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Abstract

Background: Postoperative acute kidney injury (AKI) is a significant risk associated with surgeries under general anesthesia,
often leading to increased mortality and morbidity. Existing predictive models for postoperative AKI are usually limited to specific
surgical areas or require external validation.

Objective: We proposed to build a prediction model for postoperative AKI using several machine learning methods.

Methods: We conducted a retrospective cohort analysis of noncardiac surgeries from 2009 to 2019 at seven university hospitals
in South Korea. We evaluated six machine learning models: deep neural network, logistic regression, decision tree, random forest,
light gradient boosting machine, and naïve Bayes for predicting postoperative AKI, defined as a significant increase in serum
creatinine or the initiation of renal replacement therapy within 30 days after surgery. The performance of the models was analyzed
using the area under the curve (AUC) of the receiver operating characteristic curve, accuracy, precision, sensitivity (recall),
specificity, and F1-score.

Results: Among the 239,267 surgeries analyzed, 7935 cases of postoperative AKI were identified. The models, using 38
preoperative predictors, showed that deep neural network (AUC=0.832), light gradient boosting machine (AUC=0.836), and
logistic regression (AUC=0.825) demonstrated superior performance in predicting AKI risk. The deep neural network model was
then developed into a user-friendly website for clinical use.
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Conclusions: Our study introduces a robust, high-performance AKI risk prediction system that is applicable in clinical settings
using preoperative data. This model’s integration into a user-friendly website enhances its clinical utility, offering a significant
step forward in personalized patient care and risk management.

(J Med Internet Res 2025;27:e62853) doi: 10.2196/62853
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Introduction

Acute kidney injury (AKI) represents a critical challenge in
postoperative care, significantly affecting patient outcomes and
health care systems. It is a common complication that affects
up to 5% to 7.5% of all hospitalized patients, with a markedly
higher prevalence of 20% in intensive care units [1]. Among
all AKI in hospitalized patients, 40% occur in postoperative
patients [1]. This condition not only escalates morbidity but
also substantially increases in-hospital mortality by
approximately 3- to 9-fold [2]. The severity of this risk is further
underscored in patients who developed postoperative AKI after
intraabdominal surgery, as a large-scale study reported a 15-fold
higher risk of mortality in patients with AKI compared to those
without AKI [3]. Moreover, even patients whose renal function
completely recovered after postoperative AKI still faced a higher
risk of death compared to those without AKI [4,5], highlighting
the profound and lasting consequences of this condition. These
statistics underscore the need for accurate prediction and
preemptive management of AKI in the postoperative setting.

There are many factors associated with postoperative AKI: age;
sex; obesity; type of surgery; medications including
renin-angiotensin-aldosterone system inhibitors (RASi) and
nonsteroidal anti-inflammatory drugs (NSAIDs); and
comorbidities such as chronic kidney disease (CKD), diabetes,
hypertension, cardiovascular disease, liver disease, and chronic
obstructive pulmonary disease [6-8]. These factors need to be
integrated to assess the risk of postoperative AKI before surgery,
and accurate risk prediction enables recognition of patients who
need preoperative, intraoperative, and postoperative management
to alleviate the risk. Several risk-scoring tools for postoperative
AKI have been described [9-11]. However, their limitations are

the homogeneity of the study population, the inclusion of a
single center or a small number of centers, and the lack of
external validation. To make the risk-scoring system
generalizable, validation from a larger cohort using a multicenter
database is needed [12]. Machine learning allows greater insight
into possible interactions between variables and searches for as
many informative and interesting feature relationships as
possible, including those in subgroups, which can discover new
variables involved in the event and is useful in a large dataset
[13]. Therefore, the aim of this study was to build a risk
prediction model for postoperative AKI using machine learning
methods from a multicenter cohort.

Methods

Study Population
Patients who underwent general anesthesia surgery from March
1, 2009, to December 31, 2019, at seven academic hospitals of
the Catholic University of Korea (Seoul St. Mary’s, Yeouido
St. Mary’s, Uijeongbu St. Mary’s, Eunpyeong St. Mary’s,
Bucheon St. Mary’s, St. Vincent, and Incheon St. Mary’s
Hospitals) were included. The exclusion criteria were as follows:
operation-related criteria were operation duration under 1 hour
or duration not available, cardiac surgeries, operations of brain
death donors, nephrectomies, and kidney transplant operations;
and renal function-related exclusion criteria were patients with
a history of renal replacement therapy, preoperative serum
creatinine (sCr) ≥4.0 mg/dL or estimated glomerular filtration

rate (eGFR) <15 mL/min per 1.73 m2, elevation of preoperative
sCr more than 0.3 mg/dL or 1.5 times within 2 weeks before
surgery, and patients without preoperative or postoperative sCr
values (Figure 1).
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Figure 1. Flowchart of the study population. AKI: acute kidney injury; CMC: Catholic Medical Center; Cr: serum creatinine; eGFR: estimated glomerular
filtration rate; op: operation; RRT: renal replacement therapy.

