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Abstract

Background: Floodlight Open is a global, open-access, fully remote, digital-only study designed to understand the drivers and
barriers in deployment and persistence of use of a smartphone app for measuring functional impairment in a naturalistic setting
and broad study population.

Objective: This study aims to assess measurement equivalence properties of the Floodlight Open app across operating system
(OS) platforms, OS versions, and smartphone device models.

Methods: Floodlight Open enrolled adult participants with and without self-declared multiple sclerosis (MS). The study used
the Floodlight Open app, a “bring-your-own-device” (BYOD) solution that remotely measured MS-related functional ability via
smartphone sensor–based active tests. Measurement equivalence was assessed in all evaluable participants by comparing the
performance on the 6 active tests (ie, tests requiring active input from the user) included in the app across OS platforms (iOS vs
Android), OS versions (iOS versions 11-15 and separately Android versions 8-10; comparing each OS version with the other OS
versions pooled together), and device models (comparing each device model with all remaining device models pooled together).
The tests in scope were Information Processing Speed, Information Processing Speed Digit-Digit (measuring reaction speed),
Pinching Test (PT), Static Balance Test, U-Turn Test, and 2-Minute Walk Test. Group differences were assessed by permutation
test for the mean difference after adjusting for age, sex, and self-declared MS disease status.

Results: Overall, 1976 participants using 206 different device models were included in the analysis. Differences in test performance
between subgroups were very small or small, with percent differences generally being ≤5% on the Information Processing Speed,
Information Processing Speed Digit-Digit, U-Turn Test, and 2-Minute Walk Test; <20% on the PT; and <30% on the Static
Balance Test. No statistically significant differences were observed between OS platforms other than on the PT (P<.001). Similarly,
differences across iOS or Android versions were nonsignificant after correcting for multiple comparisons using false discovery
rate correction (all adjusted P>.05). Comparing the different device models revealed a statistically significant difference only on
the PT for 4 out of 17 models (adjusted P≤.001-.03).

Conclusions: Consistent with the hypothesis that smartphone sensor–based measurements obtained with different devices are
equivalent, this study showed no evidence of a systematic lack of measurement equivalence across OS platforms, OS versions,
and device models on 6 active tests included in the Floodlight Open app. These results are compatible with the use of
smartphone-based tests in a bring-your-own-device setting, but more formal tests of equivalence would be needed.

(J Med Internet Res 2025;27:e63090) doi: 10.2196/63090
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Introduction

Multiple sclerosis (MS) is a chronic, demyelinating autoimmune
disease of the central nervous system, which can manifest in
functional impairment in cognitive and motor abilities, and the
subsequent accumulation of disability over time [1]. The number
of people affected by MS is increasing globally, with recent
figures estimating over 2.8 million cases worldwide [2]. While
assessments of functional ability can inform medical decisions
and interventions that can ultimately reduce the risk of relapses
and slow down the rate of disease progression, their utility has
been limited by their infrequent use and reliance on patient
recall [3-5]. An objective and more frequent assessment could
provide a more detailed picture of the evolution of the disease.

To address this unmet need, smartphone sensor–based tests, or
remote digital assessment technologies, are increasingly being
studied for assessing functional ability in people with MS [6-14].
Typically, such tests can be remotely and frequently performed
in the patient’s home environment without supervision by a
health care professional [10,12,15,16]. Furthermore, the use of
wearable or embedded sensors allows many different aspects
of functional ability to be characterized and objectively
quantified [12,13,17,18]. Thus, they provide more granular and
more detailed information than captured with the single scores
of traditional standard clinical assessments such as the
Nine-Hole Peg Test, oral Symbol Digit Modalities Test, or the
Timed 25-Foot Walk [19-21]. Ultimately, the goal of digital
remote assessment tools in MS is to help uncover insidious
disease progression [22-24] and allow timely and appropriate
medical intervention, which could lead to better treatment
outcomes.

While restricting remote digital assessment technologies to a
specific device or a single operating system (OS) platform can
offer a simpler integration of hardware and software [12,13,25],
it may limit their uptake [26]. Bring-your-own-device (BYOD)
solutions, by comparison, can help increase access to remote
digital technologies (ie, reaching more users) by taking into
account the differences in market share of iOS and Android
devices across geographies [27]. BYOD solutions are also less
affected by the unfamiliarity associated with novel tools, speak
to the patients’ preference of using their own device rather than
using and carrying an additional device with them, and
potentially improve the user experience [26,28,29]. Furthermore,
they are associated with fewer logistical challenges and, as a
result, are more cost-effective to deploy in clinical trials [30,31].
However, measurement equivalence across different device
models must be first established before a BYOD solution can
be successfully deployed [11,32].

The Floodlight Open app assesses MS-related functional ability
through smartphone sensor–based “active” tests (ie, assessments
that require active input from the user) and was specifically
developed for use in a BYOD setting [33]. It was deployed in
Floodlight Open, a global, open-access, digital-only study that
was designed to understand the drivers and barriers in the
deployment and persistence of use of a smartphone app in a

naturalistic setting and broad study population [33]. Previously,
it was shown that the Floodlight Open app can differentiate and
discriminate between MS participants and non-MS participants
[33,34]. Using data from this study, we sought here to establish
the properties of measurement equivalence on 3 separate levels:
OS platforms, OS versions, and device models.

