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Abstract

Background: Digital biomarkers are increasingly used in clinical decision support for various health conditions. Speech features
as digital biomarkers can offer insights into underlying physiological processes due to the complexity of speech production. This
process involves respiration, phonation, articulation, and resonance, all of which rely on specific motor systems for the preparation
and execution of speech. Deficits in any of these systems can cause changes in speech signal patterns. Increasing efforts are being
made to develop speech-based clinical decision support systems.

Objective: This systematic scoping review investigated the technological revolution and recent digital clinical speech signal
analysis trends to understand the key concepts and research processes from clinical and technical perspectives.

Methods: A systematic scoping review was undertaken in 6 databases guided by a set of research questions. Articles that focused
on speech signal analysis for clinical decision-making were identified, and the included studies were analyzed quantitatively. A
narrower scope of studies investigating neurological diseases were analyzed using qualitative content analysis.

Results: A total of 389 articles met the initial eligibility criteria, of which 72 (18.5%) that focused on neurological diseases
were included in the qualitative analysis. In the included studies, Parkinson disease, Alzheimer disease, and cognitive disorders
were the most frequently investigated conditions. The literature explored the potential of speech feature analysis in diagnosis,
differentiating between, assessing the severity and monitoring the treatment of neurological conditions. The common speech
tasks used were sustained phonations, diadochokinetic tasks, reading tasks, activity-based tasks, picture descriptions, and prompted
speech tasks. From these tasks, conventional speech features (such as fundamental frequency, jitter, and shimmer), advanced
digital signal processing–based speech features (such as wavelet transformation–based features), and spectrograms in the form
of audio images were analyzed. Traditional machine learning and deep learning approaches were used to build predictive models,
whereas statistical analysis assessed variable relationships and reliability of speech features. Model evaluations primarily focused
on analytical validations. A significant research gap was identified: the need for a structured research process to guide studies
toward potential technological intervention in clinical settings. To address this, a research framework was proposed that adapts
a design science research methodology to guide research studies systematically.

Conclusions: The findings highlight how data science techniques can enhance speech signal analysis to support clinical
decision-making. By combining knowledge from clinical practice, speech science, and data science within a structured research
framework, future research may achieve greater clinical relevance.
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Introduction

Background
Clinical decision-making is key to effective patient care. It
fundamentally relies on evidence derived from validated
assessment tools. These assessments typically combine
subjective observations (ie, observable signs and patient-reported
symptoms) and objective measurements (ie, physiological
measurements [1-4], such as blood pressure and heart rate) [5].
However, these traditional assessments face inherent challenges
due to clinical feature complexity, potential clinician bias,
varying levels of expertise, and substantial instrumentation
costs.

Digital biomarkers emerge as a transformative paradigm in
clinical decision support, providing precise, objective
measurements that extend beyond traditional assessments.
Through smartphone and wearable sensors, these biomarkers
capture granular patient data previously inaccessible to
clinicians. For example, motion sensors quantify fine motor
control through typing patterns and touch screen interactions,
whereas accelerometers and gyroscopes measure gait
parameters, including stride length variability, postural sway,
and turning speed. Cognitive functions can be continuously
assessed through patterns of smart device use, including
response times, error rates, and daily activity rhythms [6].
Speech signals captured through recording instruments can
detect subtle speech variations such as changes in fundamental
frequency, rhythmic disturbances, voice quality, articulatory
precision, and prosodic features that may indicate psychiatric
conditions [7,8]. Among these emerging digital biomarkers,
speech feature measurements provide clinical insights through
a noninvasive, nonintrusive approach using low-cost smart and
wearable digital devices [9] at scale in real time and offline
modes [10,11].

Speech production is a complex task that involves the
orchestration and coordination of different body systems [12].
Deficiencies in any component of the speech production system
could manifest in speech pattern changes [13]. Therefore, these
alterations provide objective, quantifiable markers for
differential diagnosis and disease progression monitoring. They
can also provide insights into normal and pathological biological
processes [6,14]. Traditional clinical speech assessment mostly
relies on standardized tests administered by speech-language
pathologists to assess motor speech production [13,15,16] for
conditions such as traumatic brain injury, stroke [17], Parkinson
disease (PD), and multiple sclerosis (MS) [18]. In current
practices, acoustic measures and auditory perceptual judgments
[19] are typically used based on guidelines such as the Darley,
Aronson, and Brown system [20,21] in the characterization of
motor speech control deficits. Despite these approaches and
guidelines, limitations exist in these conventional procedures.
Some assessments are time-consuming, require specialized
clinical experts [22,23], and heavily rely on clinicians’

subjective perceptual judgments. This subjectivity introduces
interpretation variability [24] and challenges in maintaining
consistent interrater reliability [25,26] although there is evidence
showing consistent auditory-perceptual assessments [27]. The
environmental, physical, and emotional states of patients during
the assessments can also lead to further inconsistencies [22].

Therefore, digital speech signal analysis (hereafter referred to
as “speech analysis”) offers a promising solution through
enhanced objectivity and retest capability [22] with
reduced clinical burden and improved accuracy. Opportunities
exist in identifying specific speech features or speech patterns
related to different health conditions, including neurological
diseases [18,28]. Recent advances in artificial intelligence and
machine learning (ML) techniques further support detecting
subtle changes and fine-grained speech features that can be
related to associated health conditions [29].

There is a growing interest in investigating speech as a digital
biomarker for clinical decision support. Several studies have
explored speech analysis for clinical assessments of specific
neurological health conditions. The prosodic aspect of speech
production in PD was reviewed in the study by Moro-Velasquez
and Dehak [30], whereas Moro-Velasquez et al [31] reviewed
the articulatory and phonatory aspects. Early detection of PD
using speech features and ML was discussed in the study by
Gullapalli and Mittal [32]. Automatic speech assessment in
Alzheimer disease (AD) was reviewed in the study by Pulido
et al [33], whereas Martínez-Nicolás et al [34] included mild
cognitive impairment (MCI) as well. Both the studies by de la
Fuente Garcia et al [35] and Petti et al [36] also focused on AD
but considered language assessments in addition to speech.
Automated speech and language features were reviewed as an
indication of deficits in content organization and thought
processes considering related neurological impairments such
as AD and MCI [15]. A meta-analysis of acoustic features on
autism spectrum disorder (ASD) [37] and articulatory
impairments in neurodegenerative motor diseases [38] also
reviewed and compiled knowledge on speech signal analysis.

Objectives
Despite the growing body of research on speech analysis for
different diseases, the field lacks a comprehensive synthesis of
available studies, their approaches, and clinical applications for
neurological diseases. Therefore, in this research, we aimed to
investigate the technology revolution and trends in speech
analysis to understand the key concepts and research processes
across different neurological conditions. Our review focused
on studies that investigated the physical features of speech,
focusing on the underlying digital acoustic features instead of
the content. We aimed to review the clinical and technical
perspectives of the research process in relation to clinical
application. Given the interdisciplinary nature of the research
field and the premature stage of clinical integration, we
emphasize the importance of establishing a suitable research
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framework to guide future research. We also proposed a research
framework for speech analysis in clinical decision support
adapting a design science research process.

Methods

Overview
The review process adhered to the PRISMA-ScR (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
extension for Scoping Reviews) guidelines [39] (Multimedia
Appendix 1). We conducted a systematic scoping review
following a predefined protocol to comprehensively identify,
evaluate, and synthesize relevant literature. Our review was
guided by the following research questions:

• In which health care disciplines or for which health
conditions has speech analysis been investigated? (research
question 1)

• What types of clinical outcomes or clinical services might
be possible using speech analysis? (research question 2)
• What data science methods have been used for these

speech analyses? (research question 2.1)

No protocol was registered for this review.

Sources and Eligibility Criteria
As a part of a larger research program, we conducted a
comprehensive data collection. The review was limited to the
Scopus, IEEE Xplore, Google Scholar, MEDLINE via PubMed,
SpringerLink, and ScienceDirect databases. Textbox 1 lists the
inclusion and exclusion criteria followed during article selection.

Textbox 1. Inclusion and exclusion criteria.