Ethical Considerations
The study was approved by the institutional review board of
the Catholic University of Korea, College of Medicine
(XC20WIDI0080) with waiver of consent due to the
retrospective study methods. This study was not registered as
it is a retrospective observational study. This report has been
written according to the recently updated TRIPOD+AI
(Transparent Reporting of a Multivariable Prediction Model for
Individual Prognosis or Diagnosis+Artificial Intelligence)
statement [14].

Definition of Postoperative AKI
Postoperative AKI was defined as AKI that developed within
30 days after surgery, using the Kidney Disease: Improving
Global Outcomes (KDIGO) criteria [15]. Stage-1 AKI was
defined as sCr 1.5 to 1.9 times above baseline or an increase in
sCr ≥0.3 mg/dL; stage-2 AKI was defined as sCr 2.0 to 2.9
times above baseline; and stage-3 AKI was defined as sCr more
than 3 times above baseline, ≥4 mg/dL, or the initiation of renal
replacement therapy (hemodialysis, peritoneal dialysis, or
continuous renal replacement therapy). We did not use the urine
output criteria of KDIGO, as previous studies suggested that
the threshold of oliguria for postoperative AKI may be different
from those of other AKIs [16,17] and due to the lack of data.
This definition of postoperative AKI was used to create the
supervised learning dataset of those with or without
postoperative AKI.

Data Collection and Cleansing
We collected data on demographic characteristics; underlying
clinical diseases; preoperative laboratory data; preoperative
medication; and surgical characteristics such as expected
operation time, the day of operation (weekday or weekend), and
the department of surgery. The underlying diseases of subjects
were determined using the International Statistical
Classification of Diseases and Related Health Problems, 10th
Revision (ICD-10) codes of principal and secondary diagnosis.
Comorbid diseases and ICD-10 codes are shown in Multimedia

Appendix 1. Preoperative medications included RASi
(angiotensin converting enzyme inhibitor [ACEi] or angiotensin
II type 1 receptor blocker [ARB]) or NSAIDs. Preoperative
eGFR was calculated from the Chronic Kidney Disease
Epidemiology Collaboration equation [18]. BMI was calculated
as the patient’s weight in kilograms divided by height in meters

squared (kg/m2).

Anonymized data was extracted from the Catholic Medical
Center (CMC) Clinical Data Warehouse, which is separately
generated and managed redundantly from the electronic medical
record systems of eight affiliated hospitals of the College of
Medicine, the Catholic University of Korea [5] and processed
using R software (version 3.6.3; R Foundation for Statistics
Computing). The 38 variables included in the final analysis are
shown in Table 1. In cases where laboratory tests were
conducted multiple times before surgery, we selected the most
recent preoperative values, taken closest to the time of surgery,
to ensure the data accurately reflected the patient’s latest clinical
status. Data artifacts and extreme values were set to the 1st
percentile and 99th percentile, and missing values were filled
using multiple imputation by chained equations (MICE) [19].
MICE was used to provide more accurate estimates of the
missing variables with the correlation of missing variables to
other existing data points [20]. We excluded variables with
more than 40% missing data, following common practice
[21-23]. The rates of the missing data for the variables are shown
in Multimedia Appendix 2. Nonbinary data were one-hot
encoded, a method for rearranging categorical data into binary
variables, and numerical data were normalized using min-max
scaling. This would convert all numeric values between or equal
to a value of 0 and 1. Min-max scaling is given by:

One-hot encoding, min-max scaling, and dataset splitting were
accomplished using the Scikit-Learn library (version 0.24.2)
[24]. These steps are required to improve the performance of
machine learning models and training stability. Because there
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was a small percentage of AKI events (3.3%), there was an
extreme class imbalance in the dataset. Such imbalances can
cause a falsely elevated accuracy and adversely affect machine
learning training [25]. To help overcome this issue, the AKI

training dataset was augmented using an oversampling method
by synthetic minority over-sampling technique (SMOTE), which
has been shown to improve imbalanced class classifications
(using imblearn library version 0.8.0) [26,27].

Table 1. Variables included in the final analysis.