Methods

Study Design and Participants
Floodlight Open was run in 17 countries, and data were collected
between April 23, 2018, and April 26, 2023. The study design
and the Floodlight Open app have been previously described
[33]. As a fully remote, digital-only study, Floodlight Open did
not involve supervision by health care professionals. Adult
participants aged 18 years and older with or without
self-declared MS living in one of the participating countries
could enroll by providing full electronic consent and
downloading the Floodlight Open app on their own smartphone
device. After providing their electronic consent, participants
received a token, or activation code, via email with which they
could unlock the functionalities of the app. Participants were
excluded from the analyses if they did not complete at least one
valid active test or had missing device information.

Ethical Considerations
The protocol, the electronic informed consent forms, data
protection, and relevant supporting information were reviewed
and approved by local institutional review boards or ethics
committees before the study was initiated, as applicable, in
accordance with each country’s regulatory requirements. For
example, the institutional review board for the United States
was the Western Institutional Review Board in Puyallup,
Washington (approval: 20180617). Further details on the
institutional review boards and ethics committees’ approvals
are described in a previous report [33].

Floodlight Smartphone Sensor-Based Active Tests
The Floodlight Open app was designed to remotely measure,
in a naturalistic setting, functional ability in cognition, hand
motor function, gait and balance, mobility, and mood through
smartphone-based active tests, passively collected life-space
measurements, and patient-reported outcomes. The individual
tests have been previously described [33]. It supports all devices
running iOS version 11.x or later or Android version 7.x or
later, which were commonly available at the time the app was
launched. The iOS version was first released on April 22, 2018,
and the Android version on July 17, 2019.

The measurement equivalence properties were studied on 6
active tests, including the Information Processing Speed (IPS),
Information Processing Speed Digit-Digit (IPS DD), Pinching
Test (PT), Static Balance Test (SBT), U-Turn Test (UTT) and
2-Minute Walk Test (2MWT; Table 1). These active tests could
be performed up to once daily (PT, SB, UTT, and 2MWT) or
up to once weekly (IPS and IPS DD).
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Table 1. Active tests included in the analysis.

Quality control flagsTest feature to assess test
performance

Test scheduleSensors usedFunctional domain
and active test

CriterionTest marked invalid if
characterized by

Cognition

“Play-to-quit” attemptNumber of correct respons-
es (n)

WeeklyTouchscreenIPSa • Response selected independently
of symbol to be matched [15]

“Play-to-quit” attemptNumber of correct respons-
es (n)

WeeklyTouchscreenIPS DD testb • Response selected independently
of symbol to be matched

Hand motor function

“Play-to-quit” attemptNumber of pinches (n)DailyTouchscreenPTc • No gestures recorded by the
touch screen (no screen interac-
tion) [15]

Gait and balance

SBTd

“Play-to-quit” attemptSway path, (m/s2)DailyAccelerometer • Phone is kept on the table [15]
• Steps recorded during the test

[15]

UTTe

“Play-to-quit” attemptTurn speed, (rad/s)DailyAccelerometer,
Gyroscope

• Phone is kept on the table [15]
• Main orientation of the phone is

stable for ≤90% of the time

Insufficient dataTurn speed, (rad/s)DailyAccelerometer,
Gyroscope

• Number of turns ≤ 3
• Turn angle is either ≥270 or ≤90

degrees
• Test duration is ≤40 s

2MWTf

“Play-to-quit” attemptNumber of steps (n)DailyAccelerometer • Phone is kept on the table [15]

Insufficient dataNumber of steps (n)DailyAccelerometer • Test duration ≤105 s

aIPS: Information Processing Speed.
bIPS DD: Information Processing Speed Digit-Digit.
cPT: Pinching Test.
dSBT: Static Balance Test.
eUTT: U-Turn Test.
f2MWT: 2-Minute Walk Test.

The IPS measured cognitive function and instructed participants
to match as many symbols to digits as possible within 90
seconds according to a symbol-digit key provided at the top end
of the smartphone display. To account for the visuomotor
component involved in this substitution task, participants were
additionally asked to match digits to digits instead during the
30-second IPS DD. The PT evaluated the ability to perform
upper extremity function tasks. The goal was to pinch, or
squeeze, as many tomato shapes as possible within 30 seconds.
After each pinched tomato shape, a new shape appeared at a
different location on the smartphone display. Gait and balance
were assessed with 3 different active tests. The SBT instructed
participants to stand as still as possible for 30 seconds with both

feet on the ground and with their eyes open. The UTT prompted
participants to perform at least 5 U-turns on an even ground 4
meters apart within 60 seconds and, thus, assesses both gait and
dynamic balance. By comparison, the 2MWT assessed gait
during straight walking without turning on an even ground for
2 minutes. For both the UTT and 2MWT, study participants
were instructed to walk as fast as possible but safely; use of
assistive devices or orthotics was permitted as needed and
recorded.