Inclusion criteria

• Language: publications in English only

• Publication type: peer-reviewed journal articles and conference proceedings

• Publication period: published between January 2010 and December 2022

• Participants: human participants of any age

• Type of research: primary research

• Study characteristics:

• Carried out analysis of features of speech signals

• Used features for analysis that were language independent

• Used data science approaches to derive clinical insights on health conditions that impact speech (statistical analyses and traditional machine
learning and deep learning approaches were considered interesting data science approaches)

Exclusion criteria

• Language: non–English-language publications

• Publication type: book chapters, theses, abstracts, editorials, and gray literature

• Publication period: published before January 2010

• Participants: nonhuman participants

• Study characteristics:

• Analyzed only transcriptions or linguistics features, such as grammar and semantics

• Investigated speech signal analysis on functional and structural voice disorders

• Investigated only nonverbal audio sounds, such as breathing, coughing, crying, and snoring

• Investigated only linguistic features of speech

• Did not focus on a health care aspect (eg, the studies analyzed speech signals for emotion recognition without concerning a health condition)

Search Strategy and Study Selection
The following keywords and their synonyms were used in
building searching queries and extracting articles: “Speech,”
“Analysis,” “Health care,” “Data Science,” and “Artificial
Intelligence.” The search strategy for the databases is presented
in Multimedia Appendix 2.

The identified articles were exported to a reference management
software where duplicates were removed. We then screened

articles based on the titles and abstracts, followed by a full-text
search. After a detailed examination of the retrieved full texts,
those that met the eligibility criteria (N=389) were selected for
the quantitative analysis of the research landscape. The full texts
of articles that met the defined eligibility criteria and focused
on a neurological disease with primary data collection (72/389,
18.5%) were included in this analysis and added to NVivo
(Lumivero) [40], a qualitative data analysis software. We used
qualitative content analysis followed by a mix of deductive and
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inductive reasoning [41] to identify key concepts in speech
analysis for clinical decision support.

The details of the included research articles can be found in
Multimedia Appendix 3 [42-113].

Study Characteristics
The clinical disciplines and the yearly distribution of the overall
eligible articles (N=389) are plotted in Figure 1 to understand
the potential health care disciplines for digital clinical speech

analysis to answer our research question 1. The evaluation of
the research field was clearly evident, with an increasing number
of articles over the years. Neurological diseases attracted the
highest research interest (221/389, 56.8%), including AD, PD,
and amyotrophic lateral sclerosis (ALS). Psychiatric disorders
such as depression, bipolar disorder, and schizophrenia were
among the next most investigated disease categories (98/389,
25.2%), followed by respiratory diseases (40/389, 10.3%). The
remaining articles (30/389, 7.7%) investigated other health
conditions, such as heart disease and cancer.

Figure 1. Yearly distribution of the eligible articles (N=389) and their clinical disciplines.

Data sourcing in the studies varied across public datasets,
institutionally shared datasets, and primary data collections
(Figure 2). In this review, we focused on studies with primary
data collection as they described the full research process from

problem formulation, data collection, data analysis, and model
building to model evaluation. Therefore, the analysis of this
review considered 18.5% (72/389) of the studies, which
investigated neurological diseases using primary data collection.

Figure 2. Distribution of the eligible articles (N=389) based on their data sourcing approach.
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Results

Overview
Figure 3 presents the detailed overview of the literature search
and study selection process for this study. The qualitative
content analysis of the 18.5% (72/389) of the studies on

neurological diseases revealed the following key themes
regarding digital speech signal analysis: (1) health condition
and clinical purpose, (2) speech data (speech tasks and speech
features), (3) data science approaches and evaluations, and (4)
clinical applications. The following subsections provide details
on these themes. The details of the included research articles
can be found in Multimedia Appendix 3 [42-113].

Figure 3. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flowchart for the study screening and selection process.

Neurological Conditions and Clinical Purposes

Overview
Many neurological conditions affect the sensorimotor control
of speech movements (eg, PD) or cognitive processes,
specifically memory and language and perceptual processing
(eg, AD and MCI). While thought formulation and motor

planning are distinct in speech production [114], alterations in
motor planning can occur alongside cognitive impairments, as
discussed in various stages of AD [115]. This can cause acoustic
changes in the physical speech signal.

Among the neurological diseases, PD (40/72, 56%) was the
most investigated disorder, followed by AD and cognitive
impairment (12/72, 17%). Other investigated disorders were
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MS (5/72, 7%), ALS (4/72, 6%), mild traumatic brain injury
(mTBI; 3/72, 4%), Huntington disease (HD; 2/72, 3%), and
ASD (2/72, 3%). A total of 4 articles focused on clinical
purposes related to apathy (n=1, 25%); intellectual disability
(ID; n=1, 25%); essential tremor (ET; n=1, 25%); and a group
of central nervous system disorders (CNSDs), including HD
and PD (n=1, 25%).

Disease diagnosis, differential diagnosis, severity assessment,
and treatment monitoring were the most mentioned clinical
purposes in the studies. Figure 4 depicts the distribution of

articles with their clinical purposes according to disease
categories. Some studies (18/72, 25%) addressed multiple
clinical purposes, such as diagnosis and differential diagnosis
or diagnosis and severity assessment. Disease diagnosis was
widely researched. These studies focused on prevailing clinical
challenges such as the lack of definitive objective biomarkers,
the need for noninvasive biomarkers, challenges in
discriminating diseases with similar symptoms (differential
diagnosis), and challenges faced by vulnerable populations such
as older adults or rural populations.

Figure 4. Distribution of the main clinical purposes based on disease categories. AD: Alzheimer disease; ALS: amyotrophic lateral sclerosis; ASD:
autism spectrum disorder; HD: Huntington disease; MS: multiple sclerosis; mTBI: mild traumatic brain injury; ND: neurological disorder; PD: Parkinson
disease.

PD Results
PD was the most investigated neurological condition in the
studies (40/72, 56%). PD diagnosis, differential diagnosis,
treatment monitoring, and severity assessment were explored.
Many studies (28/40, 70%) investigated the diagnosis of PD by
discriminating parkinsonian speech compared to healthy speech
[42-69]. Several studies (3/40, 8%) carried out statistical
comparisons of speech features in healthy and PD groups
[70-72]. PD severity scores were predicted in the study by
Viswanathan and Arjunan [73] for patients with PD and healthy
controls. Early detection of PD was investigated in some studies
(4/40, 10%) [42,47,57,65], in which participants with early PD
were recruited to compare them with healthy participants. Early
and mid-aged patients with PD were recruited in the studies by
Montaña et al [65] and Wang et al [42], whereas the study by
Lim et al [47] focused on patients with early- and
advanced-stage PD according to the Hoehn and Yahr staging
scale. Patients with PD were assessed in the study by Jeancolas
et al [57] if they had been diagnosed with PD within 4 years
before the study.

Some studies (4/40, 10%) investigated discrimination of
similar-symptom diseases for differential diagnosis. For
example, the study by Song et al [44] investigated distinguishing
ataxic and hypokinetic dysarthria, which are commonly
prevalent in neurodegenerative diseases. Patients with PD and
cerebellar ataxia were considered representative cases of

diagnosis. A statistical comparison of PD speech and MS speech
was performed in the study by Vizza et al [72]. The challenge
of differential diagnosis was addressed in the studies by Das et
al [74] and Li et al [75] for atypical parkinsonian syndromes
(APS) of progressive supranuclear palsy and multiple system
atrophy.

In addition to diagnosis, the studies investigated PD severity
predictions using the Unified Parkinson’s Disease Rating Scale
(UPDRS) and Hoehn and Yahr scale. The studies by
Viswanathan and Arjunan [73] and Hemmerling and
Wojcik-Pedziwiatr [76] predicted UPDRS scores from the
speech of patients with PD considering their medication status.
Furthermore, Zhang et al [61] and Sztaho et al [67] predicted
PD severity level from speech features in relation to the UPDRS
and Hoehn and Yahr scale, respectively. The severity of PD
symptoms was assessed in the study by Tunc et al [77] through
collected speech samples at different points after taking
levodopa.

