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Abstract

Background: Persistent sepsis-associated acute kidney injury (SA-AKI) shows poor clinical outcomes and remains a therapeutic
challenge for clinicians. Early identification and prediction of persistent SA-AKI are crucial.

Objective: The aim of this study was to develop and validate an interpretable machine learning (ML) model that predicts
persistent SA-AKI and to compare its diagnostic performance with that of C-C motif chemokine ligand 14 (CCL14) in a prospective
cohort.

Methods: The study used 4 retrospective cohorts and 1 prospective cohort for model derivation and validation. The derivation
cohort used the MIMIC-IV database, which was randomly split into 2 parts (80% for model construction and 20% for internal
validation). External validation was conducted using subsets of the MIMIC-III dataset and e-ICU dataset, and retrospective cohorts
from the intensive care unit (ICU) of Northern Jiangsu People’s Hospital. Prospective data from the same ICU were used for
validation and comparison with urinary CCL14 biomarker measurements. Acute kidney injury (AKI) was defined based on serum
creatinine and urine output, using the Kidney Disease: Improving Global Outcomes (KDIGO) criteria. Routine clinical data within
the first 24 hours of ICU admission were collected, and 8 ML algorithms were used to construct the prediction model. Multiple
evaluation metrics, including area under the receiver operating characteristic curve (AUC), were used to compare predictive
performance. Feature importance was ranked using Shapley Additive Explanations (SHAP), and the final model was explained
accordingly. In addition, the model was developed into a web-based application using the Streamlit framework to facilitate its
clinical application.

Results: A total of 46,097 patients with sepsis from multiple cohorts were enrolled for analysis. Among 17,928 patients with
sepsis in the derivation cohort, 8081 patients (45.1%) showed progression to persistent SA-AKI. Among the 8 ML models, the
gradient boosting machine (GBM) model demonstrated superior discriminative ability. Following feature importance ranking, a
final interpretable GBM model comprising 12 features (AKI stage, ΔCreatinine, urine output, furosemide dose, BMI, Sequential
Organ Failure Assessment score, kidney replacement therapy, mechanical ventilation, lactate, blood urea nitrogen, prothrombin
time, and age) was established. The final model accurately predicted the occurrence of persistent SA-AKI in both internal
(AUC=0.870) and external validation cohorts (MIMIC-III subset: AUC=0.891; e-ICU dataset: AUC=0.932; Northern Jiangsu
People’s Hospital retrospective cohort: AUC=0.983). In the prospective cohort, the GBM model outperformed urinary CCL14

J Med Internet Res 2025 | vol. 27 | e62932 | p. 1https://www.jmir.org/2025/1/e62932
(page number not for citation purposes)

Jiang et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

mailto:zhengruiqiang2021@163.com
http://www.w3.org/Style/XSL
http://www.renderx.com/


in predicting persistent SA-AKI (GBM AUC=0.852 vs CCL14 AUC=0.821). The model has been transformed into an online
clinical tool to facilitate its application in clinical settings.

Conclusions: The interpretable GBM model was shown to successfully and accurately predict the occurrence of persistent
SA-AKI, demonstrating good predictive ability in both internal and external validation cohorts. Furthermore, the model was
demonstrated to outperform the biomarker CCL14 in prospective cohort validation.

(J Med Internet Res 2025;27:e62932) doi: 10.2196/62932

KEYWORDS

sepsis; persistent acute kidney injury; machine learning; prediction model; Shapley Additive Explanations

Introduction

Acute kidney injury (AKI) is a common and severe complication
in critically ill patients, with sepsis being the most frequent
cause [1]. AKI occurring within 7 days after the onset of sepsis
is defined as sepsis-associated AKI (SA-AKI) [2]. Studies have
estimated that 68% of patients with sepsis present with AKI on
admission, 40% present with severe AKI, and 27% require
subsequent kidney replacement therapy (KRT) during their
intensive care unit (ICU) stay [3]. The development of SA-AKI
correlates significantly with higher mortality rates and an
increased risk of chronic kidney disease (CKD) [4,5].

SA-AKI is a complex clinical syndrome, and depending on
interactions between genotypes and exposures, SA-AKI can
lead to various clinical phenotypes. This heterogeneity
complicates efficacy assessments in clinical trials of sepsis
interventions because different treatments may only be beneficial
for specific disease subtypes [2]. Recently, the Acute Disease
Quality Initiative (ADQI) 16 Workgroup suggested that AKI
be classified as transient (complete reversal of AKI within 48
hours) or persistent (continuance of AKI beyond 48 hours) [6].
Compared to transient AKI, persistent AKI is associated with
ongoing host response dysregulation and adverse outcomes in
critically ill patients with sepsis [7].

Early identification of persistent AKI has significant
implications for risk stratification and individualized treatment.
First, the duration of AKI closely relates to patient prognosis
and the risk of end-stage renal failure. Recent evidence shows
that two-thirds of all cases recover kidney function within 3 to
7 days, while those with persistent conditions show significantly
reduced survival rates after 1 year [8]. Additionally, continued
presence also increases the risk of CKD [9]. Early recognition
and proactive intervention could potentially influence
progression toward CKD. Second, the duration of AKI is closely
related to the need for KRT. Studies have shown that some
patients may benefit from starting KRT earlier, while others
might not require it at all, as they can quickly recover kidney
function [10]. Therefore, predicting the short-term reversibility
of AKI could help assess the potential need for KRT and
determine the optimal timing for its initiation.

However, due to complex mechanisms potentially co-existing
in SA-AKI pathophysiology, including circulatory dysfunction,
inflammatory response, mitochondrial dysfunction, and
metabolic reprogramming [1], the single-method diagnosis of
persistent SA-AKI has limited effectiveness. Traditional urinary
indicators and renal ultrasound markers reportedly play limited

roles in distinguishing between transient and persistent AKI
[11-14]. Furthermore, most biomarkers assessing functional or
injury value perform poorly in predicting persistent AKI [15-18],
while others still require further clinical validation [19,20], with
none currently approved for clinical use. There remains a lack
of effective methods for rapidly identifying potential cases of
persistent SA-AKI.

In recent years, machine learning (ML) methods derived from
electronic medical records (EMRs) have gained attention and
recognition among clinicians. The widespread application of
EMRs within hospitals has made patient data collection more
accurate and convenient. Currently, some studies suggest that
predictive models built using ML methods are promising
assessment tools for AKI [21-26]. Although these models
demonstrate high diagnostic performance, they do not
differentiate between clinical subtypes, which limits their
guidance on personalized treatment strategies. Additionally,
ML models remain difficult to interpret directly, presenting
what is known as the “black box” problem, which limits their
application by clinicians. The study by Jiang et al [27] used an
ML method to build a predictive model, but they did not target
patients with sepsis, and the model was not externally validated.

In our study, we developed an interpretable ML model in 4
retrospective cohorts and 1 prospective cohort, aimed at early
and accurate prediction of persistent sepsis-associated AKI. We
elucidated the importance of characterization and interpreted
the model using the Shapley Additive Explanations (SHAP)
method while comparing it to an existing biomarker, C-C motif
chemokine ligand 14 (CCL14), which has high diagnostic
performance.

Methods

Data Source and Study Population
The derivation cohort and internal validation cohort originated
from the MIMIC-IV database. The MIMIC-IV database is a
publicly available multiparameter intensive care database
provided by Massachusetts Institute of Technology (MIT) [28].
It includes critically ill patients admitted to the ICU at Beth
Israel Deaconess Medical Center in Boston, Massachusetts,
from 2008 to 2019.

The datasets used for external validation include the MIMIC-III
dataset, the e-ICU dataset, and 2 cohorts of patients admitted
to the ICU of Northern Jiangsu People’s Hospital. The external
validation cohort 1 is a subset of the MIMIC-III dataset. The
MIMIC-III database is a publicly available multiparameter
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intensive care database provided by MIT. It includes critically
ill patients admitted to the ICU at Beth Israel Deaconess Medical
Center in Boston, Massachusetts, from 2008 to 2012 [29].
Considering that the MIMIC-III dataset and the MIMIC-IV
dataset have overlapping sections, we only included the
population from this dataset between 2001 and 2008. The
external validation cohort 2 consists of patients with sepsis from
the e-ICU database. The e-ICU Collaborative Research Database
is a multicenter database comprising deidentified health data
associated with over 200,000 admissions to ICUs across the
United States between 2014 and 2015. The database includes
vital sign measurements, care plan documentation, severity of
illness measures, diagnosis information, and treatment
information. Data are collected through the Philips e-ICU
program, a critical care telehealth program that delivers
information to caregivers at the bedside [30]. The external
validation cohort 3 is a retrospective cohort of patients admitted
to the ICU at Northern Jiangsu People’s Hospital from October
2021 to January 2023. The external validation cohort 4 is a
prospective cohort of patients admitted to the ICU at Northern
Jiangsu People’s Hospital from October 2023 to March 2024,
where urine samples were collected upon their admission and
CCL14 levels were measured using enzyme-linked
immunosorbent assay (ELISA) kits.

The development and validation cohorts adopted identical
inclusion and exclusion criteria. We included adult patients who
developed sepsis after their first admission to the ICU and
excluded those with stage 4-5 CKD.

Ethical Considerations
Some of the data in this study are based on a third-party
anonymous public database, for which we have already obtained
approval from the Institutional Review Board (approval number:
54780440). Therefore, this portion of data does not require
ethical review. In order to access this database, we completed
an online training course and examination for protecting human
research participants provided by the US National Institutes of
Health (ID number: 54780440). The data collected by the ICU
at Northern Jiangsu People’s Hospital have been approved by
its Ethics Committee (ID number: 2021ky230) and registered
on the China Clinical Trial Registration Platform (registration
number: ChiCTR2100050540).

Primary Outcomes and Definitions
The study outcome was the occurrence of persistent SA-AKI.
Persistent SA-AKI was defined as the development of SA-AKI
upon admission to the ICU and its duration exceeding 48 hours.
Patients who died or started KRT within 48 hours after
developing SA-AKI were also considered to have persistent
SA-AKI [6].

According to the definition of Sepsis-3, we identified patients
with confirmed or suspected infection and a Sequential Organ
Failure Assessment (SOFA) score increase of 2 or more [31].
We determined the clinician’s recognition of suspected infection
through two simultaneous events in the EHRs: (1) prescription
of antibiotics and (2) ordering specific fluid cultures. These 2
events need to occur within a specific time frame, and there are
2 options. In option 1, fluid culture is performed first, and

antibiotic use must be initiated within 72 hours. In option 2,
antibiotics are administered first, and fluid culture must be
completed within 24 hours. We excluded all antibiotics given
as a single dose in the operating room. We also excluded
antibiotics that were not accompanied by fluid cultures. We
assumed a SOFA score of 0 prior to ICU admission. If individual
components of SOFA were missing, no contribution was made
to the total score [32]. The daily total SOFA scores were
calculated, and an increase of 2 points within 24 hours was
considered abnormal [33]. Considering difficulties in
interpreting the neurological SOFA score when sedation therapy
is being concurrently administered, it was not included in the
overall scoring category [34].