The raw sensor data (touchscreen, accelerometer, and gyroscope
data) were encrypted and transferred wirelessly to a secure
central database server that is controlled and maintained by the
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study initiator, F. Hoffmann-La Roche Ltd. Subsequently, the
raw sensor data were used to compute predefined test features
that characterize the participant’s performance on the individual
active tests. These features include the number of correct
responses on the IPS and IPS DD, the number of successful
pinches on the PT [15], the sway path on the SBT [15], the
average turn speed on the UTT [15], and the number of steps
on the 2MWT.

Data Processing and Statistical Analysis
Two data processing steps were implemented to reduce any
potential bias introduced by poor sampling frequency of the
embedded sensors or by nonaccordant test execution. The second
data processing step, however, was not available for the Draw
a Shape Test; consequently, this active test is not included in
the analyses presented here.

In the first data processing step, any active test recorded with
either a low sampling frequency (sampling frequency ≤33 Hz)
or an unstable sampling frequency (sampling frequency
temporarily dropped ≤33 Hz) was identified and subsequently
excluded from the analyses since low or unstable sampling
frequency can negatively affect sensor-based measurements
[35]. The minimum sampling frequency was set at 33 Hz for
all sensor types, as this is the lowest sampling frequency to
reliably assess gait [36]. Most currently available commercial
smartphone devices support this sampling frequency. Next, any
active test that was not executed according to the test’s
instructions was disregarded as they were considered invalid.
Such nonaccordant tests were retrospectively identified with
quality control flags, which were derived from the raw sensor
data and provided objective information on how the test was
executed. Different quality control flags were defined for each
of the active tests (Table 1). These quality control flags
identified, without any input from an observer, individual tests
that were either characterized by “play-to-quit” behavior or
insufficient data. “Play-to-quit” behavior captures instances
where the participant did not intend to perform the test according
to the instructions provided and wanted to skip the test instead
(eg, the same response is selected in fast succession irrespective
of the symbol shown during the IPS or IPS DD; no touch screen
interaction during the PT). The insufficient data criterion was
introduced to ensure the extraction of meaningful gait features,
which is particularly important when comparing smaller
subgroups that are more sensitive to noise. According to this
criterion, only gait tests with a sufficient number of steps or
turns were kept for further analysis.

Measurement equivalence signifies that the measurements
obtained from 2 groups stem from the same distribution, that
is, the 2 groups are equivalent to each other. This was studied
separately for each of the 6 active tests in both MS and non-MS
participants using the Floodlight feature values, that is,
measurements of test performance, derived from the raw sensor
data (raw accelerometer, gyroscope, or touchscreen data). Since
the study duration was not fixed, the first valid test execution
(ie, the first valid IPS, IPS DD, PT, SBT, UTT, and 2MWT) of
each participant was used to assess measurement equivalence
in order to maximize the number of participants available for
analysis and to compare like with like. A test run was considered

completed if the participants performed all active tests except
the 2MWT in a single session in a predefined, fixed sequence.
As the 2MWT was self-administered independently from this
sequence, the first valid 2MWT of each participant was used to
study the equivalence of this active test.

Feature values derived from the raw sensor data (ie, raw
accelerometer, gyroscope, or touchscreen data collected while
the participants were performing the active tests) were adjusted
for age, sex, and self-declared disease status (“MS” and
“Non-MS”) with a robust linear model to account for differences
in these covariates (function rlm{} included in the Python
statsmodel package version 0.13.5). Next, subgroups were
defined in 4 separate categories: OS platform (ie, iOS and
Android), iOS version (ie, iOS versions 11, 12, 13, 14, and 15),
Android version (Android versions 8, 9, and 10), and device
model. To minimize potential issues with small sample sizes
but also allow for as many different subgroups (eg, device
models) as possible to be included in the analysis, only
subgroups with at least 20 participants were included.

To study measurement equivalence, each subgroup (eg, iOS
12) was subsequently compared against their respective
reference group. This reference group consisted of all remaining
subgroups of the same category pooled together. For example,
the reference group for iOS 12 is iOS 11, 13, 14, and 15 pooled
together. The null hypothesis was that the distribution of the
subgroup—for example, iOS 12—is identical to the distribution
of its respective reference group. Differences in the means
between the subgroup under study and its reference group were
tested for statistical significance through permutation testing
[37,38]. This test was chosen as it is a nonparametric test that
requires only minimal model assumptions and additionally is
robust. It does not assume a normal distribution and is also
robust with regard to unbalanced data sets such as ours and to
outliers. To perform the permutation test, the overall population
(in the example above, all iOS devices) was randomly sampled
to generate 2 permuted groups whose sample sizes were identical
to the subgroup under study (eg, iOS 12) and its reference group
(eg, iOS 11, 13, 14, and 15 pooled together), respectively. This
was repeated 10,000 times, resulting in 10,000 permutations,
and hence 10,000 mean differences. The reported P value is
defined as the proportion of permutations that resulted in a mean
difference between the 2 permuted groups that is larger than
the real observed mean difference between the subgroup and
its reference group. Both unadjusted and adjusted P values
(adjusted for multiple comparisons with false discovery rate
correction using the Benjamini-Hochberg method) are reported.