The studies analyzed the speech of patients with PD to assess
the impact of antiparkinsonian treatments on speech and voice
function. For example, Suppa et al [43] studied speech changes
during highly effective and less effective periods from levodopa
therapy for PD. PD severity using UPDRS scores was predicted
in the study by Hemmerling and Wojcik-Pedziwiatr [76] at
different time points after taking levodopa. The effects of
dopaminergic medication on speech function were investigated
in the studies by Vandana et al [78] and Jain et al [79]. The
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impact of assistive speech devices in treating speech impairment
was studied by Gaballah et al [80,81] considering these devices’
treatment capability outside the clinical facility. In these studies,
Gaballah et al [81] investigated discrimination of PD speech
and healthy speech under different environments and
amplification conditions, whereas Gaballah et al [80] predicted
the perceived voice quality of patients with PD with and without
assistive speech amplifier devices.

AD and Cognitive Impairment Results
Cognitive decline was assessed through speech analysis,
including clinical conditions such as AD, dementia, and MCI.
Dementia presents different symptoms at different severity
levels of cognitive decline. MCI represents an early stage of
cognitive decline without interference with everyday life but
can act as a transition stage between healthy aging and dementia
when it acts as preclinical AD [116]. AD can evolve over a
continuum from normal cognition to MCI due to AD, followed
by more severe AD dementia [117]. AD is identified as the most
common form of dementia [117].

The studies in this review analyzed speech at different cognitive
decline stages for diagnosis, differential diagnosis, and severity
assessment (12/72, 17%). The focus was on discriminating
impaired cognition from normal cognition. The discrimination
of patients with AD [82] and MCI [83-85] from healthy controls
was explored. Nagumo et al [85] studied differential diagnosis
with global cognitive impairment as they considered patients
with MCI, global cognitive impairment, and both forms of
cognitive decline. On the other hand, some studies (3/12, 25%)
[86-88] investigated both diagnosis and differential diagnosis
of AD compared to patients with MCI and healthy participants.
Automatic differentiation of patients with MCI and early
dementia from healthy controls was studied by Bertini et al [89].

Differential diagnosis of AD and dementia with Lewy bodies
was investigated in the study by Yamada et al [90], whereas
Sumali et al [91] worked in discriminating between patients
with depression and dementia as certain mental disorders (eg,
depression) can cause pseudodementia, a temporary decline in
mental cognition. While Al-Hameed et al [92] discriminated
speech from neurodegenerative diseases, including patients with
AD, MCI, and dementia, from speech from functional memory
disorder, König et al [93] predicted neuropsychiatric inventory
scores in a sample of patients with MCI through speech.

MS Results
MS is a chronic inflammatory disease of the central nervous
system that affects cognitive and motor functions causing motor
and sensory impairments, visual disabilities, cognitive disorders,
and speech and language deficits [118]. Different studies (5/72,
7%) investigated MS diagnosis and severity assessment through
speech analysis. Discriminating patients with MS from healthy
controls was investigated in several studies (4/5, 80%) [94-97],
whereas Fazeli et al [94] explored the relationship between
selected speech quality indexes and MS severity. Speech
analysis among patients with MS at 2 different disease stages,
in addition to comparisons of patients with MS versus healthy
patients, was conducted in the study by Vizza et al [98].

ALS Results
ALS is a progressive motor neuron disease that affects upper
and lower motor neurons in the motor cortex, the brain stem,
and the spinal cord. ALS leads to muscular weakness and
spasticity that can result in difficulties with mobility, breathing,
and motor speech production [119]. Research on speech in ALS
concentrated on identifying differential diagnoses and detecting
bulbar involvement (4/72, 6%). Differentiation of speech from
3 participant groups, including patients with ALS with and
without bulbar involvement and healthy controls, was conducted
in the study by Tena et al [99]. The studies by Illa et al [100]
and Likhachov et al [101] investigated discrimination of speech
from patients with ALS and healthy participants. The ALS
populations in both studies had shown signs of bulbar
involvement. Furthermore, Mallela et al [102] investigated the
diagnosis of ALS and differential diagnosis of ALS from PD
by including ALS patients with a range of speech dysfunction
severities.

mTBI Results
Compared to other progressive neurological diseases that occur
due to a physical or mental phenomenon originating within the
body, mTBIs or concussions are initiated when a person
experiences an external force to the head, causing some
alteration in brain function [120]. Therefore, the studies in this
review on concussion (3/72, 4%) were able to access baseline
speech recordings from highly vulnerable populations such as
athletes along with the postinjury speech and then aimed to
discriminate concussed speech from that of healthy controls
[103] and from the individuals’ healthy baseline speech [104].
Concussion detection through baseline, postconcussion, and
posthealthy speech comparison was also studied by Wall et al
[105].

HD Results
HD is a rare severe neurodegenerative disease with a known
natural history due to inheritance [106]. One study assessed the
severity of HD, whereas the other study investigated the
expression of emotions through vocal characteristics in
participants with HD and pre-HD using emotion elicitation via
speech. Riad et al [106] investigated the prediction of HD
severity scores from speech features of a sample of participants
with pre-HD and HD. Furthermore, they studied the relationship
between speech variables and striatal volumes as well. In
addition, the emotion expression capability of patients with HD
was studied through speech-based emotion recognition [107].

ASD Results
ASD is a neurodevelopmental disorder that causes difficulties
in social communication, particularly in verbal and nonverbal
communication [121]. Most people living with ASD exhibit
speech and expressive language abnormalities at different levels
[121]. The 3% (2/72) of ASD articles in this review focused on
discriminating ASD speech from healthy speech [108,109] and
estimating autism severity by predicting Autism Diagnostic
Observation Schedule scores from speech features [109]. It was
noted that comorbid conditions were present in these
populations, including attention-deficit/hyperactivity disorder
[108] and children with suspicion of ASD, such as children with
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other language or developmental delays [109], in addition to
children with typical development.

Other Neurological Disease Results
The neurological conditions that were the focus of other studies
included ET (1/72, 1%), apathy (1/72, 1%), ID (1/72, 1%), and
a broader category of CNSDs (1/72, 1%).

ET is among the most common tremor syndromes, which can
encompass voice tremor as well [122]. To complement
conventional neurological examination–based assessments,
voice tremor in patients with ET was studied by Suppa et al
[110] by discriminating the speech of patients with ET who did
and did not manifest clinically overt voice tremor. Moreover,
they discriminated between patients at baseline and after having
medical treatments [110]. Apathy is identified as a motivation
disorder that can present in several psychiatric and neurological
conditions. Discrimination between patients with and without
apathy was done in the study by König et al [111] through
speech from patients with mild to moderate neurocognitive
disorders. ID is a neurodevelopmental disease similar to ASD
that causes cognitive delays in early childhood, resulting in
delays in adaptive function, language, and speech [123]. Speech
samples from children with typical development and those with
ID were compared in the study by Aggarwal et al [112].
Lauraitis et al [113] investigated discrimination of speech
impairment in patients with early-stage CNSDs from healthy
speech. They included patients with HD, PD, cerebral palsy,
stroke, and early dementia in their CNSD population.

Speech Data

Overview
Across the 18.5% (72/389) of neurological studies, speech data
were captured through a range of speech tasks, from simple
production of sounds or words to spontaneous speech in
conversations. The characteristics of the speech tasks impact
the reliability of speech features [124]. For example, speech
quality features from continuous speech may be less reliable
compared to more structured sustained phonation tasks [124].
Therefore, speech tasks and speech features together define
speech data in clinical speech analysis [14].

Speech Tasks
Speech tasks across the 18.5% (72/389) of neurological studies
can be categorized along a continuum from highly constrained
to naturalistic speech elicitation. At the most structured end are
sustained phonations and diadochokinetic tasks. In the middle
range are reading and picture description tasks, whereas
prompted speech tasks elicit the most naturalistic speech
production.

Highly constrained tasks frequently appeared in studies of
neurological diseases. These included sustained phonation of
vowels (/a/, /e/, /i/, /o/, and /u/) and sounds such as “ah,” “eh,”
“iuh,” and “iamh.” Similarly structured were oral
diadochokinetic tasks, including alternating motion rate and
sequential motion rate tasks. Alternating motion rate tasks
require rapid repetition of a single syllable (eg, /pa/, /ta/, or
/ka/), whereas sequential motion rate tasks involve sequences
of different syllables (eg, /pa-ta-ka/).