The diagnostic criteria for AKI follow the Kidney Disease:
Improving Global Outcomes (KDIGO) standards. The criteria
were as follows: an increase in serum creatinine (sCr) exceeding
26.5 μmol/L (0.3 mg/dL) within 48 hours; an increase in sCr
by more than 50% from baseline, lasting for 7 days; and urine
output less than 0.5 mL/(kg·h), lasting for more than 6 hours
[35]. Baseline sCr was defined as the lowest sCr value during
7 days before ICU admission [36,37]. When preadmission sCr
was not available, baseline creatinine was estimated using the
MDRD (Modification of Diet in Renal Disease) equation by
back calculation from an estimated glomerular filtration rate

(GFR) of 75 mL/min/1.73 m2 [38]. Urine-based or
creatinine-based criteria, or a combination of both criteria were
used to determine if a patient meets the KDIGO AKI criteria.

After determining sepsis and AKI separately, we applied the
definition of SA-AKI from the ADQI 28 Working Group. We
compared the diagnosis day of sepsis with the diagnosis day of
AKI. If AKI occurred within 1-7 days after the diagnosis of
sepsis, patients were considered to have SA-AKI according to
the ADQI criteria [2]. If AKI occurred before sepsis, patients
did not meet the definition of SA-AKI.

Data Collection and Processing
We used demographic characteristics, vital sign measurements,
and laboratory data collected within the first day of ICU
admission to identify features and construct a predictive model
(Multimedia Appendix 1). All data were sourced from EMRs.
Due to potential multicollinearity among features that could
affect prediction accuracy, any feature showing high correlation
(correlation coefficient >0.6) with another in Spearman
correlation analysis was removed if it had less relevance to the
outcome (Multimedia Appendix 2). Additionally, we excluded
any feature missing more than 30% of its values in subsequent
analyses to minimize bias due to missing data. To normalize
the data, we used the StandardScaler z-score normalization
function. To process categorical features, we used label
encoding. Given the large number of categorical variables in
our dataset, label encoding was chosen over one-hot encoding
to mitigate the dimensionality expansion problem and thereby
improve computational efficiency.

Finally, we developed our predictive model using 58 features,
including age, gender, BMI, maximum heart rate, minimum
mean arterial pressure, maximum respiratory rate, highest
temperature, maximum blood glucose level, AKI stage, 24-hour
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creatinine change, medical history (hypertension, diabetes,
coronary heart disease, CKD, chronic heart failure, chronic liver
disease, chronic cardiac disease, and chronic obstructive
pulmonary disease), source of infection (pulmonary infection,
blood infection, urinary tract infection, abdominal infection,
skin infection, and others), interventional treatment (use of
mechanical ventilation, KRT, diuretics, statins,
angiotensin-converting enzyme inhibitors/angiotensin receptor
blockers, aminoglycoside antibiotics, glycopeptide antibiotics,
nonsteroidal anti-inflammatory drugs, and acyclovir antiviral
drugs), furosemide dosage, urine output, maximum pH value,
maximum lactate value, 24-hour lactate clearance rate, minimum
arterial oxygen tension value (PaO2), 24-hour oxygen tension
change value, maximum carbon dioxide partial pressure (PCO2),
24-hour carbon dioxide partial pressure change, maximum base
excess, maximum white blood cell count, maximum platelet
count, minimum red blood cell count, mean corpuscular volume,
mean corpuscular hemoglobin concentration, bicarbonate
(HCO3–), maximum potassium (K+), maximum sodium (Na+),
maximum chloride (Cl–), maximum calcium (Ca+), maximum
activated partial thromboplastin time, maximum prothrombin
time (PT), maximum blood urea nitrogen (BUN), Glasgow
Coma Scale score, and SOFA score.

For the prospective cohort, patients suspected of sepsis or
diagnosed with sepsis upon ICU admission had 10 mL of urine
collected. The sample was then centrifuged at 3000 rpm for 5
minutes and left to stand for 30 minutes before the supernatant
was collected and stored at ≤–70 °C for subsequent analysis.
Urinary CCL14 levels were measured using an ELISA kit
(Conlon Bioproducts; detection instrument: Rayto RT-6100
microplate reader). Operators were blinded to the experimental
research content and strictly adhered to the instructions provided
with the kit.

Model Development and Comparison
The development cohort originated from MIMIC-IV, and it was
randomly divided into an 80% training cohort and a 20%
validation cohort (internal validation). Ten-fold cross-validation
was used for the 80% training set to ensure generalizability. In
addition, an external dataset was used for testing (external
validation).

The predictive model was developed using 58 features included
in the data. Missing data were handled using multiple imputation
[39], and the proportion of missing data for each variable can
be found in Multimedia Appendix 1. Eight ML models were
used to predict persistent SA-AKI, including artificial neural
network (ANN), decision tree (DT), gradient boosting machine
(GBM), K-nearest neighbor (KNN), logistic regression,
categorical boosting (CatBoost), support vector machine (SVM),
and extreme gradient boosting (XGBoost). For optimizing the
prediction models, Bayesian optimization combined with manual
fine-tuning was employed to obtain the final hyperparameters.

To assess the reliability of these models, several commonly
used evaluation metrics were adopted, such as area under the
receiver operating characteristic curve (AUC), sensitivity,
specificity, positive predictive value, negative predictive value,
accuracy, and F1-score.

Feature Selection and Model Explanation
Interpreting ML models correctly often poses challenges. The
SHAP method is a technique that can rank the importance of
input features and explain the results of predictive models, and
it is commonly used to overcome the “black box” problem in
ML [39]. By using SHAP values to assist in feature selection,
we reduced the number of features in the predictive model from
58 to 3 based on their importance ranking. We then selected for
further analysis the final model with optimal predictive ability
during this reduction process. Using the DeLong nonparametric
method, we compared differences between AUCs and gradually
decreased the number of features in our chosen ML model until
there was a significant drop in the AUC.

The SHAP method provides both global and local interpretations
for models. Global interpretation offers consistent and accurate
attribution values for each feature within a model, demonstrating
correlations between input features and persistent SA-AKI.
Local interpretation allows specific predictions for individual
populations by entering particular data.

Web Page Deployment Tool Based on the Streamlit
Framework
To facilitate the application of this model in a clinical setting,
the final prediction model was implemented into a web
application built on a Python framework based on Streamlit.
When provided with corresponding feature values in the final
model, the application can return the probability of persistent
SA-AKI.

Statistical Analysis
Data analysis was conducted using Python 3.9.18 and R 4.2.2
(R Project). Continuous variables with a nonnormal distribution
were represented by the median of the IQR and compared using
the Mann-Whitney U test or Kruskal-Wallis H test. Categorical
variables were expressed in percentages and compared using
the chi-square test or Fisher exact test. Analysis of covariance
was used to adjust for confounding factors. We used AUC to
assess predictive ability and established optimal cutoff values
by maximizing the Youden index (sensitivity + specificity – 1).
A 2-tailed P value <.05 was considered statistically significant.

Results

Patient Characteristics
A total of 17,928 patients with sepsis were included in the
MIMIC-IV cohort for predictive model construction. According
to the Sepsis-3 criteria, a total of 31,214 patients with sepsis
were included in the MIMIC-IV dataset. After excluding 6798
cases with repeated ICU admissions, 1544 cases of stage 4-5
CKD, 4972 cases where AKI occurred before or after 7 days of
sepsis onset, and 2 cases of severe data absence, a total of 17,928
patients were analyzed, including those with persistent SA-AKI
(n=8081) and those with nonpersistent SA-AKI (n=9847). Out
of these patients, 14,342 (80%) were allocated to the validation
cohort, while the remaining 3568 (20%) were allocated to the
internal validation set. Moreover, the external validation cohort
dataset, including the MIMIC-III subset and the e-ICU dataset,
used the same exclusion criteria as the MIMIC-IV dataset, with
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4272 and 23,791 patients, respectively, being enrolled after the
exclusion of patients meeting the exclusion criteria. The
Northern Jiangsu People’s Hospital retrospective cohort included
114 patients with sepsis, out of which 8 patients with stage 4-5
CKD were excluded, leaving 106 patients. Furthermore, a
prospective cohort at Northern Jiangsu People’s Hospital
collected 51 cases, out of which 6 patients with stage 4-5 CKD
were excluded, resulting in 45 cases for analysis. Comparisons
between the training set, internal verification set, and external
verification set regarding demographic statistics and clinical

variables can be seen in Multimedia Appendix 3. Detailed
information about the research design is available in Figure 1.

Out of the 17,928 patients with sepsis in the derived cohort,
8081 (45.1%) showed progression to persistent SA-AKI,
including 2299 who met the AKI stage 1 criteria, 4545 who met
the AKI stage 2 criteria, and 1237 who met the AKI stage 3
criteria. Comparison of the demographic and clinical
characteristics between patients with nonpersistent SA-AKI and
those with persistent SA-AKI can be found in Table 1.
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Figure 1. Study flowchart. AKI: acute kidney injury; CCL14: C-C motif chemokine ligand 14; CKD: chronic kidney disease; GBM: gradient boosting
machine; ICU: intensive care unit; ML: machine learning; SA-AKI: sepsis-associated acute kidney injury; SHAP: Shapley Additive Explanations.
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Table 1. Comparison of the demographic and clinical characteristics and outcomes between patients with persistent sepsis-associated acute kidney
injury and those with nonpersistent sepsis-associated acute kidney injury.

Overall PPersistent SA-AKI (N=8081)Nonpersistent SA-AKIa (N=9847)Variable

<.001AKIb >stage, n (%)

0 (0.0)5421 (55.1)0

2299 (28.4)2161 (21.9)1

4545 (56.2)2117 (21.5)2

1237 (15.3)148 (1.5)3

<.00128.9 (25.0 to 34.0)26.6 (23.2 to 30.5)BMI (kg/m2), median (IQR)

.114741 (58.7)5658 (57.5)Gender (male), n (%)

Comorbidities, n (%)

<.0013873 (47.9)4363 (44.3)Hypertension

<.0012486 (30.8)2547 (25.9)Diabetes

<.0012864 (35.4)2598 (26.4)Coronary atherosclerosis

<.0011398 (17.3)1307 (13.3)Chronic kidney disease

<.0012650 (32.8)2014 (20.5)Chronic heart failure

<.001851 (10.5)815 (8.3)Chronic liver disease

<.0011351 (16.7)1354 (13.8)COPDc

Infection sources, n (%)

<.0013487 (43.2)3575 (36.3)Lung infection

.571078 (13.3)1284 (13.0)Intestinal infection

<.001688 (8.5)475 (4.8)Catheter-related infection

.711507 (18.6)1814 (18.4)Urinary system infection

.75375 (4.6)468 (4.8)Skin infection

Severity scale, median (IQR)

<.00115.0 (13.0 to 15.0)15.0 (13.0 to 15.0)GCSd score

<.0016.00 (4.00 to 9.00)4.00 (3.00 to 6.00)SOFAe score

Vital signs, median (IQR)

.01104.0 (91.0 to 119.0)103.0 (91.0 to 117.0)HRf_max (beats/min)

<.00157.0 (50.0 to 62.0)59.0 (52.0 to 65.0)MAPg_min (mmHg)