VariablesParameters

Patient parameters • Age
• Sex
• Systolic BPa

• Diastolic BP
• BMI
• Chronic kidney disease
• Diabetes
• Hypertension
• Cerebrovascular disease
• Coronary artery disease
• COPDb

• Liver cirrhosis
• Smoking
• Preoperative ACEic or ARBd usage
• Preoperative NSAIDe usage

Surgical parameters • Department
• Weekday
• Operation duration

Laboratory parameters • White blood cell count
• Hemoglobin
• C-reactive protein
• Glucose
• Urea nitrogen
• Creatinine
• eGFRf

• Total protein
• Albumin
• ASTg

• ALTh

• Sodium
• Potassium
• Chloride
• Calcium
• Uric acid
• Creatine phosphokinase
• Lactic dehydrogenase
• Urine specific gravity
• Urine protein

aBP: blood pressure.
bCOPD: chronic obstructive pulmonary disease.
cACEi: angiotensin-converting enzyme inhibitor.
dARB: angiotensin II type 1 receptor blocker.
eNSAID: nonsteroidal anti-inflammatory drug.
feGFR: estimated glomerular filtration rate.
gAST: aspartate aminotransferase.
hALT: alanine aminotransferase.

Machine Learning
Various machine learning methods were used to create the
model, which was trained and evaluated using Python (version
3.8.5; Python Software Foundation). Machine learning methods

commonly used in health care were applied [28,29]. Models
applied were logistic regression, decision tree, random forest,
naïve Bayes (using Scikit-Learn library version 0.24.2) [24],
light gradient boosting machine (GBM; using lightgbm version
3.2.1) [30], and deep neural network (DNN; using Keras library
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version 2.5.0) [31]. The strengths and weaknesses of each model have been summarized in Table 2.

Table 2. Characteristics of machine learning methods.

DisadvantagesAdvantagesHow it worksMethod

Multiple layers of interconnected nodes (neurons) of
at least 3 hidden layers or more. Each neuron is a
weighted sum of inputs and produces output by an
activation function. Learns by backpropagation.

DNNa [32] •• Requires large amounts of data
to avoid overfitting

Can capture complex rela-
tionships between features,
especially in larger datasets • Computationally expensive

• Can capture hierarchical
features

Linear classification algorithm that finds relationships
between independent variables and a binary outcome
using the probability from logistical functions.

Logistic regression
[33]

•• May not capture complex rela-
tionships between features

Computationally less inten-
sive

• Large datasets can be rea-
sonably adapted

A number of nodes that separate features depending
on feature values and continue at each node, repre-
senting a tree.

Decision tree [34] •• Prone to overfitting of dataCan capture complex rela-
tionships between features,
especially in larger datasets

• Can produce a biased decision
tree depending on features

An ensemble (group) of decision trees that randomly
select features and data for training, with decisions
made by the ensemble using regression or other
methods.

Random forest [35] •• Can be computationally expen-
sive

Can capture complex rela-
tionships between features,
especially in larger datasets

• Less likely to overfit com-
pared to a single decision
tree

An ensemble (group) of “weak models” (usually de-
cision trees), which are sequentially added to one
another to help to improve performance over a num-
ber of iterations.

Light GBMb [30] •• Can possibly overfit dataCan capture complex rela-
tionships between features,
especially in larger datasets

• Can capture more complex
relationships compared to
random forest

Makes use of conditional probability to represent the
likelihood of classification given a certain set of
features, assuming that each feature is independent
of one another.

Naïve Bayes [36] •• May not capture complex rela-
tionships between features

Computationally less inten-
sive

•• Relies on the assumption that
features are independent of one
another

Large datasets can be rea-
sonably adapted

aDNN: deep neural network.
bGBM: gradient boosting machine.

For the deep learning model, the structure that was chosen was
a model that had an input layer of width 50 (to account for the
40 inputs and to include the one-hot encodings); 3 hidden layers
with a width of 64, 32, and 32; and a single output node. The
configurations of the different models are shown in Multimedia
Appendix 3. The training of the models was done on a machine
with Intel Xeon Gold 6240R (8 cores) at 2.40 GHz, with 64 GB
of RAM, Windows 10 Enterprise Build 17763. To analyze the
statistical performance of the models for postoperative AKI
prediction, we assessed the area under the curve (AUC) of the
receiver operating characteristic (ROC) curve, accuracy,
precision, sensitivity (recall), specificity, and F1-score. To
determine the optimal thresholds for ROC-AUC analysis and
the calculation of sensitivity and specificity, we used the Youden
index (Youden J statistic). This index is defined as:

Alternatively, it can be expressed as the maximum value of true
positive rate – false positive rate, which was the criterion applied
in our models to identify the threshold value. This method

ensures a balanced trade-off between sensitivity and specificity,
as described in Schisterman et al [37].