Semistructured tasks provided a balance between control and
naturalistic speech production. Reading tasks typically included
reading a set of words, sentences, and passages. Picture
description tasks elicited spontaneous speech within a potentially
limited vocabulary set associated with the provided visual aid.
Activity-related speech included speech fluency tasks, recall
and summary tasks, and number-related tasks such as counting
and subtraction. On the other hand, prompted speech tasks
encourage more free and spontaneous speech within a guided
procedure. Monologues on own experiences, conversations
including neurological examinations, and spontaneous speech
induced by interactive questions were some examples. It was
also common for the studies to use multiple speech tasks,
combining structured and semistructured tasks. The studies used
speech tasks from culturally adapted test batteries such as
Thammasat-National Electronics and Computer Technology
Center (NECTEC)-Chula’s Thai Language and Cognition
Assessment [86].

Overall, structured speech tasks were more widely used for
neurodegenerative diseases such as PD and ALS, whereas
semistructured speech tasks were common for cognitive
impairment–related disorders such as AD, MCI, and dementia.
Textbox 2 shows the application of different types of speech
tasks in the studies with examples.
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Textbox 2. Types of speech tasks used in the included studies.

Structured tasks

• Sustained phonation tasks: the participant is asked to produce a vowel, usually with a steady pitch, for several seconds.

• Sustained vowel: /a/ for multiple sclerosis (MS) [94,95], /a/ for amyotrophic lateral sclerosis (ALS) [101], /a/ for Parkinson disease (PD)
[42,53,54,59,60,62,64,66,71,74,75,77,78], /e/ for PD [42,43,49], and /e/ for essential tremor (ET) [110]

• Group of vowels (/a/, /e/, /i/, /o/, and /u/): MS [98], ALS [99], and PD [46,55,61,72,76,79]

• Mix of phonemes and sounds: /s/, “sh,” and /f/ (ALS) [102]; continuous phonation task (intellectual disability [ID]) [112]; /a/, /o/, and /m/
(PD) [45]; /a/, /u/, and /m/ (PD) [70,73]; different sounds (“ah,” “eh,” “iuh,” and “iamh”) (PD) [51]; and /a/ and /u/ (PD) [56]

• Diadochokinetic tasks: the participant is asked to rapidly repeat alternating syllables (eg, /Pa/, /Ta/, and /Ka/) for several seconds.

• Monosyllables: /Pa/ and /Ka/ for mild traumatic brain injury (mTBI) [103]; /Pa/ and /Ta/ (PD) [55]; and /Pa/, /Ta/, and /Ka/ (PD) [52,63]

• Multisyllable sequence: /Pa-Ta-Ka/ for mTBI [103]; /Pa-Pa-Pa/, Ta-Ta-Ta/, Ka-Ka-Ka/, and Pa-Ta-Ka/ and /Ba-Da-Ga/ (ALS) [102];
/Pa-Ta-Ka/, /Pa-Ka-Ta/, /Pe-Ta-Ka/, and /Pe-Ka-Ta/ (PD) [79]; /Pa-Ta-Ka/ (PD) [65,74,75]; and /Pa-Ta-Ka/, /Pe-Ta-Ka/, and /Pa-Ka-Ta/
(PD) [52,63]

Semistructured tasks

• Reading tasks: the participant is provided with a predefined text to read out.

• Reading a set of words or sentences: set of words (MS) [94,97], set of words and sentences for mTBI [103], set of words and sentences for
ALS [100], and reading sentences (PD) [42,43,46,49,50,52,54,55,57,60,63,66]

• Reading paragraphs: reading a Czech text (MS) [96], Sport Concussion Assessment Tool, Fifth Edition reading paragraph (mTBI) [105],
read a short text from predefined poems (central nervous system disorders) [113], read sentences from a French book (Alzheimer disease
[AD]) [87], read a short passage (AD) [84], reading texts (PD) [44,52,55,57,58,63,74,79], and reading an article (PD) [47]

• Activity-based speech: The participant is asked to produce speech in response to a semistructured activity.

• Number-related tasks: digit words (mTBI) [104], counting forward and backward (Huntington disease [HD]) [106], counting [88,90] and
subtraction for AD [90], and counting for PD [44,79]

• Recall and tell: summary of a story (MS) [97], immediate recall and delayed recall of a short film (AD) [83], and imitation of the instructor’s
voice (ID) [112]

• Fluency tasks: verbal fluency task (AD) [88,90] and month-remembering task (PD) [79]

• Picture descriptions: the participant is asked to describe a visual aid presented to them.

• Picture description: cookie theft picture description [90] and picture description [86] for AD, and cookie theft picture description for PD
[52,79]

• Prompted speech tasks: the participant is asked to produce a speech with the support of speech prompts.

• Monologue: talk about the previous day (MS) [97], a monologue (ALS) [100], monologue on a given topic (PD) [63,67,74,75], talk about
positive and negative events in life (apathy) [111], talk about a positive event and negative event in life (AD) [93], and talk about the
immediate day (AD) [83]

• Clinical interviews and conversations: interviews by neuropsychologists to describe the last 24 hours and tasks to elicit emotions (HD)
[107], conversations during Autism Diagnostic Observation Schedule sessions (autism spectrum disorder) [108,109], conversations (PD)
[80,81], and neuropsychological examinations and conversations (AD) [91,92]

• Spontaneous speech: speech induced through questions (eg, on a picture, about a working day, or about a dream; AD) [89] and 1-minute
free talk with an artificial intelligence program (AD) [82]

Speech Features
The studies extracted speech features based on the characteristics
of the speech tasks. From a signal processing perspective, the
speech features included in the studies can be broadly
categorized into 3 main types: fundamental and advanced signal
processing–based speech features and audio images (Textbox
3). The primary difference between fundamental and advanced
signal processing–based speech features lies in their capacity

to correspond to phonetic aspects of speech production. This
distinction is important for understanding how these speech
features are explained from both a speech science and clinical
perspective. Being single-dimensional, both these types of
speech features are suitable candidates for statistical analyses,
traditional ML approaches, and deep neural networks (DNNs).
On the other hand, audio images, a form of multidimensional
speech representation, act as candidates for image-specialized
neural networks such as convolutional neural networks (CNNs).
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Textbox 3. Speech feature types based on signal processing perspective.

Fundamental digital signal processing–based speech features

• Mostly linear signal processing techniques

• Can be described based on signal representation dimension (eg, time domain or frequency domain)

• Can be mapped to a physiological phonetic viewpoint (eg, phonation or articulation) more straightforwardly

• Can be used to create secondary voice indexes, such as voice quality measures (eg, Dysphonia Severity Index)

Advanced digital signal processing–based speech features

• Mostly nonlinear signal processing techniques

• May not be directly mapped to a physiological phonetic viewpoint

Audio images

• 2D representation of speech signals

Speech features can be analyzed through 2 complementary
lenses: their representation dimension during speech feature
extraction and their physiological phonetic characteristics, which
are derived from the field of speech science. Speech signals can
be represented and features can be extracted in the time,
frequency, time-frequency, and cepstral domains. From the
physiological phonetic viewpoint, speech features capture
biological and anatomical aspects of speech production,
including articulation, phonation, prosody, and speech quality.
Within the studies, speech articulation was assessed through
time-domain features (eg, AMR [75], diadochokinetic rate, and
diadochokinetic period [103]), frequency-domain features (eg,
formants [42,76], Bark band energy-based features [42,54],
spectral moment, and power spectral moment [76]) as well as
cepstral domain features (eg, MFCC [42,45,54]). Similarly,
speech phonation was assessed in features from time domain
(eg, jitter, shimmer [42,45,62,73,76], amplitude and speed-based
glottic cycle features [62,73], Teager-Kaiser energy operator
based features [45,77], energy [76]), frequency domain (eg,
fundamental frequency [42,48,62,73,76], bark band
energy-based features [48], harmonic-to-noise ratio [45,73],
noise-to-harmonic ratio [45]) and cepstral domain (eg, MFCC
[48,53], linear-frequency cepstral coefficients [53], gamma-tone
cepstral coefficients [53], cepstral peak performance [73]).
Pause-based features [109] and fundamental frequency [109]
are some examples for time domain and frequency domain
features for prosody and rhythm assessment.