Additional reported metrics include the 95% CIs of expected
mean differences under the assumption of the null hypothesis,
which were derived from the permutation test; the absolute
difference and percent difference in the observed mean scores
(mean feature values) between each subgroup and their
respective reference group; the SD of each subgroup and its
reference group; as well as the effect size of these differences
(Cohen d; very small effect size: d=0.01; small effect size:
d=0.2; medium effect size: d=0.5; large effect size: d=0.8)
[39,40].
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To corroborate the findings, a sensitivity analysis was run, which
used the median as the test statistic difference (instead of the
mean difference) of the permutation test.

In a separate analysis, smartphones were compared against
tablets to evaluate the impact of screen size on measurement
equivalence. Differences between smartphones and tablets were
assessed for statistical significance with the Mann-Whitney U
Test.

Results

Overview
Smartphone data were available for 2010 participants aged 18
years and older. Of these, 34 (1.7%) participants were excluded
from the analyses due to low or unstable sampling frequency,
resulting in 1976 evaluable participants using 206 different, or
unique, device models (1614 participants with iOS devices and
362 participants with Android devices). Details on the
participant, the devices they used, and their demographics are
provided in Figure 1 and Table 2.

Figure 1. Participant deposition and the devices they used.
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Table 2. Baseline demographics and disease characteristics.

Non-MS (n=836)MSa (n=1140)All (n=1976)Variable

39.8 (12.4)45.5 (12.0)43.1 (12.5)Age (years), mean (SD)

405 (48.4)838 (73.5)1243 (62.9)Female, n (%)

735 (87.9)879 (77.1)1614 (81.7)Participants with iOS devices, n (%)

Active tests, mean (SD)

45.0 (13.7)43.2 (10.7)43.8 (11.9)IPSb (correct responses, n)

18.3 (4.0)17.7 (3.4)17.9 (3.6)IPS DDc (correct responses, n)

34.6 (13.5)28.1 (13.0)30.8 (13.5)PTd (successful pinches, n)

20.5 (21.6)22.7 (22.0)21.8 (21.9)SBTe (sway path, m/s2)

1.43 (0.37)1.37 (0.34)1.40 (0.35)UTTf (turn speed, rad/s)

187.8 (38.2)191.2 (38.1)190.2 (38.2)2MWTg (steps, n)

aMS: multiple sclerosis.
bIPS: Information Processing Speed.
cIPS DD: Information Processing Speed Digit-Digit.
dPT: Pinching Test.
eSBT: Static Balance Test.
fUTT: U-Turn Test.
g2MWT: 2-Minute Walk Test.

Quality Checks
Devices running iOS devices were less prone to low or unstable
sampling frequency than Android devices, although the overall
number of participants that were excluded for failing to meet
the sampling frequency requirements was small. In total, 5
participants with iOS devices and 29 participants with Android
devices (15 participants with Samsung; 7 participants with
Huawei; 3 participants with LG; and 1 participant each with
Motorola, Oppo, Nokia, and Xiaomi devices) were excluded.
Of all tests performed during the study, 95.9% (91,002/94,925
tests) were recorded with a sufficiently high and stable sampling
frequency.

Across the entire study duration, the proportion of active tests
executed in accordance with the test instructions, that is, which
passed the criteria defined by the quality control flags, varied
from approximately 61.9% to 99.1% (IPS: 6436/6985 [92.1%];
IPS DD: 6278/6609 [95.0%]; PT: 31235/31508 [99.1%]; SBT:
23696/26954 [87.9%]; UTT: 14985/24219 [61.9%]; 2MWT:
18055/21483 [84.0%]). However, no participant was excluded
from the analysis for failing to meet these criteria as each
participant performed at least one entire test run in accordance
with the provided instructions (for each participant, the first
valid test from each active test was used for the measurement
equivalence analysis). Nonetheless, this highlights that large
observational remote assessment studies such as Floodlight
Open require checks that provide objective measures for
assessing data quality in accordance with the test instructions
of self-administered assessments [15].

Measurement Equivalence
The measurement equivalence analysis was assessed after
adjusting for age, sex, and self-reported disease status. Overall,

results show no indication that any of the 6 active tests are
associated with a systematic measurement nonequivalence. The
findings were consistent across OS platforms, OS versions, and
device models, although the findings for the device models were
more variable given the smaller subgroups. The effect sizes of
the difference between subgroups were mostly very small (effect
size <0.20) or small (effect size <0.5). For each observed
subgroup, the mean differences were considerably smaller than
one SD of the respective reference group, and most mean
differences were within the 95% CI obtained from the
permutation test (Tables 3-5; Table S1 in Multimedia Appendix
1).

When comparing iOS devices with Android devices, percent
differences in adjusted test scores between iOS devices and
Android devices were <5% on the IPS, IPS DD, SBT, UTT,
and 2MWT and ≤10% on the PT (Table 3). Permutation testing
revealed a statistically significant, but small difference between
iOS and Android on the PT (percent difference: 8.0%, effect
size: 0.24, P<.001; Figure 2; Table 3).