<.00128.0 (24.0 to 32.0)27.0 (24.0 to 31.0)RRh_max (times/min)

.0137.4 (37.0 to 37.9)37.4 (37.0 to 37.9)Temperature_max (°C)

Laboratory findings, median (IQR)

<.00175.0 (46.0 to 100.0)84.8 (56.0 to 109.0)PaO2_min (mmHg)

<.001–42.00 (–146.00 to 5.00)–56.00 (–128.42 to –10.98)ΔPaO2 (mmHg)

<.00147.0 (42.0 to 54.0)44.8 (40.0 to 50.0)PCO2_max (mmHg)

<.001–1.00 (–4.77 to 2.00)–0.57 (–2.43 to 1.21)ΔPCO2 (mmHg)

<.0017.32 (7.25 to 7.37)7.34 (7.29 to 7.38)PHi_min

<.0012.40 (1.60 to 3.60)2.01 (1.40 to 2.90)Lactate_max (mmol/L)

<.0010.08 (–0.03 to 0.22)0.10 (0.01 to 0.19)Lactate clearance rate

.0030.13 (–1.00 to 3.00)0.00 (–1.00 to 2.00)BEj_max (mmol/L)

<.001173.0 (140.0 to 220.0)160.0 (127.0 to 202.0)Glucose_max (mg/dL)
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Overall PPersistent SA-AKI (N=8081)Nonpersistent SA-AKIa (N=9847)Variable

<.00123.0 (16.0 to 34.0)19.0 (13.0 to 29.0)BUNk_max (mmol/L)

<.00114.3 (10.3 to 19.4)13.3 (9.5 to 17.8)WBCl_max (k/μL)

.04197.0 (144.0 to 267.0)200.0 (146.0 to 270.0)Platelets_max (k/μL)

<.0013.23 (2.76 to 3.78)3.33 (2.85 to 3.82)RBCm_min (k/μL)

<.00132.5 (31.4 to 33.6)32.9 (31.8 to 33.9)MCHCn_min (g/dL)

<.00190.0 (86.0 to 94.0)90.0 (86.0 to 94.0)MCVo_min (fL)

<.00114.8 (13.8 to 16.5)14.5 (13.5 to 15.9)RDWp_max (%)

.0028.45 (8.10 to 8.90)8.40 (8.00 to 8.90)Calcium_max (mEq/L)

<.0014.50 (4.10 to 5.00)4.40 (4.00 to 4.80)Potassium_max (mEq/L)

.22107.0 (103.0 to 111.0)107.0 (104.0 to 111.0)Chloride_max (mEq/L)

<.00116.0 (13.0 to 19.0)15.0 (13.0 to 18.0)Anion gap_max (mmol/L)

<.00115.5 (13.5 to 18.9)14.5 (12.9 to 16.7)PTq_max (seconds)

<.00134.6 (29.4 to 46.6)31.9 (28.0 to 38.4)APTTr_max (seconds)

Intervention

<.001522 (6.5)48 (0.5)KRTs, n (%)

<.0015263 (65.1)4492 (45.6)MVt, n (%)

<.0012406 (29.8)1806 (18.3)Norepinephrine, n (%)

<.0013053 (37.8)2556 (26.0)Diuretic, n (%)

<.0010.00 (0.00 to 20.00)0.00 (0.00 to 0.00)Furosemide dose (mg), median (IQR)

<.0013166 (39.2)3258 (33.1)Statin, n (%)

.18758 (9.4)866 (8.8)ACEI/ARBu, n (%)

.22252 (3.1)275 (2.8)Aminoglycoside, n (%)

<.0014672 (57.8)5355 (54.4)Glycopeptide, n (%)

<.0013710 (45.9)3643 (37.0)NSAIDv, n (%)

<.001264 (3.3)457 (4.6)Acyclovir, n (%)

<.0013547 (1131 to 6362)2333 (470 to 4744)Fluid balance, median (IQR)

<.0011345 (805 to 2015)1910 (1300 to 2754)Urine output, median (IQR)

Outcome

<.0013.79 (1.86 to 7.18)1.99 (1.23 to 3.26)Length of stay (days), median (IQR)
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Overall PPersistent SA-AKI (N=8081)Nonpersistent SA-AKIa (N=9847)Variable

<.0011326 (16.4)277 (2.8)ICUw mortality, n (%)

aSA-AKI: sepsis-associated acute kidney injury.
bAKI: acute kidney injury.
cCOPD: chronic obstructive pulmonary disease.
dGCS: Glasgow Coma Scale.
eSOFA: Sequential Organ Failure Assessment.
fHR: heart rate.
gMAP: mean arterial pressure.
hRR: respiratory rate.
iPH: potential of hydrogen.
jBE: base excess.
kBUN: blood urea nitrogen.
lWBC: white blood cell.
mRBC: red blood cell.
nMCHC: mean corpuscular hemoglobin concentration.
oMCV: mean corpuscular volume.
pRDW: red blood cell distribution width.
qPT: prothrombin time.
rAPTT: activated partial thromboplastin time.
sKRT: kidney replacement therapy.
tMV: mechanical ventilation.
uACEI/ARB: angiotensin-converting enzyme inhibitor/angiotensin receptor blocker.
vNSAID: nonsteroidal anti-inflammatory drug.
wICU: intensive care unit.

Model Development and Performance Comparison
Eight ML models were generated using clinical data collected
within 24 hours after admission to the ICU in order to predict
whether patients with sepsis would develop persistent SA-AKI
during this period. Among these 8 models, the GBM model
(AUC=0.872) had the best predictive performance for persistent
SA-AKI, followed by the CatBoost model (AUC=0.870) and
XGBoost model (AUC=0.859). The discriminative abilities of
these 8 models can be seen in Multimedia Appendix 4, and the
receiver operating characteristic curves and SHAP summary

plots for the top 12 features of the 4 best performing ML models
are shown in Figure 2A and Multimedia Appendix 5,
respectively.

During feature reduction based on feature importance rankings,
changes in AUC among the 4 types of models indicated that
GBM maintained almost optimal predictive ability among all
4 types of models (Figure 2B). Therefore, it was observed that
among the aforementioned models, GBM performed the best
at predicting persistent SA-AKI. The performance of GBM with
different numbers of features is illustrated in Figure 2C and
Multimedia Appendix 6.
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Figure 2. Performance of machine learning (ML) models to predict persistent sepsis-associated acute kidney injury (SA-AKI). (A) Receiver operating
characteristic curves of the top 4 best performing ML models. (B) Areas under the curve (AUCs) of the top 4 best performing ML models with varied
numbers of features. (C) AUC, sensitivity, specificity, and F1-score of the gradient boosting machine (GBM) model with varied numbers of features.
CatBoost: categorical boosting; XGBoost: extreme gradient boosting.

Identification of the Final Model
The final model was determined during the feature reduction
process of the GBM model. As shown in Figure 2C and
Multimedia Appendix 7, the 58-feature model significantly
outperformed the 3-feature model (ΔAUC=0.017; P<.001),
6-feature model (ΔAUC=0.008; P<.001), and 9-feature model
(ΔAUC=0.004; P=.03) in predicting whether ICU patients would
develop persistent SA-AKI, but it did not have a significant
advantage over the 12-feature model (ΔAUC=0.002; P=.13).
Compared with the 58-feature model, the 12-feature model
showed better net benefits at higher threshold probabilities.
Meanwhile, its area under the precision-recall curve was only
slightly lower than that of the 58-feature model, indicating that
both models had similar and high clinical utility (Multimedia

Appendix 7). Therefore, we chose to use a GBM model based
on AKI stage, ΔCreatinine, urine output, furosemide dose, BMI,
SOFA score, KRT, mechanical ventilation, BUN, lactate, PT,
and age for further analysis. Finally, the AUC of our ultimate
GBM model for predicting persistent SA-AKI was found to be
at an impressive level of 0.870 (95% CI 0.859-0.870), with a
sensitivity of 0.836, specificity of 0.716, positive predictive
value of 0.704, negative predictive value of 0.843, accuracy of
0.769, and F1-score of 0.764. In addition, further cross-validation
was performed to verify the appropriate sample size for this
study and the robustness of the model to locus variation. As
shown in Multimedia Appendix 8, the final model had mean
AUCs of 0.883 (SD 0.009) and 0.884 (SD 0.008) for 5-fold and
10-fold cross-validation, respectively.
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External Validation of the Final Model
For external validation, the final model achieved an AUC of
0.891 on a subset of the MIMIC-III dataset, an AUC of 0.932
on the e-ICU dataset, and an AUC of 0.983 for a retrospective
cohort from Northern Jiangsu People’s Hospital. These results
are similar to those obtained during internal validation
(AUC=0.870) (Table 2), indicating that our final model

demonstrated excellent diagnostic performance in both internal
and external validations. We further compared our final model
with a biomarker known for its high accuracy in predicting
persistent SA-AKI within a prospective cohort study. The results
suggest that the AUC of our model was higher than that of
CCL14 (ΔAUC=0.031) (Figure 3A). The decision curve analysis
curve also showed that our final model had greater clinical
utility compared to CCL14 (Figure 3B).

Table 2. Performance of the gradient boosting machine model with different external validations for persistent sepsis-associated acute kidney injury
prediction.

Youden
index

NPVcSpecifici-
ty

RecallPrecisionF1-scoreAccuracyAUPRCbAUROCaDataset

0.6370.9120.8840.7540.6920.7220.8500.7950.932e-ICUd

0.8331.0000.8331.0000.8330.9090.9090.9810.983Retrospective cohort of Northern Jiangsu
People’s Hospital

0.6110.8280.8890.7220.8130.7650.8220.7420.852Prospective cohort of Northern Jiangsu
People’s Hospital

0.6140.8630.7630.8510.7440.7940.8020.8480.891MIMIC-III

aAUROC: area under the receiver operating characteristic curve.
bAUPRC: area under the precision-recall curve.
cNPV: negative predictive value.
dICU: intensive care unit.
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Figure 3. Comparison between the final gradient boosting machine (GBM) model and C-C motif chemokine ligand 14 (CCL14). (A, B) Receiver
operating characteristic curves (A) and decision curve analysis curves (B) of CCL14 and the final GBM model with 8 features. These plots represent
the predictive performance in the prospective external validation cohort.

Model Explanation
Given that clinicians often struggle to accept a predictive model
they cannot directly interpret and understand, we employed the
SHAP method to explain the output of our final model. This
was achieved by calculating each variable’s contribution to the
prediction. This interpretable approach provides 2 types of
explanations: global interpretation at the feature level and local
interpretation at the individual level. Global interpretation

describes the overall function of the model. As shown in SHAP
summary plots (Figure 4A and 4B), features’ contributions to
models were evaluated using average SHAP values and
displayed in descending order. Additionally, SHAP dependence
plots helped understand how individual features impact
predictions from our model. Figure 5 shows a comparison
between actual values for the 12 features and their corresponding
SHAP values, where a positive value indicates a higher risk for
persistent SA-AKI within our model, or put differently, it pushes
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decisions toward “persistent SA-AKI.” For instance, AKI stages
of ≥1, creatinine changes over 24 hours of ≥0.1 mg/dL, use of
furosemide on admission day, KRT, and presence of sepsis
along with KRT all have positive SHAP values that push

decisions toward “persistent SA-AKI.” Similarly, SOFA scores
above 8 points, urine output of <1380 mL/24 h, BMI of >24.92

kg/m2, and age older than 66 years push decisions toward this
category.