Different structures have been proposed for categorizing these
features. Speech features were categorized as voicing,
articulation, and prosodic features in the study by Li et al [75],
whereas Wang et al [42] grouped speech features as phonatory,
articulatory, prosodic, and cognitive-linguistic features.
Phonatory features modeled abnormal patterns in the vocal fold
vibrations, whereas articulation features captured deficits in
articulatory movements of the lips, tongue, and jaw. Prosodic
features, such as speech rate and timing, investigated
paralinguistic aspects such as emotions, whereas
cognitive-linguistic features considered vocabulary, phrase
construction, and word repetitions [42]. The domain of speech
feature representation pertains to the complexity and resource
demands for feature extraction, whereas phonetic elements relate

to speech task characteristics and the biological process involved
in speech production.

Speech features are also categorized as linear or base speech
features (eg, fundamental frequency, jitter, and shimmer) and
nonlinear features, which are mostly derived from advanced
signal processing techniques. The studies by Zhang et al [61]
and Tunc et al [77] investigated nonlinear speech features such
as correlation dimension, recurrence period density entropy,
detrended fluctuation analysis, and pitch period entropy. Tunable
Q-factor wavelet transform and empirical mode
decomposition–based speech features are some more advanced
speech features [77]. Different spectrograms, including mel
spectrograms [44,54], linear spectrograms [54], and constant-Q
transform spectrograms [54] are examples of speech image
representations assessed in the included studies.

Secondary voice indexes were another type of speech feature
available in the studies. They were indexes defined from other
primary speech features. Example measures included the
Dysphonia Severity Index, formant centralization ratio, and
vowel metrics. The Dysphonia Severity Index is calculated from
phonation time, jitter, fundamental frequency, and intensity,
whereas the latter 2 are calculated from the measures of formants
of vowels [72,94]. Some studies used standard speech feature
sets, for example, the extended Geneva Minimalistic Acoustic
Parameter Set [107], INTERSPEECH2016 Computational
Paralinguistics Challenge speech feature set [49,110], and the
emobase feature set [86]. Speech feature embeddings derived
from a deep learning (DL) approach were also a type of speech
feature representation assessed in the included studies [50,57].

Data Science Approaches

Overview
Descriptive and predictive studies were included among the
18.5% (72/389) of neurological studies. Descriptive studies
assessed the relationship between clinical variables and speech
features (eg, whether speech features are associated with a
disease or its severity), whereas predictive studies investigated
the estimation of clinical variables from speech features (eg,
predicting disease severity from speech features). Statistical
analysis was largely applied in descriptive studies, whereas
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predictions were made through traditional ML and DL
approaches.

Statistical Analysis: Relationship Between Speech
Features and Clinical Measurements
Univariate, bivariate, and multivariate analyses of speech
features were observed across the 18.5% (72/389) of
neurological studies. Univariate analyses investigated descriptive
measures and the statistical significance of speech features in
differentiating pathological and healthy groups. Descriptive
statistics of speech features within first hour and after 12 hours
of medication of PD [78] and at 2 stages of MS [98] are some
examples.

Further statistical significance tests showed the differences
between speech features, mainly between healthy and impaired
speech due to neurological health conditions. Several statistical
significance tests were applied depending on the relationship
between discriminating groups and the normality of the
variables. For example, Suppa et al [110] statistically compared
speech with and without voice tremors using the Student t test,
whereas the paired Student t test was used to compare speech

features before and after medication. To differentiate AD,
dementia with Lewy bodies, and healthy speech, Yamada et al
[90] compared speech features between groups after controlling
for medication using 1-way analyses of covariance. Both studies
explored the relationship between speech features and disease
characteristics before building predictive models. The studies
used bivariate analyses to explore the association between
speech features and clinical variables, such as the correlation
between speech measures and UPDRS scores for PD severity
[73,76,77]. The study by König et al [111] also assessed the
correlation between speech properties and the Apathy Inventory
subscales to assess the properties of apathetic speech in people
with cognitive disorders. Multivariate analysis was applied to
simultaneously explore the relationship among clinical variables,
speech features, and other confounding factors such as age and
sex. For example, Svoboda et al [96] applied multiple linear
regression of speech features, age, and sex to differentiate MS
from healthy speech.

Table 1 summarizes the statistical analysis approaches applied
in the selected studies.
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Table 1. Summary of statistical analysis approaches in the studies with examples.

ExamplesTechnique

Univariate analysis

Statistical comparison of speech
features between 2 independent
groups

• Mann-Whitney U test to compare speech features between patients with MSa and healthy groups [94]
• Kruskal-Wallis test to compare apathetic and nonapathetic speech [111]
• Independent Student t test to compare speech features between patients with MS and healthy groups

[95,98] and between patients with and without voice tremor [110]
• Kolmogorov-Smirnov 2-sample test to compare speech features in MS and healthy groups [96]

Statistical comparison of speech
features between 2 related groups

• Paired Student t test to compare the speech variables of the same patients with and without medication
[110]

Statistical comparison of speech
features among ≥3 independent
groups

• 1-way ANOVA to explore how diseased status (ADb, DLBc, and healthy) impacted speech features to
support differential diagnosis [90]

• 2-way ANOVA to examine the effects of the dementia type (AD and DLB) and disease stage (MCId and
dementia) on speech features [90]

Bivariate analysis

Statistical association between
clinical variables and speech
features

• Spearman correlation coefficient to assess the relationship between acoustic features and neurological
status for MS [94] and assess the relationship between acoustic features and Apathy Inventory subscales
[111]

• Statistical association between ADOSe score and speech features via Pearson correlation coefficient [109]

Multivariate analysis

Statistical comparison among
multiple groups considering
confounders on speech features

• Generalized linear regression to assess the statistical significance of speech features, age, and sex on
differentiating MS against healthy populations [96]

Dimensionality reduction of
speech features

• Application of principal-component analysis and observation of biplots to understand speech feature

clusters in 3 discriminative groups related to ALSf [99]

Speech feature cluster analysis • k-means clustering to unveil patterns within speech features obtained from patients with dementia and
depression [91]

aMS: multiple sclerosis.
bAD: Alzheimer disease.
cDLB: dementia with Lewy bodies.
dMCI: mild cognitive impairment.
eADOS: Autism Diagnostic Observation Schedule.
fALS: amyotrophic lateral sclerosis.

ML Approaches
The studies used traditional ML, DL, and hybrid approaches to
predict clinical variables from speech features. Disease diagnosis
was formulated as a binary classification, whereas differential
diagnosis was extended into multi-class classifications. The
severity assessment was primarily treated as a regression
problem, whereas treatment monitoring involved either
regression or classification of patients based on medication
status. Classification problems were the most commonly
addressed.

Among traditional ML classifications, the following were the
most common algorithms: support vector machine, k-nearest
neighbor, random forest, decision tree, Extreme Gradient
Boosting, multilayer perceptron, and logistic regression. Linear
regression, support vector regression, random forest regression,
and artificial neural network regression were among the
traditional ML regression techniques, for example, in Autism

Diagnostic Observation Schedule score prediction for autism
severity assessment [109] and prediction of neuropsychiatric
inventory scores [93].

DL approaches were applied as deep feature extractors and
end-to-end predictors. In deep feature extractors, DL capability
was explored in self-extracting efficient feature representations
from speech features in a supervised or unsupervised manner.
The studies retrained special DL models and built their own
models as feature extractors. Example deep speech feature
extractors included the implementation of a standard DNN in
the study by Gosztolya et al [97] and an autoencoder network
in the study by Bertini et al [89]. Regarding the development
of end-to-end DL models, recurrent neural network models and
CNNs were among the most promising ones. Different
architectures such as CNN with a modified Hybrid Mask U-Net
architecture with an adaptive custom loss function for PD
assessment [46] and bidirectional long short-term memory neural
networks [105] were implemented. Hybrid architectures such
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as CNN–long short-term memory networks [102] and
personalized convolutional recurrent neural networks [79] were
also assessed in the studies. Transfer learning was applied to
train computer vision–based approaches for clinical speech
analysis. Examples included CNN14 [44] and AlexNet-based
CNN for PD assessment [53].