Statistical Analysis
Statistical analysis was performed using SAS software (version
9.4; SAS Institute). Continuous variables were presented as
means and SDs for data with normal distribution and presented
as medians and IQRs for data with nonparametric distribution.
After the distribution of data between the two groups was
determined, they were compared using an independent t test
(2-tailed) or Wilcoxon rank sum test. Categorical data were
presented as percentages, and a comparison between the two
groups was performed using the chi-square test or Fisher exact
test. To determine the risk factors for AKI, we used the logistic
regression model. Multivariable analysis using logistic
regression was performed on variables with a P value <.20 on
univariable analysis [38]. The results are presented as odds ratio
with 95% CI. P values <.05 were considered significant.
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Results

Patient Baseline Characteristics
A total of 439,072 surgery cases from seven academic hospitals
of the Catholic University of Korea were included in the study
(Figure 1). After the exclusion of patients according to the
exclusion criteria mentioned above, a total of 239,267 cases
were included in the final analysis. Among these, 7935 (3.3%)
AKI events occurred. Baseline demographics of patients with
and without AKI are shown in Table 3. Significant differences
were observed in all baseline characteristics between the two
groups. Patients with AKI were older, with a higher percentage
of those of the female sex, and had a lower BMI, a higher
percentage of smokers, and higher baseline systolic and diastolic

blood pressure. The AKI group also showed a higher percentage
of all preexisting comorbidities (CKD, diabetes, hypertension,
coronary artery disease, cerebrovascular disease, chronic
obstructive pulmonary disease, or liver cirrhosis); more frequent
usage of RASi (ACEi or ARB) and NSAIDs; and a higher
percentage of patients undergoing general surgery, neurosurgery,
and thoracic surgery. Laboratory results of the AKI group
showed lower levels of hemoglobin, serum albumin, and eGFR,
and higher baseline sCr and C-reactive protein levels. Variable
selection was performed based on these clinical characteristics
using logistic regression (clinical parameters are shown in Table
4 and laboratory parameters are shown in Table 5). During
feature selection, the hematocrit variable was removed because
it had >0.9 correlation with preoperative hemoglobin levels.
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Table 3. Baseline characteristics.

P valueAKI (n=7935)No AKIa (n=231,332)Variables

<.00161.36 (4.19)54.56 (5.16)Age (years), mean (SD)

<.0012997 (37.8)126,217 (54.6)Male sex, n (%)

<.00124.07 (4.22)24.29 (4.06)BMI (kg/m2), mean (SD)

<.0011424 (18.0)34,228 (14.8)Smoker, n (%)

Preexisting comorbidities

<.001114 (1.4)298 (0.1)Chronic kidney disease, n (%)

<.0012663 (8.4)7295 (3.2)Diabetes, n (%)

<.001504 (6.4)5802 (2.5)Hypertension, n (%)

<.001308 (3.9)3927 (1.7)Coronary artery disease, n (%)

<.001734 (9.3)11,960 (5.2)Cerebrovascular disease, n (%)

<.00185 (1.1)952 (0.4)COPDb, n (%)

<.001131 (1.9)1077 (0.5)Liver cirrhosis, n (%)

<.001133.81 (20.7)125.84 (15.74)Systolic BPc (mm Hg), mean (SD)

<.00167.01 (12.69)69.71 (9.99)Diastolic BP (mm Hg), mean (SD)

Medication, n (%)

<.001768 (9.7)7844 (3.4)ACEid or ARBe

<.0011650 (20.8)35,006 (15.1)NSAIDsf

<.001Department, n (%)

2409 (30.4)61,948 (26.8)General surgery

1407 (17.7)31,169 (13.5)Neurosurgery

1176 (14.8)60,442 (26.1)Orthopedics

299 (3.8)22,607 (9.8)Obstetrics and Gynecology

148 (1.9)11,551 (5.0)Otorhinolaryngology

427 (5.4)10,774 (4.7)Thoracic surgery

2069 (26.1)32,831 (14.2)Others

Preoperative laboratory results, mean (SD)

<.00112.1 (2.15)13.14 (1.83)Hemoglobin (g/dL)

<.00116.86 (8.75)14.69 (5.47)Urea nitrogen (mg/dL)

<.0010.91 (0.43)0.81 (0.24)Creatinine (mg/dL)

<.00182.75 (7.12)95.41 (23.22)eGFRg (mL/min/1.73 m2)

<.0013.67 (0.69)4.16 (0.51)Albumin (g/dL)

<.0018.4 (26.4)4.04 (18.35)C-reactive protein (g/dL)

aAKI: acute kidney injury.
bCOPD: chronic obstructive pulmonary disease.
cBP: blood pressure.
dACEi: angiotensin-converting enzyme inhibitor.
eARB: angiotensin II type 1 receptor blocker.
fNSAID: nonsteroidal anti-inflammatory drug.
geGFR: estimated glomerular filtration rate.
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Table 4. Logistic regression analysis comparing clinical parameters between patients with and without acute kidney injury.