Figure 4. Global model explanation by the Shapley Additive Explanations (SHAP) method. (A) SHAP summary bar plot. (B) SHAP summary dot
plot. The probability of persistent SA-AKI development increases with the SHAP value of a feature. A dot is made for a SHAP value in the model for
each patient, and thus, each patient has 1 dot on the line for each feature. The colors of the dots demonstrate the actual values of the features for each
patient (red indicates a higher feature value, and blue indicates a lower feature value). The dots are stacked vertically to show density. AKI: acute kidney
injury; BUN: blood urea nitrogen; ΔCreatinine: changes in creatinine within 24 hours; KRT: kidney replacement therapy; PT: prothrombin time; SA-AKI:
sepsis-associated acute kidney injury; SOFA: Sequential Organ Failure Assessment.

Furthermore, local interpretation analyzes how specific
predictions are made for particular individuals, including
personalized input data. Figure 6A presents the data of a patient
who developed persistent SA-AKI during their ICU stay.
According to our predictive model, this patient was categorized
under “persistent SA-AKI,” with a probability of 87%. The
figure shows that factors, such as AKI stage, BMI, urine output,
ΔCreatinine, and age, pushed decision-making toward persistent
SA-AKI, while lower SOFA scores, absence of mechanical
ventilation, KRT, and diuretics reduced the risk of AKI.
Conversely, these factors could increase the patient’s risk for
persistent SA-AKI.

Figure 6B presents the data of a patient who did not develop
persistent SA-AKI during their ICU stay. Figure 6B shows the
features and their actual measurements that pushed
decision-making toward “nonpersistent SA-AKI.” The decision
in this case leaned toward “nonpersistent SA-AKI,” with a
probability of 0.47%. Additionally, Figure 6C shows an
explanatory power chart for patients in our internal validation
cohort. The x-axis represents each patient, while the y-axis
indicates feature contributions. Each individual patient shows
increased red portions, indicating a higher probability for a
“persistent SA-AKI” decision.
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Figure 5. Shapley Additive Explanations (SHAP) dependence plot. Each dependence plot shows how a single feature affects the output of the prediction
model, and each dot represents a single patient. For example, Sequential Organ Failure Assessment (SOFA) scores above 8 points, urine output less

than 1380 mL/24 h, BMI above 24.92 kg/m2, or age older than 66 years push the decision toward the “persistent sepsis-associated acute kidney injury
(SA-AKI)” class. SHAP values are represented by the y-axis, and actual values are represented by the x-axis. SHAP values for specific features exceeding
zero push the decision toward the “persistent SA-AKI” class. AKI: acute kidney injury; BUN: blood urea nitrogen; ΔCreatinine: changes in creatinine
within 24 hours; KRT: kidney replacement therapy; PT: prothrombin time.
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Figure 6. Local model explanation by the Shapley Additive Explanations (SHAP) method. (A) Patient with sepsis in the “persistent sepsis-associated
acute kidney injury (SA-AKI)” class. (B) Patient with sepsis in the “nonpersistent SA-AKI” class. (C) Force plot for the internal validation set. Each
patient is represented by the x-axis, while the feature contribution is represented by the y-axis: an increased red part for each individual patient represents
a greater probability toward the decision of “persistent SA-AKI.” AKI: acute kidney injury; BUN: blood urea nitrogen; ΔCreatinine: changes in creatinine
within 24 hours; KRT: kidney replacement therapy; PT: prothrombin time; SOFA: Sequential Organ Failure Assessment.

Convenient Application for Clinical Utility
For the convenience of clinical application, the final prediction
model was implemented into a web-based application (Figure
7). When the actual values of the 9 features required by the
model are inputted, this application automatically predicts an
individual patient’s risk of persistent SA-AKI. In addition, it

displays an interpretive force plot for each patient to indicate
which features contribute to decisions about persistent SA-AKI:
blue features on the right push predictions toward “nonpersistent
SA-AKI,” while red features on the left push predictions toward
“persistent SA-AKI.” This web application can be accessed
online [40]. The code for building the web version of the
application is provided in Multimedia Appendix 9.
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Figure 7. Convenient application for clinical utility. The convenient application of the final gradient boosting machine (GBM) model with 9 features
is available for persistent sepsis-associated acute kidney injury (SA-AKI) prediction. For example, after entering the actual values of the 9 features, this
application automatically displays a probability of 82.35%. The force plot indicates the features that contribute to the decision of “persistent SA-AKI.”
The blue features on the right are the features pushing the prediction toward the “nonpersistent SA-AKI” class, while the red features on the left are the
features pushing the prediction toward the “persistent SA-AKI” class.

Discussion

Principal Findings
This study not only established a model of persistent SA-AKI
using a large database involving a cohort of patients with sepsis,

but also validated the model with retrospective and prospective
cohorts. The model uses routine clinical data to predict persistent
SA-AKI in patients with sepsis in the ICU environment quite
well, and its diagnostic performance is even superior to that of
CCL14, a biomarker known for diagnosing persistent SA-AKI.

J Med Internet Res 2025 | vol. 27 | e62932 | p. 16https://www.jmir.org/2025/1/e62932
(page number not for citation purposes)

Jiang et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Persistent SA-AKI has poor clinical prognosis, and thus, early
identification and intervention are crucial. However, a
single-method diagnosis has limited effectiveness, including
traditional urine indicators, renal ultrasound, and biomarkers
[10-19]. ML is an appealing method for predicting persistent
SA-AKI. ML technology is a powerful computational method
for handling complex and extensive data, as it can manage
highly variable datasets while understanding complex
relationships between variables in a flexible and trainable
manner. EMR data are easily accessible and accurate clinical
data for clinicians and researchers. When combined with
sophisticated ML algorithms, they can promote the development
of clinical prediction models [41]. In this study, among 8 ML
models tested, the GBM model had the best AUC, demonstrating
good net benefits along with higher feature reduction threshold
probabilities. GBM consists of many simple DTs, making it
highly interpretable. Multiple studies have proven that GBM
methods hold great predictive value within medical fields
[42-44]. In our research, we used GBM to develop our final
model featuring 9 characteristics that can be easily obtained or
evaluated.

The number of features for any given model remains elusive
due to a lack of guidelines or consensus on selecting features
for predictive models. While more features may provide
additional information for predictive models, including
numerous features could limit their clinical application, and
incorporating noncausal features might reduce prediction
accuracy [45]. The use of SHAP methodology assisted in feature
selection, resulting in our final simplified yet convenient ML
predictive model, which can be easily applied to facilitate
clinical decision-making for patients with sepsis.

This study attempted to apply ML algorithms to predict the
occurrence of persistent AKI in patients with sepsis. In our
complex GBM model, we found that factors, such as AKI stage,
creatinine change value, urine output, diuretic dosage,
mechanical ventilation, KRT, BMI, SOFA score, BUN, lactate,
PT, and age, are associated with the development of persistent
SA-AKI. Previous studies have shown a positive correlation
between the severity of AKI in patients with this subtype and
persistent AKI. Compared to transient AKI, patients with
persistent AKI have higher AKI stages and SOFA scores
[46,47]. The presence of a higher AKI stage and SOFA score
is indicative of more severe kidney injury. As the severity of
the injury escalates, the structural and functional impairments
of the kidney are exacerbated, leading to an increase in the
number of damaged renal units. The self-repairing and
compensatory capacity of the kidney gradually diminishes,
increasing the likelihood of developing persistent AKI. A higher
stage is frequently accompanied by more severe inflammatory
reactions and alterations in renal hemodynamics, providing a
pathological foundation for the progression of persistent kidney
injury. Our findings align with those of previous studies [46,47].
The SHAP values from our GBM model suggest that higher
AKI stages and higher SOFA scores contribute to the occurrence
of persistent SA-AKI. Urine output is considered one of the
most important indicators for diagnosing AKI, which is
consistent with the KDIGO recommendations. Oliguria is a
significant risk factor for developing persistent SA-AKI, and

decreased urine output is indicative of inadequate renal perfusion
or renal tubular dysfunction, which in turn results in decreased
urine production. Inadequate renal perfusion results in oxygen
deprivation of renal tissues, triggering cell damage and
apoptosis. In contrast, renal tubular dysfunction affects the
concentration and excretion of urine, thereby preventing the
timely excretion of metabolites, which accumulate in the body
and cause further damage to the kidneys, increasing the risk of
persistent AKI. However, there remains controversy over
whether using diuretics has any association with preventing or
treating AKI [48-51]. Theoretically speaking, diuretics can
prevent AKI by reducing GFR and tubular reabsorption while
also decreasing medullary oxygenation [52-54]. Some
researchers believe that diuretics can act as renal vasodilators,
thereby preventing AKI [55]. However, contrary to this belief,
we found through our research that the use of diuretics plays
an important role in influencing outcomes related to AKI.
Consistent with our findings, several newly published studies
[56] have discovered increased risks associated with the use of
diuretics, leading to AKI. A meta-analysis conducted by Ho
and Sheridan [56] involving 9 different studies showed that
diuretics have no significant clinical benefits in preventing or
treating AKI in adults. Worse still, treatment with diuretics may
prolong hospital stay, and high doses of diuretics carry a
short-term risk of deafness or tinnitus, which is harmful for ICU
patients [56]. Therefore, renal function must be monitored
during the course of treatment with diuretics. Creatinine change
as a core indicator of the renal angina index (RAI) has been
proven to predict the occurrence of AKI and persistent AKI in
both adults and children [57-59]. The RAI is determined by
subtle changes in the patient’s condition and kidney function.
It represents a special concept in patients at high risk for
persistent AKI. Our study suggested that creatinine changes
within 24 hours are associated with persistent SA-AKI. It is
worth noting that mechanical ventilation is significantly
associated with persistent SA-AKI, and a significant increase
in creatinine indicates substantial impairment of the kidney
filtration function, potentially resulting from renal parenchyma
damage and a decline in the GFR. The inability of the kidneys
to effectively remove creatinine leads to the accumulation of
metabolic waste products within the body, which in turn can
result in further damage to kidney cells, the triggering of an
inflammatory response and oxidative stress, and the exacerbation
of AKI. Positive pressure ventilation is commonly used to
provide oxygenation, ventilation, and airway protection support
for critically ill patients. However, positive pressure ventilation
has long been considered potentially harmful to the kidneys
[60]. This could be due to 3 reasons. First, positive pressure
ventilation might increase intrathoracic pressure, thereby
reducing venous return, cardiac output, and renal perfusion.
Second, mechanical ventilation can induce the release of certain
neurohormones that affect the renin-angiotensin system, leading
to reduced renal blood flow and estimated GFR. Third, any
form of mechanical ventilation under any volume or pressure
can trigger cascade inflammation involving multiple leukocyte
interleukins, tumor necrosis factor-α, and the Fas ligand, which
might lead to AKI. Aging and obesity are common risk factors
for AKI. Obesity leads to glomerular hypoperfusion, which can
increase single-nephron hemodynamics and metabolic burden
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and activate adipocyte inflammation and oxidative stress, thus
increasing the risks associated with the progression to AKI [7].
In sepsis, the inflammatory response activates the coagulation
system, leading to extensive microthrombosis (eg, disseminated
intravascular coagulation) and depletion of coagulation factors
and platelets, which ultimately manifests as prolonged PT.
Prolonged PT is often an indicator of sepsis severity and poor
prognosis, and correlates with persistent SA-AKI and increased
mortality. Persistent elevation of lactate is an indicator of poor
prognosis. In sepsis, microcirculatory dysfunction leads to tissue
hypoxia, anaerobic metabolism produces lactate, and
hyperlactatemia further exacerbates acidosis and renal tubular
injury, leading to the development of persistent AKI. With
advancing age, the kidney undergoes a series of structural and
functional changes, including a decrease in the number of renal
units, glomerulosclerosis, tubular atrophy, and a decline in
reserve function and compensatory capacity. Consequently,
when subjected to identical injury factors, the kidneys of elderly
individuals are more susceptible to AKI. Due to their diminished
repair capacity, recovery is more challenging in these
individuals, and there is an increased risk of persistent AKI.
Since these indicators are easy to assess at the time of admission,
they can serve as convenient predictive factors for critically ill
patients with sepsis who might develop persistent SA-AKI. In
summary, the majority of the model’s key features, including
AKI classification, creatinine change values, urine output,
mechanical ventilation, KRT, age, BMI, BUN, lactate, PT, and
SOFA scores, are consistent with clinical risk and contribute to
the worsening of AKI. However, our study also identified some
discrepancies that are of concern. For instance, the established
correlation between diuretic dosage and AKI recovery deviated
from conventional wisdom. Higher doses of diuretics did not
promote recovery of renal function as expected and were
associated with a poor prognosis to some extent. This finding
calls into question the conventional wisdom surrounding the
effectiveness of diuretics in the treatment of AKI and suggests
that clinicians should exercise greater caution when prescribing
diuretics.