Similar results were observed when comparing the 5 iOS
versions 11, 12, 13, 14, and 15 (Figure 3A). Across all 5 iOS
versions, the percent differences were mostly <5% on the IPS
and IPS DD, PT, UTT, and 2MWT, with only iOS 15 showing
percent differences greater than 5% on the IPS (percent
difference: 5.3%) and IPS DD (percent difference: 5.2%) (Table
4). Larger differences were observed on the SBT, with percent
differences ranging from 1.3% to 18.3%. Permutation testing
revealed statistically significant differences only for iO12 on
the IPS (percent difference: 3.0%, effect size: 0.17,
Punadjusted=.02) and IPS DD (percent difference: 2.5%, effect
size: 0.19, Punadjusted=.01). However, the observed mean
differences of 1.9 (IPS) and 0.6 (IPS DD) correct responses
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were within the 95% CI obtained from the permutation test
(IPS: [0.0,1.9]; IPS DD: [0.0,0.6]), and these differences were
no longer statistically significant after correcting for multiple
comparisons (Padjusted=.11 and .07, respectively). Differences
of similar magnitude were observed when comparing Android
versions 8, 9, and 10 (Figure 3B). Across these OS versions,
percent differences were mostly ≤5% on the IPS, IPS DD, PT
(only Android 8 showed a larger percent difference of 5.1%),
UTT, and 2MWT; and <30% on the SBT (Table 5). None of
these differences reached statistical significance (all
Punadjusted=.06-.96, all Padjusted=.19-.96).

Next, we evaluated whether a device model shows an
out-of-distribution performance compared with the null
hypothesis of all device models being from the same distribution
(Table S1 and Figure S1 in Multimedia Appendix 1). Only
device models used by at least 20 participants were included in
this analysis, resulting in 17 different models being evaluated.
Percent differences were mostly ≤5% on the IPS, IPS DD, UTT
(only the iPhone 7 Plus showed a larger percent difference of
5.6%) and 2MWT; and <20% on the PT and SBT (Table S1 in
Multimedia Appendix 1). Unadjusted permutation testing
revealed that most device models did not show a statistically
significant difference (IPS: 12/13 models, IPS DD: all models,
PT: 12/16 models, SBT: 12/14 models, UTT: all models,
2MWT: all models). Of note, the statistically significant

differences (Punadjusted<.001-.04) were not associated with any
particular device model. After adjusting for multiple
comparisons, statistically significant differences were observed
only on the PT (iPhone SE: Padjusted=.02; iPhone X Global:
Padjusted=.03; iPhone X GSM: Padjusted≤.001; iPhone 11:
Padjusted=.03). In all 4 instances, effect sizes ranged from 0.38
to 0.50, and percent differences from 11.4% to 15.1%.
Furthermore, the observed mean differences were outside the
95% CI obtained from the permutation test (Table S1 in
Multimedia Appendix 1).

The sensitivity analysis, which used the median difference rather
than the mean difference as the test statistic for the permutation
test, revealed similar findings across OS platforms, OS versions,
and device models (Tables S2-S5 in Multimedia Appendix 1).

Screen size had a limited impact on the measurement
equivalence properties. No significant differences were observed
between smartphones (n=1788, of which 1556 [87.0%] were
iOS devices) and tablets (n=89, of which 58 [65.2%] were iPads
running iOS) on the gait and balance tests (ie, SBT, UTT and
2MWT, all P=.27-.75). Statistically significant differences with
small effect sizes between smartphones and tablets were
observed on the IPS (percent difference: 11.9%, effect size:
0.45, P=.001), IPS DD (percent difference: 7.3%, effect size:
0.37, P=.022), and PT (percent difference: 18.1%, effect size:
0.38, P=.002).

Table 3. Absolute and percent mean differences across operating system platforms (iOS vs Android).

Permutation testMean difference from Android devicesAndroidiOSActive test

P unadjusted95% CIEffect sizePercent
difference

Absolute
difference

Mean (SD)nMean (SD)n

.070.0-1.60.122.11.361.8 (10.3)34163.1 (11.2)734IPSa (correct responses, n)

.600.0-0.50.040.50.124.2 (3.1)33324.3 (3.4)714IPS DDb (correct responses, n)

<.0010.0-1.70.248.03.138.4 (12.1)33841.5 (12.7)1233PTc (successful pinches, n)

.920.1-4.30.010.70.228.4 (20.8)12628.2 (20.7)1313SBTd (sway path, m/s2)

.800.00-0.060.020.40.011.59 (0.37)2191.59 (0.34)975UTTe (turn speed, rad/s)

.230.1-7.50.112.14.0191.9 (38.2)168195.9 (38.0)6192MWTf (steps, n)

aIPS: Information Processing Speed.
bIPS DD: Information Processing Speed Digit-Digit.
cPT: Pinching Test.
dSBT: Static Balance Test.
eUTT: U-Turn Test.
f2MWT: 2-Minute Walk Test.
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Table 4. Absolute and percent differences across iOS versions.