There were fewer research attempts to explore DL approaches
for clinical score prediction. Autism severity score prediction
using DNN and CNN [109] and PD severity prediction using
DNN [67] were among the few examples. Table 2 summarizes
the ML and DL approaches applied in the selected studies.
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Table 2. Summary of machine learning (ML) and deep learning (DL) approaches used in the studies with examples.

ExamplesTechnique

Traditional ML: classifiers

Boosting technologies • XGBoosta for MSb diagnosis [96], ADc assessment [82], and PDd assessment [50,77]
• AdaBooste for AD and cognitive impairment assessment [86,92] and AdaBoost for PD assessment [47]
• LightGBMf for PD assessment [47,50]

KNNg • MS diagnosis [96], ALSh assessment [101], AD assessment [87], and PD assessment [42,47,51,54,58,60,67,69]

Simple feed-forward neural
networks

• MS diagnosis [96], PD assessment [54], and IDi assessment [112]
• AD assessment [86], cognitive disorder assessment [92], and PD assessment [49,51,60,61,67]

RFj • MS diagnosis [96], ALS assessment [99], and HDk assessment [107]
• ID assessment [112], AD and cognitive disorder assessment [82,83,86,92], and PD assessment [47,50,66]

SVMl • MS diagnosis [96], concussion diagnosis [104], ALS assessment [99,100,102], ASDm assessment [108], ID

assessment [112], ETn detection [110], AD and cognitive impairment assessment [83,86-88,90-92], and PD
assessment [43,45,47,49-51,53,54,58-61,63,67-69,74,75]

LRo • Concussion diagnosis [103], diagnosis of apathy [111], ALS assessment [99], AD assessment [82,86], and
PD assessment [42,47,59,61,75]

NBp • ALS assessment [99], AD and cognitive disorder assessment [83], and PD assessment [42,47,49,54,60,61]

DTq • AD assessment [87] and PD assessment [47,54]

Traditional ML: regressors

Linear regression • ASD severity prediction using multiple linear regression [109]
• NPIr score prediction using linear regression with L1 regularization [93]
• UPDRSs score prediction for PD assessment [61,76]
• HYt score prediction for PD assessment [67]

SVRu • ASD severity prediction [109]
• NPI score prediction [93]
• UPDRS score prediction for PD assessment [61,73,76]
• HY score prediction for PD assessment [67]

RF regression • UPDRS score prediction for PD assessment [73,76]

ANNsv • Prediction of speech impairment in ET [110]
• Prediction of the likelihood of speech impairment in PD [43]
• HY score prediction for PD assessment [67]

DL and hybrid models: classifiers

DNNsw • DNN+SVM model for MS diagnosis [97]
• ALS assessment [100,102]
• AD and cognitive impairment assessment [84]
• X-vector for PD assessment [57]
• DNN for PD assessment [50,67]

RNNsx • BiLSTM-Ay for concussion diagnosis [105]
• BiLSTMz for CNSDaa diagnosis [113] and PD assessment [54]

CNNsab • AlexNet-based CNN for PD assessment [53]
• CNN14 for PD assessment [44]
• CNN (modified Hybrid Mask U-Net architecture with an adaptive custom loss function) for PD assessment

[46]
• CNN (ResNet18 architecture) for PD assessment [52]
• CNN for PD assessment [54,58,63]
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ExamplesTechnique

• CNN+LSTM model for ALS assessment [102]
• CRNNad for PD assessment [79]

CNN+LSTMac

• auDeep+MLPae network for early dementia assessment [89]Autoencoder

DL and hybrid models: regressors

• ASD severity prediction [109]
• DNN regression [80]
• HY score prediction for PD assessment [67]

DNNs

• ASD severity prediction [109]CNNs

aXGBoost: Extreme Gradient Boosting.
bMS: multiple sclerosis.
cAD: Alzheimer disease.
dPD: Parkinson disease.
eAdaBoost: Adaptive Boosting.
fLightGBM: Light Gradient-Boosting Machine.
gKNN: k-nearest neighbor.
hALS: amyotrophic lateral sclerosis.
iID: intellectual disability.
jRF: random forest.
kHD: Huntington disease.
lSVM: support vector machine.
mASD: autism spectrum disorder.
nET: essential tremor.
oLR: logistic regression.
pNB: naive Bayes.
qDT: decision tree.
rNPI: neuropsychiatric inventory.
sUPDRS: Unified Parkinson’s Disease Rating Scale.
tHY: Hoehn and Yahr scale.
uSVR: support vector regression.
vANN: artificial neural network.
wDNN: deep neural network.
xRNN: recurrent neural network.
yBiLSTM-A: bidirectional long short-term memory–attention.
zBiLSTM: bidirectional long short-term memory.
aaCNSD: central nervous system disorder.
abCNN: convolutional neural network.
acLSTM: long short-term memory.
adCRNN: convolutional recurrent neural network.
aeMLP: multilayer perceptron.

Some studies (24/72, 33%) integrated multiple data science
approaches. They first applied statistical techniques to screen
and filter speech features before feeding them into ML-based
prediction models. Application of unsupervised learning
techniques was the least common, with only one study exploring
unsupervised clustering. The study applied statistical analysis,
unsupervised learning, and supervised classification to address
the classification of patients with depression and dementia based
on speech, demonstrating comprehensive use of data science
approaches in the speech analysis pipeline [91].

Model Evaluations
The analytical performance of algorithms was evaluated based
on the model’s prediction performance, generalizability,
robustness, biases, and fairness. The classification model’s
prediction performance was assessed through a set of
performance metrics, including accuracy, sensitivity, specificity,
and the area under the receiver operating characteristic curve.
In regression analysis, the root mean square error score was the
most widely reported performance metric.
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To ensure the model’s generalization and robustness,
cross-validation with speaker independence was applied to
prevent overfitting. Variations of k-fold validations were
applied, with k=5 and k=10 being the most common. In training
and testing, speaker independence maintains all speech
recordings of the same speaker only in either the training or
testing set without splitting between the 2 to avoid
overoptimistic performance from information sharing. The
studies adapted speaker-independent cross-validation strategies
with simple k-fold validation when utterance-level features were
considered. Some studies (14/72, 19%) applied leave-one-out
cross-validation to increase the training dataset, preserving
speaker independence. In this case, data from one participant
were kept for testing, whereas all remaining data were used for
model training [45,67,83,93]. When low-level speech features
such as frame-level speech features were analyzed, speech from
the same utterance was treated as a separate input, making
speaker independence challenging. To address that challenge,
Al-Hameed et al [92] applied a leave-one-group-out
cross-validation with segment-level speech features, whereas
simple k-fold validation was used with utterance-level features.

The biases and fairness of model predictions were mainly
evaluated through cross-corpus testing and confounder
assessments. There were several cross-corpus test scenarios in
the studies. Training with aged-matched groups and testing on
different age groups [91] and recruiting different training and
testing cohorts [47] were some examples of maintaining
different corpora within data collection. Moreover, the studies
combined public and private datasets from different ethnicities
and different speech tasks to improve the heterogeneity of the
sample populations [46,58,61,63,77]. Speech corpora with
different speech recording qualities were also considered
[48,52,55,57,59].

The impact of confounding factors such as age and gender were
addressed differently in the studies. Mainly, the studies used
age-matched disease and control groups in the experiments.
Meanwhile, age mismatch between diseased and healthy groups
was addressed through age correction of speech features [99].
Application of age and gender as features in their models [84,96]
as well as evaluation of model performance for each gender
was also conducted [111].

Figure 5 shows the model evaluation criteria commonly
considered in the studies.

Figure 5. Model evaluation criteria used in the studies on neurological populations. AUROC: area under the receiver operating characteristic curve;
LOGOUT: leave-one-group-out cross-validation; LOOCV: leave-one-out cross-validation; RMSE: root mean square error.

Only one study evaluated model predictions within a clinical
setting. To discriminate between ataxia and hypokinetic
dysarthria, Song et al [44] compared predictions of their artificial
intelligence models and clinical decisions from a group of
neurological resident physicians.