Comparison With Prior Work
As previously reported, some studies have established AKI
prediction models based on ML methods [21-26], which have
focused on unsubtyped AKI. This status quo is not conducive
to guiding clinics toward personalized treatments. Only a few
studies have used ML models to predict persistent AKI [27,61].
For instance, Ding et al [61] found that serum albumin, CKD,
AKI stage, SOFA score, lactate on the first day, and KRT were
significantly associated with persistent AKI through least
absolute shrinkage and selection operator regression and support
vector machine recursive feature elimination analyses using a
free database. Using these predictors, a column-line graph was
constructed. The diagnostic efficacy of this column chart in
predicting persistent AKI in the training set was 0.730, whereas
in the external validation cohort, it was only 0.702. It is
noteworthy that several of the factors examined in this study,
including AKI stage, SOFA score, lactate, and KRT, are similar
to those observed in our study. Nevertheless, the predictive
model developed in this study demonstrated unsatisfactory
diagnostic efficacy in both the training and validation cohorts.

Jiang et al [27] conducted a retrospective analysis of 955 patients
with postsurgical comorbid AKI and predicted the occurrence
of persistent AKI using a model integrated with 3 ML methods.
The model demonstrated a diagnostic value of 0.86 in the
training set and a comparatively modest diagnostic value of
0.693 in an external validation cohort. This limitation directly
restricts the generalizability of the model. In comparison with
preceding studies, the constructed model has a number of
advantages. First, the model demonstrates remarkable stability,
with a diagnostic value for predicting persistent AKI of >0.85
in both the training and validation cohorts, thus demonstrating
excellent diagnostic performance. Second, we seek to address
the “black box” problem of ML methods that are difficult to
interpret directly, by using the SHAP method to profile ML
models. The model can be interpreted at both the global and
local levels. The global interpretation describes the overall
functionality of the model, while the local interpretation makes
predictions specific to individual patients with sepsis through
the input of personalized data. This facilitates a more profound
comprehension of the ML model’s inner workings by clinicians,
thereby enhancing their propensity to make informed medical
decisions. Third, the prediction models constructed in previous
studies are difficult to use in clinical applications. In response
to this, an online application was developed based on the Flow
Light framework to facilitate clinicians’ access and assist them
in clinical decision-making. Fourth, there is a paucity of studies
that have until now compared self-developed models with
established markers in prospective cohorts. In this study, an ML
model was compared with CCL14, a chemokine belonging to
the CC chemokine family that plays an important role in immune
regulation and inflammatory responses [19]. It has been
established that CCL14 is closely associated with the degree of
renal tubular injury and disease progression, and its elevated
urinary concentration may reflect the activation of local
inflammatory responses in renal tissues, which are involved in
the processes of renal tubular epithelial cell apoptosis and
interstitial fibrosis. Available studies have demonstrated that
CCL14 exhibits good diagnostic efficacy for persistent severe
AKI (SA-AKI), with the efficacy of urinary CCL14 alone for
the prediction of persistent SA-AKI being above 0.80 [19,62],
and thus, it is currently recognized as the most effective
predictor of persistent severe AKI [20,63]. Our ML model
outperformed CCL14, further highlighting the superiority and
reliability of our model.

In summary, we successfully established an interpretable ML
model that predicts persistent SA-AKI among patients with
sepsis in the ICU environment based on easily extractable
clinical data. The final GBM model had good predictive ability
in both internal and external validations, and its diagnostic
efficacy was superior to that of CCL14 in prospective cohort
validation. Further randomized and controlled studies are needed
to determine whether individualized and timely treatment
measures based on the final prediction model can improve the
prognosis of patients with persistent SA-AKI.

Limitations
This study has some limitations. First, the baseline sCr values
for most patients could not be obtained. We used an estimation
equation to determine the baseline sCr, and this approach has
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been employed in many AKI studies to minimize errors as much
as possible. Second, we only included information on
demographics, vital signs, and laboratory values, which limited
the performance of the model and prevented it from discovering
more potential factors that contribute to persistent SA-AKI.
Lastly, our model only included patients with sepsis. However,
AKI is a syndrome with various causes of onset, and thus, it
remains unclear whether this model can predict persistent AKI

caused by other factors. Further verification is needed in this
regard.

Conclusions
We successfully established an interpretable GBM model for
predicting persistent SA-AKI based on readily extractable
clinical data. This model demonstrated good predictive ability
in both internal and external validation cohorts and outperformed
the biomarker CCL14 in prospective cohort validation.

Acknowledgments
This work was supported by Key Projects of Jiangsu Province Traditional Chinese Medicine Science and Technology Development
Plan (ZD202427), the Jiangsu Provincial Medical Key Discipline Cultivation Unit (JSDW20221), the Yangzhou Commission
of Health Key Research Project (20231-02), the Postgraduate Research & Practice Innovation Program of Jiangsu Province
(SJCX24_2330 and SJCX24_2348), and the Development Fund of the Affiliated Hospital of Xuzhou Medical University
(XYFM202401).

Data Availability
Data are available upon reasonable request.

Authors' Contributions
All the authors participated in literature retrieval and viewpoint discussion in this article. WJ was responsible for research design,
paper writing, data extraction, and data analysis of the study as the main contributor. Yaosheng Zhang was responsible for
extraction of the public database. J Weng and SL were responsible for the machine learning analyses. LS, XL, SX, QY, J Wang,
KS, LL, and CZ were responsible for the collection of hospital data. Yongwei Zhang and QY organized the charts. JS, JY, and
RZ participated in discussion of the topic and research design. RZ is responsible for all the study work as the guarantor.

Conflicts of Interest
None declared.

Multimedia Appendix 1
Demographic characteristics, vital sign measurements, and laboratory variables with the percentage of missing data.
[DOCX File , 25 KB-Multimedia Appendix 1]

Multimedia Appendix 2
Heat map of Spearman correlation analyses among variables.
[DOCX File , 205 KB-Multimedia Appendix 2]

Multimedia Appendix 3
Comparison of demographic and clinical characteristics among the training, internal validation, and external validation cohorts.
[DOCX File , 25 KB-Multimedia Appendix 3]

Multimedia Appendix 4
Performance of the machine learning models for persistent sepsis-associated acute kidney injury prediction.
[DOCX File , 15 KB-Multimedia Appendix 4]

Multimedia Appendix 5
Shapley Additive Explanations (SHAP) summary dot plots of the 12 features of the top 4 best performing machine learning
models.
[DOCX File , 247 KB-Multimedia Appendix 5]

Multimedia Appendix 6
Performance of the gradient boosting machine model with varied numbers of features for persistent sepsis-associated acute kidney
injury prediction.

J Med Internet Res 2025 | vol. 27 | e62932 | p. 19https://www.jmir.org/2025/1/e62932
(page number not for citation purposes)

Jiang et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=jmir_v27i1e62932_app1.docx&filename=33e4827ac734fc37d2316b21d25e626a.docx
https://jmir.org/api/download?alt_name=jmir_v27i1e62932_app1.docx&filename=33e4827ac734fc37d2316b21d25e626a.docx
https://jmir.org/api/download?alt_name=jmir_v27i1e62932_app2.docx&filename=b9f18d30717570d6f33e95593cc3c5d9.docx
https://jmir.org/api/download?alt_name=jmir_v27i1e62932_app2.docx&filename=b9f18d30717570d6f33e95593cc3c5d9.docx
https://jmir.org/api/download?alt_name=jmir_v27i1e62932_app3.docx&filename=c25368651f8170135772fd569fc97c1a.docx
https://jmir.org/api/download?alt_name=jmir_v27i1e62932_app3.docx&filename=c25368651f8170135772fd569fc97c1a.docx
https://jmir.org/api/download?alt_name=jmir_v27i1e62932_app4.docx&filename=f60e1f07ca8a00a10788b696b0a92287.docx
https://jmir.org/api/download?alt_name=jmir_v27i1e62932_app4.docx&filename=f60e1f07ca8a00a10788b696b0a92287.docx
https://jmir.org/api/download?alt_name=jmir_v27i1e62932_app5.docx&filename=229d418c600ff8c8afd39392b4bf14ef.docx
https://jmir.org/api/download?alt_name=jmir_v27i1e62932_app5.docx&filename=229d418c600ff8c8afd39392b4bf14ef.docx
http://www.w3.org/Style/XSL
http://www.renderx.com/


[DOCX File , 26 KB-Multimedia Appendix 6]

Multimedia Appendix 7
Predictive performance of the gradient boosting machine model after reducing features.
[DOCX File , 3345 KB-Multimedia Appendix 7]

Multimedia Appendix 8
Predictive performance of the final gradient boosting machine model in the cross-validation.
[DOCX File , 293 KB-Multimedia Appendix 8]

Multimedia Appendix 9
Web application codes.
[DOCX File , 1299 KB-Multimedia Appendix 9]