Permutation testMean difference from reference groupReference groupa,
mean (SD)

iOS subgroupActive test

P adjusted
bP unadjusted95% CIEffect size

Percent
difference

Absolute
differenceMean (SD)n

IPSc (correct responses, n)

.87.860.0-2.90.020.40.263.1 (11.0)62.9 (12.8)84iOS 11

.11.020.0-1.90.173.01.963.9 (11.0)62.0 (11.5)304iOS 12

.50.400.0-2.10.071.20.862.9 (11.0)63.7 (11.8)199iOS 13

.27.120.0-2.50.152.71.762.8 (11.7)64.5 (8.5)118iOS 14

.27.160.1-5.30.305.33.363.0 (11.3)66.3 (9.0)23iOS 15

IPS DDd (correct responses, n)

.78.780.0-0.90.030.50.124.3 (3.3)24.2 (3.9)83iOS 11

.07.010.0-0.60.192.50.624.5 (3.3)23.9 (3.5)296iOS 12

.53.430.0-0.60.070.90.224.2 (3.4)24.5 (3.3)190iOS 13

.16.090.0-0.80.172.40.624.2 (3.5)24.8 (2.7)117iOS 14

.16.080.0-1.60.385.21.324.2 (3.4)25.5 (3.1)23iOS 15

PTe (successful pinches, n)

.99.890.1-4.70.020.70.341.5 (12.7)41.2 (11.7)38iOS 11

.99.710.0-1.60.020.70.341.3 (13.3)41.6 (12.0)568iOS 12

.99.990.0-1.80.000.00.041.5 (12.3)41.5 (13.6)399iOS 13

.99.480.0-2.30.061.70.741.6 (12.7)40.9 (12.8)185iOS 14

.99.580.1-4.80.092.91.241.4 (12.6)42.6 (15.0)38iOS 15

SBTf (sway path, m/s2)

.67.540.0-3.70.053.71.028.1 (20.5)29.1 (21.5)181iOS 11

.29.170.0-2.60.085.71.627.5 (20.4)29.1 (21.0)578iOS 12

.29.110.0-2.90.107.12.028.7 (20.9)26.7 (20.0)348iOS 13

.83.830.1-3.90.021.30.428.2 (20.5)28.5 (21.7)163iOS 14

.29.130.1-7.60.2518.35.228.3 (20.9)23.2 (12.0)38iOS 15

UTTg (turn speed, rad/s)

1.0.850.00-0.080.020.40.011.59 (0.34)1.58 (0.35)121iOS 11

.38.150.00-0.050.092.00.031.60 (0.35)1.57 (0.33)409iOS 12

.38.080.00-0.060.122.70.041.58 (0.33)1.62 (0.38)279iOS 13

1.01.00.00-0.070.000.00.001.59 (0.35)1.59 (0.31)134iOS 14

1.0.960.00-0.150.010.20.001.59 (0.35)1.59 (0.31)29iOS 15

2MWTh (steps, n)

.16.0570.2-10.90.254.89.3194.8 (38.4)204.1 (33.7)67iOS 11

.16.060.1-7.10.153.05.9198.1 (35.0)192.2 (42.1)241iOS 12

.45.430.1-7.60.071.42.6195.0 (39.5)197.7 (34.1)179iOS 13

.45.450.1-9.50.081.63.1195.3 (38.4)198.4 (36.1)96iOS 14

.29.170.2-15.70.254.89.4196.3 (38.0186.9 (38.7)32iOS 15

aThe reference group consists of all other iOS devices pooled together.
bP values were adjusted for multiple comparisons with false discovery rate (FDR) correction using the Benjamini-Hochberg method.
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cIPS: Information Processing Speed.
dIPS DD: Information Processing Speed Digit-Digit.
ePT: Pinching Test.
fSBT: Static Balance Test.
gUTT: U-Turn Test.
h2MWT: 2-Minute Walk Test.

Table 5. Absolute and percent differences across Android versions.

Permutation TestMean difference from reference groupReference groupa,
mean (SD)

Android subgroupActive test

P adjusted
bP unadjusted95% CIEffect size

Percent
difference

Absolute
differenceMean (SD)n

IPSc (correct responses, n)

.90.710.1-3.60.050.90.661.8 (10.5)62.4 (11.5)62Android 8

.90.830.0-3.00.030.50.362.1 (10.9)61.8 (10.5)114Android 9

.90.900.0-3.30.020.30.262.0 (10.8)61.9 (10.6)75Android 10

IPS DDd (correct responses, n)

.85.570.0-1.10.091.10.324.2 (3.5)24.4 (2.5)62Android 8

.85.850.0-0.90.030.30.124.2 (3.0)24.3 (3.6)109Android 9

.85.460.0-1.00.111.40.324.3 (3.2)24.0 (3.4)74Android 10

PTe (successful pinches, n)

.57.270.1-3.90.165.11.938.1 (12.0)40.0 (12.0)61Android 8

.57.380.1-3.50.113.41.339.2 (12.6)37.8 (11.3)113Android 9

.94.940.1-3.70.010.30.138.6 (11.5)38.5 (13.3)74Android 10

SBTf (sway path, m/s2)

.19.060.2-10.00.4629.88.428.2 (20.6)19.8 (7.8)23Android 8

.35.230.1-9.10.2720.64.923.8 (15.3)28.7 (21.7)38Android 9

.64.630.1-9.90.128.72.225.3 (18.0)27.5 (19.8)24Android 10

UTTg (turn speed, rad/s)

.96.960.00-0.140.010.20.001.59 (0.32)1.59 (0.37)38Android 8

.54.360.00-0.120.153.10.051.57 (0.32)1.62 (0.34)72Android 9

.54.350.00-0.120.153.20.051.60 (0.35)1.55 (0.30)55Android 10

2MWTh (steps, n)