Clinical Applications
Several studies (6/72, 8%) extended their research into
applications in the PD, ALS, and mTBI domains. For example,

Rahman et al [50] proposed a web-based framework to record
and analyze speech for PD screening. Meanwhile, Zhang et al
[61] deployed their real-time speech analysis tool for PD
diagnosis and severity assessment within a mobile app called
No Pa for both Android and iOS. In addition, Likhachov et al
[101] created a prototype of a mobile app named ALS Expert
to assess the voice function of ALS. The studies used mobile
apps for their speech data collection to demonstrate the
feasibility of remote assessments and remote monitoring. For
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example, Vasquez-Correa et al [52] collected smartphone-based
speech data via an app called Apkinson, and Laganas et al [48]
used a mobile app named iPrognosis to collect speech data from
several countries and adopted an on-device feature extraction
process. Both studies focused on PD assessment. A lightweight
mobile app for speech data collection for mTBI assessment was
also developed in the study by Daudet et al [103] to demonstrate
the feasibility of on-device speech feature extraction,
highlighting the importance of speech analysis at resource
constraint devices to support on-field assessments.

Discussion

Principal Findings
On the basis of our review, speech analysis has emerged as a
valuable tool across neurological, psychiatric, and respiratory
diseases, with a particular focus on PD, AD, and cognitive
impairment. Research in speech analysis has spanned the
continuum of patient care, addressing diagnosis, differential
diagnosis, severity assessment, and treatment monitoring.
However, much research was conducted on diagnosing diseases
by classifying healthy and diseased populations. Prediction of
continuous clinical variables such as clinical scores was explored
through regression. Statistical analysis was applied to assess
the reliability of speech features and their relationship with
clinical variables.

However, there are several limitations in the current research
approaches to make their transition into health care settings.
Conducting in controlled settings with homogeneous
populations, typically single-ethnicity, single-center cohorts
was observed as a common limitation across the studies.
Early-stage patients—often the most challenging to
diagnose—were underrepresented, and longitudinal studies
across disease progression were scarce. However, the presence
of studies from countries such as Italy, Thailand, China, Spain,
and India with speech analysis in local languages is encouraging.
This is appealing as speech features may or may not have similar
meanings across different languages due to phonetic differences.
Therefore, speech assessments within different populations and
languages are recommended to assess the generalizability of
speech analysis to a wider population [46]. Embedding
heterogeneity into study populations and speech recordings
through cross-corpus testing, using multiple speech tasks, and
using different speech recording conditions were presented in
the studies.

The diversity in the speech tasks used and extraction of speech
features reflects both the field’s complexity and its opportunities.
The studies used multiple speech tasks as separate modalities,
ranging from highly structured exercises to naturalistic speech.
The speech tasks within the studies could largely be categorized
into reading tasks, sustained phonations, diadochokinetic tasks,
activity-related speech tasks, picture descriptions, and prompted
speech tasks. The selection of speech tasks was guided by
disease characteristics as structured speech tasks were common
for neurodegenerative diseases such as PD and ALS, whereas
semistructured speech tasks were common for cognitive
impairment–related disorders such as AD, MCI, and dementia.
Sustained vowel phonation and diadochokinetic tasks were

widely identified in the literature for their ability to represent
early signs of neurological diseases [125] and generally demand
lower cognitive demands than semistructured speech tasks such
as reading tasks. Sustained vowels can be applied across
different languages as well due to less linguistic loading related
to dialect, region, and language [126]. However, prompted
speech tasks such as monologues might be impacted by
personality traits, emotional status, sociocultural norms, and
the ability to tell stories [124]. In speech feature extraction, the
studies reported various associated parameters such as speech
frame sizes, window overlapping, audio preprocessing stages,
and signal processing algorithms, but no common format exists
to present speech feature characteristics to act as biomarkers.
When positioning speech features as a biomarker, it is
recommended to report parameters associated with
speech-processing techniques as they affect the accuracy and
robustness of acoustic measures [124]. Adhering to the
established guidelines for speech recording and analysis
[127,128] along with transparent reporting of the relevant
instrumental and computational specifications can lead to
reliable data collection and analysis. This facilitates comparisons
across studies, accelerates knowledge sharing across
interdisciplinary fields, and supports research advancement and
reproducibility.

Among data science approaches, statistical analysis approaches
were applied to assess the clinical utility of speech features, but
the exploration of unsupervised approaches was less present.
Traditional ML approaches dominated predictive studies, but
there are growing efforts in applying DL approaches with
complex network architectures, transfer learning approaches,
and audio image analysis. Although transfer learning from
computer vision to audio images was explored, there is a void
in transferring knowledge between speech analysis in different
languages. Despite their limited presence, DL implementations
encompassed end-to-end implementations, deep acoustic feature
extraction, and transfer learning, which represent the main stems
of DL approaches [129]. Among the end-to-end
implementations, CNN, long short-term memory, and hybrid
implementations were used, but it was noted that no
transformer-based neural network models were included in the
selected studies. However, recent literature provides evidence
of the application of vision transformer–based models to analyze
speech signals for neurological diseases. Differentiating PD
severity levels using sustained vowels and Swin Transformer
[130]; differentiating speech from neurological diseases,
including PD and MS, from healthy speech by retraining
Google’s Vision Transformer Base model [131]; and
differentiating PD speech from spinocerebellar degeneration
speech by retraining the Patchout faSt Spectrogram Transformer
[132] are some examples of vision-based transformers in speech
analysis. It is noteworthy to mention that exploration of
advanced DL approaches may improve the prediction
performances. Additionally, incorporating a range of data
science methods such as statistical analysis and unsupervised
learning for hypothesis development and testing, conducting
confounding factor analysis, and developing interpretable ML
models can help researchers present their findings more
interpretably and comprehensively to a wider audience.
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Model evaluations in the included studies mainly considered
analytical validations on prediction performance, generalization
and robustness, and biases and fairness. Lack of clinical
validations and narrow model assessment scopes can hinder
translating research outcomes into clinical practices in the
foreseeable future. Only a few studies (6/72, 8%) connected
their investigations to clinical supportive applications. However,
the development of applications can support further studies and
usability assessments of prospective services within clinical
and natural environments. In clinical settings, speech
assessments can be conducted following standard speech
recording protocols in optimal acoustic conditions to convey
clinical insights for decision support. Routine health
examinations might also be integrated with speech-based
assessments to provide cost-effective longitudinal evidence in
patient monitoring. Implementation of smartphone apps for
speech collection, speech analysis, or transfer of speech data to
remote clouds enables speech analysis in natural environments
to empower telemedicine platforms. Opportunities exist in using
telemedicine in neurological health care to ease the financial
and accessibility burdens, such as in the rehabilitation of brain
injuries and on-site concussion assessments [133]. Extending
research into testable applications helps researchers explore

challenges when converting research outcomes into clinical
practice. Therefore, we believe that implementing a systematic
research process leading to a clinical utility analysis could
significantly accelerate advancements in this field. To support
this, we organized the key concepts of speech analysis identified
in this review into a research framework, aiming to provide
more comprehensive guidance for future research.

Proposed Research Framework

Overview
We adapted the research process proposed in the study by
Offermann et al [134] to operationalize research in design
science. The proposed research process is structured in 3 main
phases—problem identification, solution design, and
evaluation—supporting both quantitative and qualitative
research methods [134]. To build our research framework, we
identified key activities and desired outcomes at each phase,
focusing on research using primary speech data collection. Table
3 shows the research process, including proposed activities
under each subprocess of the main stages of problem
identification, solution design, and evaluation. Expected
outcomes are proposed at each stage to guide the research
progress.
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Table 3. Proposed research framework for speech analysis for clinical assessments.