References

1. Peerapornratana S, Manrique-Caballero CL, Gómez H, Kellum JA. Acute kidney injury from sepsis: current concepts,
epidemiology, pathophysiology, prevention and treatment. Kidney Int. Nov 2019;96(5):1083-1099. [FREE Full text] [doi:
10.1016/j.kint.2019.05.026] [Medline: 31443997]

2. Zarbock A, Nadim MK, Pickkers P, Gomez H, Bell S, Joannidis M, et al. Sepsis-associated acute kidney injury: consensus
report of the 28th Acute Disease Quality Initiative workgroup. Nat Rev Nephrol. Jun 2023;19(6):401-417. [doi:
10.1038/s41581-023-00683-3] [Medline: 36823168]

3. Peters E, Antonelli M, Wittebole X, Nanchal R, François B, Sakr Y, et al. A worldwide multicentre evaluation of the
influence of deterioration or improvement of acute kidney injury on clinical outcome in critically ill patients with and
without sepsis at ICU admission: results from The Intensive Care Over Nations audit. Crit Care. Aug 03, 2018;22(1):188.
[FREE Full text] [doi: 10.1186/s13054-018-2112-z] [Medline: 30075798]

4. Bellomo R, Kellum JA, Ronco C, Wald R, Martensson J, Maiden M, et al. Acute kidney injury in sepsis. Intensive Care
Med. Jun 31, 2017;43(6):816-828. [doi: 10.1007/s00134-017-4755-7] [Medline: 28364303]

5. Poston JT, Koyner JL. Sepsis associated acute kidney injury. BMJ. Jan 09, 2019;364:k4891. [FREE Full text] [doi:
10.1136/bmj.k4891] [Medline: 30626586]

6. Chawla LS, Bellomo R, Bihorac A, Goldstein SL, Siew ED, Bagshaw SM, et al. Acute Disease Quality Initiative Workgroup.
Acute kidney disease and renal recovery: consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup.
Nat Rev Nephrol. Apr 27, 2017;13(4):241-257. [FREE Full text] [doi: 10.1038/nrneph.2017.2] [Medline: 28239173]

7. Uhel F, Peters-Sengers H, Falahi F, Scicluna BP, van Vught LA, Bonten MJ, et al. MARS consortium. Mortality and host
response aberrations associated with transient and persistent acute kidney injury in critically ill patients with sepsis: a
prospective cohort study. Intensive Care Med. Aug 08, 2020;46(8):1576-1589. [FREE Full text] [doi:
10.1007/s00134-020-06119-x] [Medline: 32514599]

8. Kellum JA, Sileanu FE, Bihorac A, Hoste EAJ, Chawla LS. Recovery after acute kidney injury. Am J Respir Crit Care
Med. Mar 15, 2017;195(6):784-791. [doi: 10.1164/rccm.201604-0799oc]

9. Chawla LS, Eggers PW, Star RA, Kimmel PL. Acute kidney injury and chronic kidney disease as interconnected syndromes.
N Engl J Med. Jul 03, 2014;371(1):58-66. [doi: 10.1056/nejmra1214243]

10. Forni LG, Joannidis M. IDEAL timing of renal replacement therapy in critical care. Nat Rev Nephrol. Jan 3, 2019;15(1):5-6.
[doi: 10.1038/s41581-018-0088-1] [Medline: 30510266]

11. Darmon M, Vincent F, Dellamonica J, Schortgen F, Gonzalez F, Das V, et al. Diagnostic performance of fractional excretion
of urea in the evaluation of critically ill patients with acute kidney injury: a multicenter cohort study. Crit Care. Jul 27,
2011;15(4):R178. [FREE Full text] [doi: 10.1186/cc10327] [Medline: 21794161]

12. Pons B, Lautrette A, Oziel J, Dellamonica J, Vermesch R, Ezingeard E, et al. Diagnostic accuracy of early urinary index
changes in differentiating transient from persistent acute kidney injury in critically ill patients: multicenter cohort study.
Crit Care. Mar 26, 2013;17(2):R56. [FREE Full text] [doi: 10.1186/cc12582] [Medline: 23531299]

13. Vanmassenhove J, Glorieux G, Hoste E, Dhondt A, Vanholder R, Van Biesen W. Urinary output and fractional excretion
of sodium and urea as indicators of transient versus intrinsic acute kidney injury during early sepsis. Crit Care. Oct 13,
2013;17(5):R234. [FREE Full text] [doi: 10.1186/cc13057] [Medline: 24119730]

14. Darmon M, Bourmaud A, Reynaud M, Rouleau S, Meziani F, Boivin A, et al. Performance of Doppler-based resistive
index and semi-quantitative renal perfusion in predicting persistent AKI: results of a prospective multicenter study. Intensive
Care Med. Nov 05, 2018;44(11):1904-1913. [doi: 10.1007/s00134-018-5386-3] [Medline: 30291377]

15. Dewitte A, Joannès-Boyau O, Sidobre C, Fleureau C, Bats ML, Derache P, et al. Kinetic eGFR and novel AKI biomarkers
to predict renal recovery. Clin J Am Soc Nephrol. Nov 06, 2015;10(11):1900-1910. [FREE Full text] [doi:
10.2215/CJN.12651214] [Medline: 26342047]

J Med Internet Res 2025 | vol. 27 | e62932 | p. 20https://www.jmir.org/2025/1/e62932
(page number not for citation purposes)

Jiang et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=jmir_v27i1e62932_app6.docx&filename=85b85cf68f1b894b9cb29dd8555357fe.docx
https://jmir.org/api/download?alt_name=jmir_v27i1e62932_app6.docx&filename=85b85cf68f1b894b9cb29dd8555357fe.docx
https://jmir.org/api/download?alt_name=jmir_v27i1e62932_app7.docx&filename=8879d1d2b643d1db672ce0850dd8f407.docx
https://jmir.org/api/download?alt_name=jmir_v27i1e62932_app7.docx&filename=8879d1d2b643d1db672ce0850dd8f407.docx
https://jmir.org/api/download?alt_name=jmir_v27i1e62932_app8.docx&filename=c30f033037ffa91d9e809f694b29ae97.docx
https://jmir.org/api/download?alt_name=jmir_v27i1e62932_app8.docx&filename=c30f033037ffa91d9e809f694b29ae97.docx
https://jmir.org/api/download?alt_name=jmir_v27i1e62932_app9.docx&filename=41b73a7bdbdc3139d03a965f014a3f44.docx
https://jmir.org/api/download?alt_name=jmir_v27i1e62932_app9.docx&filename=41b73a7bdbdc3139d03a965f014a3f44.docx
https://linkinghub.elsevier.com/retrieve/pii/S0085-2538(19)30601-5
http://dx.doi.org/10.1016/j.kint.2019.05.026
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31443997&dopt=Abstract
http://dx.doi.org/10.1038/s41581-023-00683-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36823168&dopt=Abstract
https://ccforum.biomedcentral.com/articles/10.1186/s13054-018-2112-z
http://dx.doi.org/10.1186/s13054-018-2112-z
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30075798&dopt=Abstract
http://dx.doi.org/10.1007/s00134-017-4755-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28364303&dopt=Abstract
https://europepmc.org/abstract/MED/30626586
http://dx.doi.org/10.1136/bmj.k4891
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30626586&dopt=Abstract
https://core.ac.uk/reader/84041861?utm_source=linkout
http://dx.doi.org/10.1038/nrneph.2017.2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28239173&dopt=Abstract
https://europepmc.org/abstract/MED/32514599
http://dx.doi.org/10.1007/s00134-020-06119-x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32514599&dopt=Abstract
http://dx.doi.org/10.1164/rccm.201604-0799oc
http://dx.doi.org/10.1056/nejmra1214243
http://dx.doi.org/10.1038/s41581-018-0088-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30510266&dopt=Abstract
https://ccforum.biomedcentral.com/articles/10.1186/cc10327
http://dx.doi.org/10.1186/cc10327
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21794161&dopt=Abstract
https://ccforum.biomedcentral.com/articles/10.1186/cc12582
http://dx.doi.org/10.1186/cc12582
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23531299&dopt=Abstract
https://ccforum.biomedcentral.com/articles/10.1186/cc13057
http://dx.doi.org/10.1186/cc13057
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24119730&dopt=Abstract
http://dx.doi.org/10.1007/s00134-018-5386-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30291377&dopt=Abstract
https://europepmc.org/abstract/MED/26342047
http://dx.doi.org/10.2215/CJN.12651214
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26342047&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


16. Titeca-Beauport D, Daubin D, Van Vong L, Belliard G, Bruel C, Alaya S, et al. Urine cell cycle arrest biomarkers distinguish
poorly between transient and persistent AKI in early septic shock: a prospective, multicenter study. Crit Care. Jun 01,
2020;24(1):280. [FREE Full text] [doi: 10.1186/s13054-020-02984-6] [Medline: 32487237]

17. Garnier F, Daubin D, Larcher R, Bargnoux AS, Platon L, Brunot V, et al. Reversibility of acute kidney injury in medical
ICU patients: predictability performance of urinary tissue inhibitor of metalloproteinase-2 x insulin-like growth factor-binding
protein 7 and renal resistive index. Crit Care Med. Apr 2020;48(4):e277-e284. [doi: 10.1097/CCM.0000000000004218]
[Medline: 32205617]

18. Jiang W, Yu J, Wang H, Zheng R. The value of urine cell cycle arrest biomarkers to predict persistent acute kidney injury:
A systematic review and meta-analysis. Clin Nephrol. Dec 2021;96(6):327-336. [doi: 10.5414/CN110600] [Medline:
34605401]

19. Hoste E, Bihorac A, Al-Khafaji A, Ortega LM, Ostermann M, Haase M, et al. RUBY Investigators. Identification and
validation of biomarkers of persistent acute kidney injury: the RUBY study. Intensive Care Med. May 06, 2020;46(5):943-953.
[FREE Full text] [doi: 10.1007/s00134-019-05919-0] [Medline: 32025755]

20. Jiang W, Liao T, Yu J, Shao J, Zheng R. Predictability performance of urinary C-C motif chemokine ligand 14 and renal
resistive index for persistent sepsis-associated acute kidney injury in ICU patients. Int Urol Nephrol. Aug 17,
2023;55(8):1995-2003. [FREE Full text] [doi: 10.1007/s11255-023-03511-6] [Medline: 36797554]

21. Gao W, Wang J, Zhou L, Luo Q, Lao Y, Lyu H, et al. Prediction of acute kidney injury in ICU with gradient boosting
decision tree algorithms. Comput Biol Med. Jan 2022;140:105097. [doi: 10.1016/j.compbiomed.2021.105097] [Medline:
34864304]

22. Koyner JL, Carey KA, Edelson DP, Churpek MM. The development of a machine learning inpatient acute kidney injury
prediction model. Crit Care Med. Jul 2018;46(7):1070-1077. [doi: 10.1097/CCM.0000000000003123] [Medline: 29596073]

23. Alfieri F, Ancona A, Tripepi G, Rubeis A, Arjoldi N, Finazzi S, et al. Continuous and early prediction of future moderate
and severe Acute Kidney Injury in critically ill patients: Development and multi-centric, multi-national external validation
of a machine-learning model. PLoS One. Jul 25, 2023;18(7):e0287398. [FREE Full text] [doi: 10.1371/journal.pone.0287398]
[Medline: 37490482]