.94.940.3-18.30.020.40.7191.8 (42.6)191.1 (33.8)33Android 8

.46.310.2-16.10.183.97.3188.3 (40.0)195.7 (41.0)57Android 9

.46.300.3-17.30.204.17.9194.0 (38.1)186.0 (45.3)39Android 10

aThe reference group consists of all other Android devices pooled together.
bP values were adjusted for multiple comparisons with false discovery rate (FDR) correction using the Benjamini-Hochberg method.
cIPS: Information Processing Speed.
dIPS DD: Information Processing Speed Digit-Digit.
ePT: Pinching Test.
fSBT: Static Balance Test.
gUTT: U-Turn Test.
h2MWT: 2-Minute Walk Test.
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Figure 2. Measurement equivalence by operating system (OS) platform. Permutation testing showed no evidence of a systematic lack of equivalence
between the 2 OS platforms—iOS and Android. A small but statistically significant difference was only observed on the PT. Differences between groups
as well as effect sizes are provided in Table 3. Brackets indicate the sample size. ***P<.001. IPS: Information Processing Speed; IPS DD: Information
Processing Speed Digit-Digit; PT: Pinching Test; SBT: Static Balance Test; UTT: U-Turn Test; 2MWT: 2-Minute Walk Test.
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Figure 3. Measurement equivalence by (A) iOS version and (B) Android version. Permutation testing revealed no evidence of a systematic lack of
equivalence. No statistically significant differences were observed across operating system versions after correcting for multiple comparisons (all
Padjusted>.05). Absolute and percent differences as well as effect sizes are provided in Tables 4 and 5. Brackets indicate the sample size. IPS: Information
Processing Speed; IPS DD: Information Processing Speed Digit-Digit; PT: Pinching Test; SBT: Static Balance Test; UTT: U-Turn Test; 2MWT:
2-Minute Walk Test.

Discussion

Principal Findings
Ensuring measurement equivalence across different device
models is necessary to conduct a new form of large-scale, global,
and cost-effective clinical research on digital outcomes in a
BYOD setting. In this analysis, no evidence was found for a
systematic lack of measurement equivalence across devices for

the 6 smartphone sensor–based active tests considered. The key
learnings are summarized in the Textbox 1.

Measurement nonequivalence can in theory arise from various
sources. For example, differences in inertial measurement unit
(IMU) sensors can potentially contribute to differences in
measurements obtained between devices [35]. However, our
results suggest that differences in IMU sensors did not impact
the features derived from our active tests as no statistically
significant differences were observed on tests that rely on IMU
sensors (ie, the SBT, UTT, and 2MWT).
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Textbox 1. Key learnings.

• The broad, multinational cohort of 1976 participants and 206 different device models allowed us to study measurement equivalence in a naturalistic
environment, reflective of a real-world setting.

• No evidence for the systematic lack of measurement equivalence was found; the features derived from our smartphone-based assessments were
by large robust against differences in inertial measurement unit (IMU) sensors, sampling frequency, and device latency.

• Designing features to be robust against cumulative device latency effects can help ensure measurement equivalence across operating system (OS)
platforms, OS versions, and device models.

• Objective criteria that assess whether a self-administered digital test was taken as instructed and recorded with a sufficiently high and stable
sampling frequency can help with evaluating the quality of the data collected in an unsupervised setting and, hence, informing whether the data
should be included in further analyses.

Another factor that could contribute to measurement
nonequivalence is differences in sampling frequency or sampling
frequency heterogeneity [35]. We, therefore, excluded any tests
that were recorded with either too low a sampling frequency or
with an unstable sampling frequency as the sampling frequency
can vary from test execution to execution, even with the same
device model. Nonetheless, the sampling frequency requirements
were met in most cases even if the computational load was
temporarily increased due to the simultaneous activity of other
apps installed on the participants’ own smartphone devices as
can be expected in a BYOD setting. Of the 2010 participants
considered for the analyses, only 34 participants were excluded
from the analysis for the lack of a sufficiently high and stable
sample frequency.

A third factor that could impact measurement equivalence is
device latency. For touchscreen-based tests, it was estimated
that latencies associated with displaying a new visual cue on
the screen and registering a touchscreen input by the user could
account for a variance in response time of up to 100 ms, with
Android devices tending to show higher latencies than iOS
devices [41]. We estimated that such latencies could, in the
worst case, account for a difference of up to 3 pinches on the
PT (100 ms latency per pinched tomato × an average 30.8
pinched tomatoes during a PT [Table 2] = 3.08 seconds latency
during a PT; with approximately 1 pinched tomato per second,
this cumulative latency may thus explain a difference of up to
3 successful pinches). This is comparable to the 3.1 fewer
successful pinches observed on Android devices than on iOS
devices. While other factors cannot be ruled out, it is plausible
that the difference of 3.1 successful pinches between Android
and iOS devices observed in this study could be explained by
differences in device latencies. Developing features that are not
affected by such cumulative latency effects could improve the
measurement equivalence between iOS and Android devices.
For the PT, a possible feature is a double touch asynchrony,
which was developed for other studies that deployed the
Floodlight technology as a measure of finger coordination. It
measures the duration of the gap between the first and second
fingers touching the touch screen. In a previous analysis, it was
reliable, correlated with clinician-administered measures of
upper extremity impairment and MS-related disability, and
differentiated between people with different levels of disability
[42]. Unlike the number of successful pinches, this feature is
by design not affected by cumulative latency effects as it
measures the average time between the first and second finger
touching the touch screen during a single PT.

