist or movement disorder specialist) assesses the disease
symptoms while observing the patients as they perform a series
of clinical assessments. However, given the time constraints of
standard clinical visits (eg, every 3-6 mo) in conjunction with
the nature of PD symptoms (eg, with varying intensity and
timing), clinicians, typically, are unable to adequately discuss
specific or personal issues with the patient and caregiver
regarding the disease [2,127]. Therefore, the continued use of
outdated assessment protocols (eg, H&Y and MDS-UPDRS)
that are strictly limited to a subset of functional modalities and
the subjective reporting of outcomes, leaves much unknown in
the presentation, progression, and treatment of PD [128,129].
Therefore, digital health technology is intended to augment this
process for neurologists and movement disorder specialists by
providing objective measures across all functional areas of
neurocognition in a longitudinal manner [2] to enable them to
make comprehensively informed decisions regarding
interventional therapies (eg, pharmacological treatment, physical
therapy, speech-language pathology, and occupational therapy),
while also allowing for the needs of the patient to be addressed.
Similarly, these objective measures would benefit patients and
researchers in the clinical study setting by facilitating the
detection and monitoring of the effect of therapeutics on motor
and nonmotor symptom severity and progression over time.

Pharmacology
Due to the heterogeneity of clinical interactions, complications
in diagnosis and staging may persist because motor and
nonmotor symptom fluctuations can be influenced by medication
timing, variability in efficacy, and differences in the duration
of effect relative to the timing of the assessment. As the
symptoms presented during clinic appointments over time may
not reveal all issues that are present at home, and there may be
substantial variations between the peak (eg, the highest level
of a medication’s concentration in the blood) and trough (eg,
the lowest level of a medication’s concentration in the blood)
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states of pharmacological interventions, it is also challenging
to prescribe the right dose of medication and schedule doses to
prevent trough states [129]. However, sudden fluctuations in
peak and trough states may be recognizable with wearable
sensors that have automated algorithms [130]. To handle the
challenge of recognizing these peak and trough fluctuations
with respect to the symptom-specific functional areas of
neurocognition, remote at-home monitoring would allow health
care professionals to better prescribe medications, and in the
event of more complicated cases, it would help them to decide
the optimal time frame for advanced, more invasive PD
treatments (eg, deep brain stimulation or intraduodenal levodopa
infusion) [46,131].

Physical Therapy
The adoption of digital health technology by physical therapists
to address current, evolving, and future health care needs has
been increasingly advocated for more than a decade. Notably,
in 2009, the American Physical Therapy Association sponsored
the Physical Therapy and Society Summit at which participants
proposed that the technological drivers of change in physical
therapist practice should include activity monitoring and
telerehabilitation efforts [47]. Although physical therapists
typically tailor exercise interventions to meet the needs of a
given patient, there is little evidence to guide these decisions
[132]. Given the vast variability in disease characteristics and
subsequent functional consequences among persons with PD,
a precision medicine approach is needed to optimize
personalized exercise programs tailored to their functional
abilities [48]. This is further advocated in an expansion of
previously presented work where neurocognitive functional
improvements across both motor and nonmotor
symptom-specific functionalities (eg, motor, memory, speech,
and executive function) were mapped in relation to specific
physical intervention programs (eg, aerobic activity, noncontact
boxing, functional strength, and yoga) across PD stages [8].
Although there is a continued research need in the mapping of
these physical interventions to symptom-specific improvements,
it is imperative to modernize PD assessment protocols is
imperative to drive these personalized interventions.
Furthermore, the use of digital health technology could then be
expanded to allow access to a home-based approach to
therapeutic activity and extend the benefits of in-person training
with physical therapists [7].

Speech-Language Pathology
As nearly 90% of people with PD develop speech disorders,
speech assessments have a crucial role in the clinical diagnosis
and monitoring of PD [133,134]. In many cases, speech
disorders—specifically hypokinetic dysarthria (characterized
by a breathy voice, an increased rate of speech, monopitch,
reduced syllable stress, and imprecise articulation)—are the
first indications of PD. Furthermore, in the later stages of PD,
changes in speech (ie, increased spasticity characterized by
harsh-strangled voice features) usually indicate more cognitive
involvement as seen in certain types of dementia. In addition,
dysphagia (ie, swallowing disorders manifested by delayed
swallow response, slow tongue movements, and drooling—all
due to increased rigidity) is a common occurrence in PD,

affecting an estimated 40% to 90% of individuals [135]. The
ability to effectively collect and objectively assess
neurocognitive and oral motor features associated with speech
(eg, pitch, loudness, articulation, voice quality, respiration,
resonance, and prosody) through the use of digital health
technology would enable both precise assessment measurements
for the diagnosis of individuals with PD and the monitoring of
the therapeutic benefits of effective and targeted treatment of
the presented symptoms [49,134].