24. Gong K, Lee HK, Yu K, Xie X, Li J. A prediction and interpretation framework of acute kidney injury in critical care. J
Biomed Inform. Jan 2021;113:103653. [FREE Full text] [doi: 10.1016/j.jbi.2020.103653] [Medline: 33338667]

25. Shawwa K, Ghosh E, Lanius S, Schwager E, Eshelman L, Kashani KB. Predicting acute kidney injury in critically ill
patients using comorbid conditions utilizing machine learning. Clin Kidney J. May 2021;14(5):1428-1435. [FREE Full
text] [doi: 10.1093/ckj/sfaa145] [Medline: 33959271]

26. Flechet M, Güiza F, Schetz M, Wouters P, Vanhorebeek I, Derese I, et al. AKIpredictor, an online prognostic calculator
for acute kidney injury in adult critically ill patients: development, validation and comparison to serum neutrophil
gelatinase-associated lipocalin. Intensive Care Med. Jun 27, 2017;43(6):764-773. [doi: 10.1007/s00134-017-4678-3]
[Medline: 28130688]

27. Jiang X, Hu Y, Guo S, Du C, Cheng X. Prediction of persistent acute kidney injury in postoperative intensive care unit
patients using integrated machine learning: a retrospective cohort study. Sci Rep. Oct 12, 2022;12(1):17134. [FREE Full
text] [doi: 10.1038/s41598-022-21428-5] [Medline: 36224308]

28. Johnson AEW, Bulgarelli L, Shen L, Gayles A, Shammout A, Horng S, et al. MIMIC-IV, a freely accessible electronic
health record dataset. Sci Data. Jan 03, 2023;10(1):1. [FREE Full text] [doi: 10.1038/s41597-022-01899-x] [Medline:
36596836]

29. Johnson AE, Pollard TJ, Shen L, Lehman LH, Feng M, Ghassemi M, et al. MIMIC-III, a freely accessible critical care
database. Sci Data. May 24, 2016;3(1):160035. [FREE Full text] [doi: 10.1038/sdata.2016.35] [Medline: 27219127]

30. Pollard TJ, Johnson AEW, Raffa JD, Celi LA, Mark RG, Badawi O. The eICU Collaborative Research Database, a freely
available multi-center database for critical care research. Sci Data. Sep 11, 2018;5(1):180178. [FREE Full text] [doi:
10.1038/sdata.2018.178] [Medline: 30204154]

31. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The Third International Consensus
Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. Feb 23, 2016;315(8):801-810. [FREE Full text] [doi:
10.1001/jama.2016.0287] [Medline: 26903338]

32. Raith EP, Udy AA, Bailey M, McGloughlin S, MacIsaac C, Bellomo R, et al. AustralianNew Zealand Intensive Care Society
(ANZICS) Centre for OutcomesResource Evaluation (CORE). Prognostic accuracy of the SOFA Score, SIRS Criteria, and
qSOFA Score for in-hospital mortality among adults with suspected infection admitted to the intensive care unit. JAMA.
Jan 17, 2017;317(3):290-300. [doi: 10.1001/jama.2016.20328] [Medline: 28114553]

33. Lambden S, Laterre PF, Levy MM, Francois B. The SOFA score-development, utility and challenges of accurate assessment
in clinical trials. Crit Care. Nov 27, 2019;23(1):374. [FREE Full text] [doi: 10.1186/s13054-019-2663-7] [Medline: 31775846]

34. Seymour CW, Liu VX, Iwashyna TJ, Brunkhorst FM, Rea TD, Scherag A, et al. Assessment of clinical criteria for sepsis:
for the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. Feb 23,
2016;315(8):762-774. [FREE Full text] [doi: 10.1001/jama.2016.0288] [Medline: 26903335]

J Med Internet Res 2025 | vol. 27 | e62932 | p. 21https://www.jmir.org/2025/1/e62932
(page number not for citation purposes)

Jiang et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://ccforum.biomedcentral.com/articles/10.1186/s13054-020-02984-6
http://dx.doi.org/10.1186/s13054-020-02984-6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32487237&dopt=Abstract
http://dx.doi.org/10.1097/CCM.0000000000004218
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32205617&dopt=Abstract
http://dx.doi.org/10.5414/CN110600
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34605401&dopt=Abstract
https://europepmc.org/abstract/MED/32025755
http://dx.doi.org/10.1007/s00134-019-05919-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32025755&dopt=Abstract
https://europepmc.org/abstract/MED/36797554
http://dx.doi.org/10.1007/s11255-023-03511-6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36797554&dopt=Abstract
http://dx.doi.org/10.1016/j.compbiomed.2021.105097
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34864304&dopt=Abstract
http://dx.doi.org/10.1097/CCM.0000000000003123
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29596073&dopt=Abstract
https://dx.plos.org/10.1371/journal.pone.0287398
http://dx.doi.org/10.1371/journal.pone.0287398
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=37490482&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(20)30281-1
http://dx.doi.org/10.1016/j.jbi.2020.103653
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33338667&dopt=Abstract
https://europepmc.org/abstract/MED/33959271
https://europepmc.org/abstract/MED/33959271
http://dx.doi.org/10.1093/ckj/sfaa145
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33959271&dopt=Abstract
http://dx.doi.org/10.1007/s00134-017-4678-3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28130688&dopt=Abstract
https://doi.org/10.1038/s41598-022-21428-5
https://doi.org/10.1038/s41598-022-21428-5
http://dx.doi.org/10.1038/s41598-022-21428-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36224308&dopt=Abstract
https://doi.org/10.1038/s41597-022-01899-x
http://dx.doi.org/10.1038/s41597-022-01899-x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36596836&dopt=Abstract
https://doi.org/10.1038/sdata.2016.35
http://dx.doi.org/10.1038/sdata.2016.35
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27219127&dopt=Abstract
https://doi.org/10.1038/sdata.2018.178
http://dx.doi.org/10.1038/sdata.2018.178
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30204154&dopt=Abstract
https://europepmc.org/abstract/MED/26903338
http://dx.doi.org/10.1001/jama.2016.0287
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26903338&dopt=Abstract
http://dx.doi.org/10.1001/jama.2016.20328
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28114553&dopt=Abstract
https://ccforum.biomedcentral.com/articles/10.1186/s13054-019-2663-7
http://dx.doi.org/10.1186/s13054-019-2663-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31775846&dopt=Abstract
https://europepmc.org/abstract/MED/26903335
http://dx.doi.org/10.1001/jama.2016.0288
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26903335&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


35. Kellum JA, Lameire N, KDIGO AKI Guideline Work Group. Diagnosis, evaluation, and management of acute kidney
injury: a KDIGO summary (Part 1). Crit Care. Feb 04, 2013;17(1):204. [FREE Full text] [doi: 10.1186/cc11454] [Medline:
23394211]

36. Siew ED, Ikizler TA, Matheny ME, Shi Y, Schildcrout JS, Danciu I, et al. Estimating baseline kidney function in hospitalized
patients with impaired kidney function. Clin J Am Soc Nephrol. May 2012;7(5):712-719. [FREE Full text] [doi:
10.2215/CJN.10821011] [Medline: 22422536]

37. Huber M, Ozrazgat-Baslanti T, Thottakkara P, Scali S, Bihorac A, Hobson C. Cardiovascular-specific mortality and kidney
disease in patients undergoing vascular surgery. JAMA Surg. May 01, 2016;151(5):441-450. [FREE Full text] [doi:
10.1001/jamasurg.2015.4526] [Medline: 26720406]

38. Angeli P, Ginès P, Wong F, Bernardi M, Boyer TD, Gerbes A, et al. Diagnosis and management of acute kidney injury in
patients with cirrhosis: revised consensus recommendations of the International Club of Ascites. J Hepatol. Apr
2015;62(4):968-974. [FREE Full text] [doi: 10.1016/j.jhep.2014.12.029] [Medline: 25638527]

39. Zhou D, Jiang Y, Zhong X, Cox NJ, Liu C, Gamazon ER. A unified framework for joint-tissue transcriptome-wide association
and Mendelian randomization analysis. Nat Genet. Nov 05, 2020;52(11):1239-1246. [FREE Full text] [doi:
10.1038/s41588-020-0706-2] [Medline: 33020666]

40. Persistent SA-AKI Prediction Application. URL: https://persistent-sa-aki-prediction-model.streamlit.app/ [accessed
2025-04-15]

41. Goecks J, Jalili V, Heiser LM, Gray JW. How machine learning will transform biomedicine. Cell. Apr 02, 2020;181(1):92-101.
[FREE Full text] [doi: 10.1016/j.cell.2020.03.022] [Medline: 32243801]

42. Wang S, Zhang T, Li Z, Hong J. Exploring pollutant joint effects in disease through interpretable machine learning. J Hazard
Mater. Apr 05, 2024;467:133707. [doi: 10.1016/j.jhazmat.2024.133707] [Medline: 38335621]

43. Nigo M, Rasmy L, Mao B, Kannadath BS, Xie Z, Zhi D. Deep learning model for personalized prediction of positive MRSA
culture using time-series electronic health records. Nat Commun. Mar 06, 2024;15(1):2036. [FREE Full text] [doi:
10.1038/s41467-024-46211-0] [Medline: 38448409]

44. Devanarayan V, Ye Y, Charil A, Andreozzi E, Sachdev P, Llano DA, et al. Alzheimer's Disease Neuroimaging Initiative
(ADNI). Predicting clinical progression trajectories of early Alzheimer's disease patients. Alzheimers Dement. Mar 13,
2024;20(3):1725-1738. [FREE Full text] [doi: 10.1002/alz.13565] [Medline: 38087949]

45. Li Y, Sperrin M, Ashcroft DM, van Staa TP. Consistency of variety of machine learning and statistical models in predicting
clinical risks of individual patients: longitudinal cohort study using cardiovascular disease as exemplar. BMJ. Nov 04,
2020;371:m3919. [FREE Full text] [doi: 10.1136/bmj.m3919] [Medline: 33148619]

46. Jiang W, Zhang C, Yu J, Shao J, Zheng R. Development and validation of a nomogram for predicting in-hospital mortality
of elderly patients with persistent sepsis-associated acute kidney injury in intensive care units: a retrospective cohort study
using the MIMIC-IV database. BMJ Open. Mar 27, 2023;13(3):e069824. [FREE Full text] [doi:
10.1136/bmjopen-2022-069824] [Medline: 36972970]

47. Wang M, Wang X, Zhu B, Li W, Jiang Q, Zuo Y, et al. The effects of timing onset and progression of AKI on the clinical
outcomes in AKI patients with sepsis: a prospective multicenter cohort study. Renal Failure. Apr 25, 2023;45(1):1-10. [doi:
10.1080/0886022x.2022.2138433]

48. Zhao G, Xu C, Ying J, Lü WB, Hong G, Li M, et al. Association between furosemide administration and outcomes in
critically ill patients with acute kidney injury. Crit Care. Mar 04, 2020;24(1):75. [FREE Full text] [doi:
10.1186/s13054-020-2798-6] [Medline: 32131879]