OutcomeSubprocesses and activities

Problem identification

•• Selected health conditions and clinical purposesLiterature research and expert interviews
• Identify clinical challenges of interesting health conditions • Potential clinical applications
• Characterize the speech impairment associated with the health condition through

evidence from clinical science, speech science, and empirical research
• Characteristics of speech impairment
• Research hypothesis

• Identify the problem
• Identify a research gap

• Pre-evaluate relevance
• Define the research objective
• Define research questions
• Develop a research hypothesis

Solution design

•• Study populationLiterature research
•• Participant recruitment and selectionIdentify standard clinical assessments

• Identify speech assessments associated with specific health condition or similar health
conditions • Data collection protocol

• Identify study design approaches and research techniques • Ground truth
• Identify suitable public or accessible datasets • Demographic data

• Speech tasks and speech features
• Design artifacts

• Define MLa problem for the focused clinical purpose • Data analysis
• Primary analysis to build speech feature

dataset
• Develop the study design of the research
• Carry out data collection and analysis

• Secondary analysis to assess the relation-
ship between speech features and clinical
variables

• Tertiary analysis to build predictive models

Evaluations

•• Internal validation of resultsRefine hypothesis
• Refine hypothesis based on data analysis • External validation of results

• Case study and clinical feedback
• Limitations and further improvements• Laboratory experiments

• Internal validation (evaluate predictive performance; extend evaluations beyond
predictive performance [eg, evaluate biases, fairness, and explainability])

• External validation (with public dataset if available)

• Case study and expert survey
• Case study in a clinical environment
• Qualitative feedback from clinical and speech science experts

aML: machine learning.

Problem Identification
Problem identification defines the diseases of interest, clinical
purpose, and potential clinical applications. Furthermore, it
helps characterize the speech impairment associated with the
disease to formulate research hypotheses.

As per this review’s findings, digital clinical speech analysis
addresses different clinical problems. For example, speech
features are being researched as objective biomarkers for
disorders such as AD, mTBI, and PD in cases in which a definite
biomarker is not available. Moreover, speech analysis aims to
empower the remote monitoring of patients with PD who are

mostly older adults. Speech analysis tries to differentiate
overlapping symptoms in different diseases, such as cognitive
impairments and symptoms of natural aging. Therefore,
researchers can focus on a particular health condition
considering existing clinical challenges and evidence of
associated speech impairments [114]. To explore clinical
challenges and potential speech changes from diseases, existing
literature and experiences from health care experts such as
clinicians, speech-language pathologists, and frontline health
professionals can be referred. Experiences from patients might
also be beneficial when the target end applications are
considered. Findings of this phase identify a research gap and
define research objectives and research questions. Furthermore,

J Med Internet Res 2025 | vol. 27 | e63004 | p. 19https://www.jmir.org/2025/1/e63004
(page number not for citation purposes)

De Silva et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


the researcher can qualitatively characterize speech impairments
and define research hypotheses for empirical research.

Solution Design
In the solution design phase, specific literature research on
current clinical practices and associated clinical speech
assessments is beneficial to identify the ground truth [114] and
potential speech characteristics to focus on. Study design
approaches and state-of-the-art data analysis techniques can be
used to ensure the scientific validity and novelty of the research.
Clinical problems can be mapped into a predictive modeling
problem, and an appropriate speech data collection plan can be
developed. Data collection should include patients’
demographics, assessment of health conditions through standard
clinical measures, and speech recordings. Furthermore, it should
define speech recording instances, conditions, recording
equipment, and speech tasks. Recording instances define when
to collect speech from the participants, such as before or after
medication. Recording can be done in either controlled or
uncontrolled environments based on the research objectives.
For example, if the research objective is the remote monitoring
of patients, recordings in an uncontrolled environment would
be more appropriate. Speech tasks should be carefully selected
to capture appropriate speech characteristics associated with
the health condition.

We recommend a comprehensive analysis of speech features
to conduct association analysis to clinical parameter predictions.
The data analysis workflow can be divided into three main
stages—primary analysis, secondary analysis, and tertiary
analysis—to (1) explore participant characteristics and extract
suitable speech features from speech signals, (2) examine the
relationship between speech features and clinical variables, and
(3) develop and optimize ML models to predict clinical variables
from speech features.

The primary analysis quantifies speech features from the speech
signals following appropriate audio preprocessing. Noise
reduction, down sampling, and silent period removals are some
examples of audio preprocessing steps. Different speech features
represent different aspects of speech production. For example,
energy-based speech features represent respiratory function,
whereas pitch-based features represent phonatory function. On
the basis of the anticipated speech impairment and speech task
characteristics, a set of representative speech features could be
extracted. The secondary analysis then encompasses the
relationship between speech features and clinical variables
through descriptive statistics, statistical comparisons, association
mining, and unsupervised data explorations.

In tertiary analysis, research can exploit speech variability within
diseases to build predictive models, typically through
classification or regression. Insights derived from secondary
analysis can be integrated into predictive model building through
feature selection and patient clustering. In addition, the impact
of confounding factors such as age and gender should be
considered when developing predictive models.
Algorithm-dependent advanced ML strategies such as feature
selection, data augmentation, and transfer learning can be
explored to improve model predictions.

Evaluation
Once the solution has reached a satisfactory state, the evaluation
of the proposed solutions or approaches is recommended [134].
During evaluations, the hypothesis can be refined to a more
precise level based on the data analysis. For example, data
analysis might highlight speech impairments in a particular
dimension of speech production, such as phonation or
articulation, or a particular stage of disease. Therefore, specific
hypotheses can lead to detailed insights. Moving forward,
internal validations should extend to different dimensions of
model performance, and evaluations can include surveys and
case studies for clinical utility assessments.

Through a set of comprehensive experiments and evaluation
metrics, internal validations should extend beyond prediction
performance to include assessments of biases and fairness,
reliability, and explainability of predictions to address challenges
that persist in speech analysis [28]. With the aid of publicly
available datasets or, if feasible, with external cohorts, external
validation of predictions can be conducted. Few case studies
can be carried out in a clinical environment to present model
assessments to clinical experts and obtain their feedback on
model usability.

Finally, study results can be presented including experimental
results for internal validations, external validations, and feedback
from expert observations. We believe that the research outputs
will be more competent and thorough and contribute
to long-term research directions, extending the short-term results
of the specific research scope.

Limitations
We acknowledge that our research study has certain limitations.
Among the eligible studies, we reviewed only 72 articles in the
neurological domain. Although we considered only
content-independent speech analysis, content analysis can also
be relevant for certain clinical conditions. Furthermore, our
main findings were synthesized from studies that conducted
primary speech data collection. Nonetheless, studies on other
clinical disciplines and studies that used publicly available
datasets also contribute to the advances in the field. We confined
the main concepts to diseases, clinical outcomes, speech tasks,
speech features, data science approaches, evaluations, and
clinical applications. The highly technical and
algorithm-dependent speech feature extraction and feature
selection methods were not covered in this review. However,
such factors also remain crucial in speech analysis.

Conclusions
This review discussed the main concepts within the growing
research field of speech analysis for clinical decision support.
The principal findings were presented from both clinical and
technical perspectives. The clinical context was addressed
through diseases, clinical purposes, and clinical applications,
whereas technical aspects were addressed through speech tasks,
speech features, data science approaches, and model evaluations.

The main contribution of this research can be summarized as
(1) carrying out a comprehensive and extensive systematic
scoping literature review followed by qualitative content analysis
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on digital clinical speech analysis and (2) presenting a research
framework on speech analysis for clinical decision support.

The findings of this research reflect the potential of speech
analysis for clinical decision-making and the contribution of
data science approaches. Among clinical disciplines,
neurological diseases have gained major interest, with PD being
the most popular. Interestingly, research efforts are expanding
beyond English-speaking populations, but more studies
including less represented ethnicities and languages are much
warranted. The lack of longitudinal studies also remains as a
research gap. Designing experiments to address challenging
clinical decision scenarios such as prognosis or early detection
might be more appealing for clinical environments. Moreover,
given the technical differences in speech features, an

interpretable presentation of speech features as a digital
biomarker would accelerate research progression and
reproducibility. Integration of different data science techniques,
including statistical analysis and unsupervised and supervised
learning, can make data analysis more comprehensive and
interpretable. Model evaluations should expand beyond
analytical validations and include more comprehensive
evaluations, including clinical utility assessments.

On the basis of the findings of this study, we proposed a research
framework for primary research on speech analysis for clinical
decision support. We encourage studies to adhere to design
science research methodology by integrating both quantitative
and qualitative research methods.
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