Occupational Therapy
Digital health technology and telemedicine-based approaches
for occupational therapy are also necessary in the provision of
safe and effective therapeutics. Although physical activity,
specifically exercise, can improve motor and nonmotor function
and quality of life in people with PD, these benefits are likely
derived only if the person engages in adequate levels of physical
activity in daily life. Therefore, occupational therapists have a
role in helping people with PD incorporate and maintain physical
activity in their daily routine (activities of daily living) as an
aspect of health management and maintenance [138]. With the
implementation of mobile technology in this space, the
continued development of therapy programs and neurocognitive
assessment methods will allow for usable, safe, low-cost, and
accessible assessments for all [50].

Disease Classification
The pervasiveness of digital devices and the emergence of digital
health technologies are helping to address the problems of early
PD detection and risk prediction even in a nonclinical
environment [11]. These devices allow for the accurate
characterization and recognition of discriminating features via
the use of ML algorithms and AI-enabled models for detection
and assessment [38,51,136]. Furthermore, the use of this
information allows for the reevaluation and standardization of
clinical scale updates, which can ultimately allow for novel
digital health systems and disease monitoring [139]. Especially
in the early stages, parsing out PD from atypical parkinsonism
syndromes such as progressive supranuclear palsy or multiple
system atrophy can be difficult, and the standard clinical
evaluation can lead to misdiagnosis. Diagnostic accuracy should
be enhanced with the use of digital health technology
supplemented by ML and AI to differentiate PD from atypical
PD with implications regarding prognostic discussions and
clinical trial enrollment. As the prognostication of PD is an aim
of high importance, updates regarding the collection of objective
data, the modeling for the characterization and recognition of
discriminating features, and the updated standardization of
clinical scales using digital health technology are necessary to
drive this pivotal aim.

Stage Prediction
ML has become increasingly significant in health care for stage
and outcome prediction [9]. These approaches have penetrated
the neurology and digital health technology crossover space to
address challenges regarding neurodegenerative movement
disorders such as PD [140,146]. Prognostication in PD,
regardless of the disease state, is important to patients and
difficult for clinicians. Predicting how the disease will evolve
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and when patients will reach clinical milestones is a major
scientific challenge. The application of digital health technology
can add objective motor and nonmotor symptom data to these
calculations; for example, gait patterns consistent with the
freezing of gait and labile blood pressure in the setting of
neurogenic orthostatic hypotension, detected subclinically
through ML, may predict falls or the development of dementia,
both important milestones in PD progression. Monitoring
neurocognition over time in a large cohort of patients with PD
would allow for retrospective analysis of the recorded data
compared with the attainment of disease milestones to help
create predictive models. Predicting the time period in which a
patient progresses to a more advanced disease stage (eg, from
stage 1 to stage 2 or higher) is highly necessary for clinicians
in making medical decisions (eg, in terms of treatment and
intervention options). To go further, data collection procedures
should be defined to adequately collect data for these patients
as they progress through disease stages over time. This would
completely revolutionize PD care across all types of therapeutics
and interventions because clinicians could inform patients about
their individualized likelihood of having critical disabilities and
assistive-device needs, helping them better prepare for the future
[141]. The inclusion of stage prediction still requires additional
work; however, this component will provide substantial benefits
for personalized treatment protocols once it is completed.

AI and ML for the Categorization of PD Based on
Presented Symptoms
With the continued adoption of digital health technology specific
for PD, it may be possible that objective assessment features
allow for better classification of PD. The use of AI and ML
techniques such as k-nearest neighbors, random forests, support
vector machines, neural networks, and other modeling methods
can allow for improved accuracy compared to current staging
methods [116,142]. These models may also be readily used to
better assess subtype manifestations of the condition at either
the prodromal stage or across novel PD phenotypes (similar to
ALS, in which both limb and bulbar presentations of the disease
occur [52,123]). The use of AI and ML for novel unsupervised
learning pathways (eg, principal component analysis,
t-distributed stochastic neighbor embedding, and uniform
manifold approximation projections) [143,144] could completely
revolutionize PD care, given the novel insights that could allow
for deeper understanding related to pharmacological and
therapeutic interventions, prognosis, and comorbidity
manifestation likelihood, among others [8]. Given the nature
of this “designer disease, ” these differentiated symptom
classifications would be imperative for the formation and
provision of personalized care across all clinical settings.

Summary of Clinical Impacts
Given the many discussed impacts of digital health technology,
Figure 4 depicts a visual flow-based representation of new
staging systems. As this technology provides the ability to
collect objective data from digital health tools (eg, smartphones
and wearable devices) and analyze the data through ML and
deep learning techniques (eg, random forests, support vector
machines, and neural networks), given expansive data inputs
from traditional and objective digital assessments (eg, PROs,
clinical observations, functional movement assessments, digital
health assessments, and longitudinal wearable data streams) at
multiple influential events (eg, semiannual assessments with
clinicians and with respect to pharmacological interventions
and other therapies), clinicians are afforded critical information
to make more informed decisions for personalized diagnosis,
staging, and intervention recommendation protocols. Although
future work will necessitate more robust data collection efforts
and the formalization of ML models for outcome prognostication
and therapeutic recommendation, the application of digital health
technology in this capacity has already provided clinicians with
valuable objective features necessary for the objective
assessment, accurate classification and staging, and longitudinal
monitoring of PD (Tables S1-S3 in Multimedia Appendix 1).
Subsequently, the increased and continual integration of this
digital health technology sets a foundation that can meaningfully
process this wealth of data from multiple sources while enabling
neurologists and movement disorder specialists to provide
personalized intervention protocols, adequately discuss and
address specific personal issues with the patient or caregiver
regarding the disease and its progression at the time of clinical
visits, and ultimately allow individuals living with PD to
experience a better quality of life [137].