Our study also highlighted the need for objective measures of
data quality and accordance with the test instructions. Across
the 6 active tests considered, approximately 61.9% through
99.1% of all test attempts were considered valid. A higher
proportion of tests passing the quality-check flags have been
previously reported when using less stringent criteria [33].
Ensuring that the tests are executed in accordance with their
instructions remains a challenge with fully remote digital health
studies which do not involve direct oversight of test performance
and feedback mechanisms with the participants. In-clinic visits,
for example, could be used to onboard study participants in
person and explain the tests in more detail, consequently
increasing the proportion of active tests executed in accordance
with the test instructions. In fact, we previously reported for a
separate study, which included regular clinic visits, that up to
99% of active test attempts were considered valid [15].
Furthermore, digital health studies that include clinic visits,
such as [15], are more likely than fully remote studies to enroll
participants who are more motivated. This becomes more
noticeable the longer the test duration is and the smaller the
subgroups that are compared with each other. As a result, we
implemented in this study additional quality control flags to
ensure sufficient evaluable data were collected during the 2
active tests with the longest test duration, the UTT and 2MWT
(Table 1).

Limitations
There are some limitations associated with our study. First, the
observational nature of our study in a naturalistic environment
implies that confounding factors may have affected the
comparisons despite the adjustments we performed. For instance,
we could not adjust for disease severity, as this information is
not available in this fully remote, digital-only study. This might
partially explain the larger percent differences observed in
smaller subgroups. However, given the small overall differences
among the investigated subgroups, the residual confounding
effects are plausibly small. While statistical tests did not indicate
that the measurements obtained across devices are systematically
nonequivalent, we cannot rule out that this finding may be due
to high variability, different average disease severity, or, for a
few comparisons, a small sample size. A lack of sensitivity of
the Floodlight tests, however, can be excluded as a reason for
the similarity of the results as these tests have shown the ability
to differentiate people with MS from healthy controls or between
people with MS with different levels of impairment [15,42,43].
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Second, the earlier release of the iOS version of the Floodlight
Open app has resulted in a larger number of iOS participants
compared with Android participants. Furthermore, the larger
choice of different Android device models than iOS device
models meant that there were fewer participants per Android
device model, resulting in an unbalanced data set for the
comparison of measurement equivalence by device model.

Finally, the analyses presented here are retrospective as the
study was not purposely designed to assess equivalence or
reliability. Ideally, device equivalence studies with purpose-built
study designs have each participant perform the active tests
multiple times using the same set of devices and assess
equivalence across devices using appropriate statistical tests
with prespecified equivalence margins. As an alternative,
equivalence can be assessed with bench testing using robots
able to cover the range of feature values typically observed in
the population of interest. Nonetheless, the preliminary findings
of our analyses can inform the design of future device
equivalence studies and the equivalence margins to assess
equivalence.

Comparison With Prior Work
Recent studies compared smartphone-based measurements of
gait, balance, or physical activity [44-48], cognitive functioning
[49,50], or sleep [51]. However, these studies typically
compared the smartphone-based measurements and
measurements obtained with other devices with gold-standard
measures such as manual step count [46,47] or
smartphone-based measurements with measurements obtained
with other device types [44,45,51]. This makes it challenging
to separate the potential impact arising from differences in the
device or sensor specifications from those arising from
differences in the algorithms used to extract the features. A
small number of studies assessed device equivalence using the
same feature extraction algorithm [35,49]. For example, van

Oirschot et al [49] investigated their smartphone-based Symbol
Digit Modalities Test on devices running either iOS or Android
and found no differences between the 2 OS platforms, which is
in line with our findings on the IPS. Additionally, Ena et al [52]
identified a number of features extracted from their
smartphone-based mobility tests that showed in a prospective
study reliability across iOS and Android devices.

Strengths of this remote, digital-only, unsupervised, BYOD
study include the comprehensive approach to assess
measurement equivalence across different smartphone devices.
Unlike other studies, we investigated measurement equivalence
on 3 levels by separately looking at the 2 OS platforms iOS and
Android, different iOS and Android versions, and device models.
The large sample size of 1976 study participants and the wide
range of smartphone device models (n=206) used add to the
strength of our study. Finally, we used objective measures to
ensure data quality and accordance with test instructions.

Conclusions
In this study, we investigated a key criterion for the deployment
of 6 smartphone sensor–based active tests assessing cognition,
hand motor function, and gait and balance in a BYOD setting.
Using data collected in Floodlight Open, we found no evidence
for a substantial and consistent lack of measurement equivalence
across different OS platforms, OS versions, and smartphone
device models for features derived from these active tests. These
features were largely unaffected by differences in IMU and
touchscreen sensors and were also not impacted by the activity
of other apps installed on the participants’ own smartphone
devices, as evidenced by the sufficiently high and stable
sampling frequency in a vast majority of participants. These
findings are compatible with the use of smartphone-based tests
in a BYOD setting and will inform future studies with
purpose-built study designs that will further investigate the
device equivalence properties of smartphone-based assessments.
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