49. Shen Y, Wu M. Loop diuretic use in patients with AKI: different severity, different response. Crit Care. Aug 19,
2018;22(1):202. [FREE Full text] [doi: 10.1186/s13054-018-2097-7] [Medline: 30121080]

50. Gao S, Yang L, Wang Z. Do critically ill patients with AKI benefit from furosemide? Further real-word evidence from a
large multi-center database. Crit Care. May 25, 2020;24(1):253. [FREE Full text] [doi: 10.1186/s13054-020-02905-7]
[Medline: 32450912]

51. Joannidis M, Klein SJ, Ostermann M. 10 myths about frusemide. Intensive Care Med. Apr 14, 2019;45(4):545-548. [doi:
10.1007/s00134-018-5502-4] [Medline: 30643933]

52. Brezis M, Rosen S. Hypoxia of the renal medulla — its implications for disease. N Engl J Med. Mar 09,
1995;332(10):647-655. [doi: 10.1056/nejm199503093321006]

53. Epstein FH, Prasad P. Effects of furosemide on medullary oxygenation in younger and older subjects. Kidney Int. May
2000;57(5):2080-2083. [FREE Full text] [doi: 10.1046/j.1523-1755.2000.00057.x] [Medline: 10792627]

54. Peixoto AJ. Update in nephrology and hypertension: evidence published in 2015. Ann Intern Med. May 03,
2016;164(9):W42-W47. [doi: 10.7326/m16-0243]

55. Kellum JA. Diuretics in acute renal failure: protective or deleterious. Blood Purif. Oct 30, 1997;15(4-6):319-322. [doi:
10.1159/000170350] [Medline: 9435960]

56. Ho KM, Sheridan DJ. Meta-analysis of frusemide to prevent or treat acute renal failure. BMJ. Aug 26, 2006;333(7565):420.
[doi: 10.1136/bmj.38902.605347.7c]

J Med Internet Res 2025 | vol. 27 | e62932 | p. 22https://www.jmir.org/2025/1/e62932
(page number not for citation purposes)

Jiang et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://ccforum.biomedcentral.com/articles/10.1186/cc11454
http://dx.doi.org/10.1186/cc11454
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23394211&dopt=Abstract
https://europepmc.org/abstract/MED/22422536
http://dx.doi.org/10.2215/CJN.10821011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22422536&dopt=Abstract
https://europepmc.org/abstract/MED/26720406
http://dx.doi.org/10.1001/jamasurg.2015.4526
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26720406&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S0168-8278(14)00958-1
http://dx.doi.org/10.1016/j.jhep.2014.12.029
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25638527&dopt=Abstract
https://europepmc.org/abstract/MED/33020666
http://dx.doi.org/10.1038/s41588-020-0706-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33020666&dopt=Abstract
https://persistent-sa-aki-prediction-model.streamlit.app/
https://linkinghub.elsevier.com/retrieve/pii/S0092-8674(20)30284-1
http://dx.doi.org/10.1016/j.cell.2020.03.022
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32243801&dopt=Abstract
http://dx.doi.org/10.1016/j.jhazmat.2024.133707
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38335621&dopt=Abstract
https://doi.org/10.1038/s41467-024-46211-0
http://dx.doi.org/10.1038/s41467-024-46211-0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38448409&dopt=Abstract
https://europepmc.org/abstract/MED/38087949
http://dx.doi.org/10.1002/alz.13565
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38087949&dopt=Abstract
https://www.bmj.com/lookup/pmidlookup?view=long&pmid=33148619
http://dx.doi.org/10.1136/bmj.m3919
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33148619&dopt=Abstract
https://bmjopen.bmj.com/lookup/pmidlookup?view=long&pmid=36972970
http://dx.doi.org/10.1136/bmjopen-2022-069824
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=36972970&dopt=Abstract
http://dx.doi.org/10.1080/0886022x.2022.2138433
https://ccforum.biomedcentral.com/articles/10.1186/s13054-020-2798-6
http://dx.doi.org/10.1186/s13054-020-2798-6
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32131879&dopt=Abstract
https://ccforum.biomedcentral.com/articles/10.1186/s13054-018-2097-7
http://dx.doi.org/10.1186/s13054-018-2097-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30121080&dopt=Abstract
https://ccforum.biomedcentral.com/articles/10.1186/s13054-020-02905-7
http://dx.doi.org/10.1186/s13054-020-02905-7
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32450912&dopt=Abstract
http://dx.doi.org/10.1007/s00134-018-5502-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30643933&dopt=Abstract
http://dx.doi.org/10.1056/nejm199503093321006
https://linkinghub.elsevier.com/retrieve/pii/S0085-2538(15)46960-1
http://dx.doi.org/10.1046/j.1523-1755.2000.00057.x
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10792627&dopt=Abstract
http://dx.doi.org/10.7326/m16-0243
http://dx.doi.org/10.1159/000170350
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=9435960&dopt=Abstract
http://dx.doi.org/10.1136/bmj.38902.605347.7c
http://www.w3.org/Style/XSL
http://www.renderx.com/


57. Matsuura R, Srisawat N, Claure-Del Granado R, Doi K, Yoshida T, Nangaku M, et al. Use of the renal angina index in
determining acute kidney injury. Kidney Int Rep. May 2018;3(3):677-683. [FREE Full text] [doi: 10.1016/j.ekir.2018.01.013]
[Medline: 29854976]

58. Cruz DN, Ferrer-Nadal A, Piccinni P, Goldstein SL, Chawla LS, Alessandri E, et al. NEFROINT Investigators. Utilization
of small changes in serum creatinine with clinical risk factors to assess the risk of AKI in critically lll adults. Clin J Am
Soc Nephrol. Apr 2014;9(4):663-672. [FREE Full text] [doi: 10.2215/CJN.05190513] [Medline: 24677553]

59. Basu RK, Zappitelli M, Brunner L, Wang Y, Wong HR, Chawla LS, et al. Derivation and validation of the renal angina
index to improve the prediction of acute kidney injury in critically ill children. Kidney Int. Mar 2014;85(3):659-667. [FREE
Full text] [doi: 10.1038/ki.2013.349] [Medline: 24048379]

60. Zacchetti L, Brivio M, Mezzapesa M, Martinelli A, Punzi V, Monti M, et al. The effect of positive pressure ventilation on
acute kidney injury in COVID-19 patients with acute respiratory distress syndrome: an observational study. Blood Purif.
Feb 25, 2024;53(5):396-404. [doi: 10.1159/000536285] [Medline: 38402859]

61. Ding C, Hu T. Development and external verification of a nomogram for patients with persistent acute kidney injury in the
intensive care unit. IJGM. Aug 2021;Volume 14:5005-5015. [doi: 10.2147/ijgm.s325904]

62. Bagshaw SM, Al-Khafaji A, Artigas A, Davison D, Haase M, Lissauer M, et al. External validation of urinary C-C motif
chemokine ligand 14 (CCL14) for prediction of persistent acute kidney injury. Crit Care. May 31, 2021;25(1):185. [FREE
Full text] [doi: 10.1186/s13054-021-03618-1] [Medline: 34059102]

63. Kellum JA, Bagshaw SM, Demirjian S, Forni L, Joannidis M, Kampf JP, et al. CCL14 testing to guide clinical practice in
patients with AKI: Results from an international expert panel. J Crit Care. Aug 2024;82:154816. [FREE Full text] [doi:
10.1016/j.jcrc.2024.154816] [Medline: 38678981]

Abbreviations
ADQI: Acute Disease Quality Initiative
AKI: acute kidney injury
AUC: area under the receiver operating characteristic curve
BUN: blood urea nitrogen
CatBoost: categorical boosting
CCL14: C-C motif chemokine ligand 14
CKD: chronic kidney disease
DT: decision tree
ELISA: enzyme-linked immunosorbent assay
EMR: electronic medical record
GBM: gradient boosting machine
GFR: glomerular filtration rate
ICU: intensive care unit
KDIGO: Kidney Disease: Improving Global Outcomes
KRT: kidney replacement therapy
MIT: Massachusetts Institute of Technology
ML: machine learning
PT: prothrombin time
SA-AKI: sepsis-associated acute kidney injury
sCr: serum creatinine
SHAP: Shapley Additive Explanations
SOFA: Sequential Organ Failure Assessment
XGBoost: extreme gradient boosting

Edited by A Coristine; submitted 05.06.24; peer-reviewed by M Khani, D Hu; comments to author 16.01.25; revised version received
10.03.25; accepted 07.04.25; published 28.04.25

Please cite as:
Jiang W, Zhang Y, Weng J, Song L, Liu S, Li X, Xu S, Shi K, Li L, Zhang C, Wang J, Yuan Q, Zhang Y, Shao J, Yu J, Zheng R
Explainable Machine Learning Model for Predicting Persistent Sepsis-Associated Acute Kidney Injury: Development and Validation
Study
J Med Internet Res 2025;27:e62932
URL: https://www.jmir.org/2025/1/e62932
doi: 10.2196/62932
PMID:

J Med Internet Res 2025 | vol. 27 | e62932 | p. 23https://www.jmir.org/2025/1/e62932
(page number not for citation purposes)

Jiang et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

https://linkinghub.elsevier.com/retrieve/pii/S2468-0249(18)30020-2
http://dx.doi.org/10.1016/j.ekir.2018.01.013
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29854976&dopt=Abstract
https://europepmc.org/abstract/MED/24677553
http://dx.doi.org/10.2215/CJN.05190513
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24677553&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S0085-2538(15)56223-6
https://linkinghub.elsevier.com/retrieve/pii/S0085-2538(15)56223-6
http://dx.doi.org/10.1038/ki.2013.349
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24048379&dopt=Abstract
http://dx.doi.org/10.1159/000536285
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38402859&dopt=Abstract
http://dx.doi.org/10.2147/ijgm.s325904
https://ccforum.biomedcentral.com/articles/10.1186/s13054-021-03618-1
https://ccforum.biomedcentral.com/articles/10.1186/s13054-021-03618-1
http://dx.doi.org/10.1186/s13054-021-03618-1
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=34059102&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S0883-9441(24)00303-4
http://dx.doi.org/10.1016/j.jcrc.2024.154816
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=38678981&dopt=Abstract
https://www.jmir.org/2025/1/e62932
http://dx.doi.org/10.2196/62932
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


©Wei Jiang, Yaosheng Zhang, Jiayi Weng, Lin Song, Siqi Liu, Xianghui Li, Shiqi Xu, Keran Shi, Luanluan Li, Chuanqing Zhang,
Jing Wang, Quan Yuan, Yongwei Zhang, Jun Shao, Jiangquan Yu, Ruiqiang Zheng. Originally published in the Journal of Medical
Internet Research (https://www.jmir.org), 28.04.2025. This is an open-access article distributed under the terms of the Creative
Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research (ISSN
1438-8871), is properly cited. The complete bibliographic information, a link to the original publication on https://www.jmir.org/,
as well as this copyright and license information must be included.

J Med Internet Res 2025 | vol. 27 | e62932 | p. 24https://www.jmir.org/2025/1/e62932
(page number not for citation purposes)

Jiang et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/