Finally, with the modernization of neurocognitive monitoring
using mobile technology, it is noted that this concept can and
should be applied to other neurodegenerative diseases (eg,
Huntington disease, ALS, Alzheimer disease, multiple sclerosis,
and other types of dementia) as each of them present with
progressive degeneration that may involve both neurological
and cognitive deficits [145]). Furthermore, this concept could
naturally be extended for a deeper understanding of the
confounding effects of comorbid conditions as well as nuanced
responses to multiple interventional programs. Using digital
health technology for objective symptom-specific assessments
should be advocated as a supplement to functional movement
assessments, PROs, and clinician observations in the provision
of personalized and optimized care for individuals across all
neurodegenerative conditions.
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Figure 4. Benefits of integrating digital health technology into disease classification, staging, and prediction. ALS: amyotrophic lateral sclerosis; DBS:
deep brain stimulation; MDS-UPDRS: Movement Disorder Society–Unified Parkinson’s Disease Rating Scale; PD: Parkinson disease; PDQ-39:
Parkinson’s Disease Questionnaire-39; PRO: patient-reported outcome.

Limitations and Future Directions
While the proposal to modernize clinical staging of PD using
digital health technology builds on established scales such as
the H&Y and MDS-UPDRS, it also seeks to enhance precision
and functionality by integrating objective, symptom-specific
assessments through advanced device capabilities [2]. However,
this integration also presents several challenges that need to be
addressed. One main limitation revolves around privacy
concerns regarding the collection, storage, and sharing of
sensitive patient data. As this proposed staging mechanism is
intended to be usable across a variety of clinical settings (eg,
neurology, pharmacology, physical therapy, speech-language
pathology, and occupational therapy), the process of collecting,
storing, and sharing data requires significant foresight for
regulatory compliance as well as clear consent processes to
protect patient information [53]. In addition, as these devices
allow for the collection of large amounts of data of various types
(eg, audio, video, and wearable sensor stream data), the storage
of these data becomes a concern for both longitudinal analysis
and system scalability [54]. Next, accessibility presents
additional challenges, particularly in resource-limited settings
or among older people who may struggle with technological
literacy or lack access to advanced digital tools [55]. The
development of affordable and user-friendly systems that can

function across diverse health care environments is essential to
ensuring equitable implementation. While digital health
technology (eg, smartphones, tablets, and wearable devices) is
becoming more readily available in the health monitoring space,
limitations remain in ensuring widespread access for all
populations [147]. As such, any inability to assess specific
functional areas of neurocognition due to a lack of digital health
technology devices would still cause reliance on subjective
assessment and PROs. Furthermore, developing an ideal system
for assessing each functional area of neurocognition is reliant
on the formation of robust data collections that can yield optimal
feature sets across each area of neurocognition. While Table 3
highlights specific manuscripts that yield objective features
across each functional area of neurocognition, currently there
is no dataset that contains data from all these devices across all
areas. Even with the use of currently available clinical databases
that contain objective data from many key neurocognitive
functions, in addition to ongoing data collections with
populations of people with PD, further specifications are also
necessary for development regarding specific features of
importance. Given the rapid pace of advancements in ML and
wearable technology, there is also the need for periodic updates
within the proposed system; however, it is believed that with
the digitization of current assessment systems paired with a
proposed schema that is based on current clinical gold standards,
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these challenges can be addressed through collaborative and
iterative approaches that will translate this proposed framework
into a practical, widely applicable tool for staging and managing
PD.

Conclusions
Digital devices, including smartphones, tablets, and wearables,
provide the capability to obtain accurate, objective measures
and PROs for neurocognitive monitoring; allow for a much
more fine-grained approach to longitudinal monitoring across
all functional areas of neurocognition; and lead to the
enhancement of personalized rehabilitative efforts, ultimately

yielding higher patient quality of life. The creation,
implementation, and continued evolution of mobile device
technology for the continuous assessment of individuals with
neurodegenerative diseases, including PD, should be used to
transform the process of clinical staging into a much more
comprehensive and personalized monitoring approach. This
newly proposed foundation would ultimately provide benefits
to all parties involved (eg, neurologists, clinicians, researchers,
patients, and caregivers); yield a basis to expand upon, given
future work in the field; and is intended to aid in the
transformation of the way neurodegenerative diseases are
understood, studied, and cared for.
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