Multivariable analysisUnivariable analysisClinical parameters

P valueOdds ratio (95% CI)P valueaOdds ratio (95% CI)

<.0011.021 (1.019-1.023)<.0011.034 (1.032-1.036)Age (years)

<.0010.690 (0.652-0.73)<.0010.505 (0.483-0.529)Sex: male (reference: female)

<.0011.013 (1.011-1.014)<.0011.023 (1.022-1.024)Systolic BPb (mm Hg)

<.0010.983 (0.981-0.985)<.0010.974 (0.972-0.977)Diastolic BP (mm Hg)

<.0011.011 (1.006-1.017)<.0010.986 (0.981-0.992)BMI (kg/m2)

<.0012.248 (1.728-2.925)<.00111.303 (9.098-14.043)Chronic kidney disease: yes (reference: no)

.011.161 (1.05-1.284)<.0012.800 (2.577-3.042)Diabetes mellitus: yes (reference: no)

.011.210 (1.08-1.357)<.0012.636 (2.4-2.896)Hypertension: yes (reference: no)

<.0011.217 (1.118-1.326)<.0011.870 (1.729-2.022)Cerebrovascular disease: yes (reference: no)

.491.049 (0.917-1.199)<.0012.338 (2.078-2.632)Coronary artery disease: yes (reference: no)

.291.136 (0.896-1.441)<.0012.62 (2.097-3.275)COPDc: yes (reference: no)

.011.316 (1.086-1.595)<.0014.147 (3.493-4.925)Liver cirrhosis: yes (reference: no)

<.0011.191 (1.112-1.275)<.0011.329 (1.253-1.411)Smoking: active (reference: never)

<.0011.164 (1.150-1.178)<.0011.223 (1.21-1.237)Operation duration

<.0011.326 (1.216-1.447)<.0013.053 (2.825-3.3)Preoperative ACEid or ARBe usage: yes (reference: no)

.991 (0.941-1.062)<.0011.472 (1.393-1.556)Preoperative NSAIDsf usage: yes (reference: no)

aAll variables with P value <.05 in the univariate analysis were included in the multivariate analysis.
bBP: blood pressure.
cCOPD: chronic obstructive pulmonary disease.
dACEi: angiotensin-converting enzyme inhibitor.
eARB: angiotensin II type 1 receptor blocker.
fNSAID: nonsteroidal anti-inflammatory drug.
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Table 5. Logistic regression analysis comparing laboratory parameters between patients with and without acute kidney injury.

Multivariable analysisUnivariable analysisLaboratory parameters

P valueOdds ratio (95% CI)P valueaOdds ratio (95% CI)

Preoperative serum variables

<.0010.524 (0.489-0.561)<.0010.269 (0.26-0.278)Albumin

.061.042 (0.998-1.089)<.0010.452 (0.44-0.464)Total protein

<.0011.005 (1.003-1.008)<.0011.015 (1.013-1.017)White blood cell count

.621 (0.999-1.001)<.0011.002 (1.002-1.003)ALTb

.521 (1-1.001)<.0011.003 (1.002-1.003)ASTc

.631.001 (0.997-1.005)<.0011.05 (1.047-1.053)Urea nitrogen

.881.003 (0.959-1.049)<.0010.433 (0.419-0.448)Calcium

.201.005 (0.997-1.013)<.0010.975 (0.968-0.982)Chloride

.121 (1-1)<.0011(1-1)Creatine phosphokinase

<.0013.218 (2.871-3.607)<.0013.034 (2.846-3.234)Creatinine

<.0011.012 (1.011-1.013)<.0011.004 (1.004-1.005)eGFRd

.010.998 (0.997-0.999)<.0011.007 (1.006-1.007)C-reactive protein

<.0011.002 (1.002-1.002)<.0011.007 (1.006-1.007)Glucose

.991 (0.958-1.043)<.0010.747 (0.738-0.756)Hemoglobin

<.0010.755 (0.715-0.798)<.0010.539 (0.51-0.57)Potassium

<.0011 (1-1)<.0011.001 (1.001-1.001)Lactic dehydrogenase

<.0011.078 (1.062-1.095)<.0011.099 (1.084-1.114)Uric acid

<.0010.98 (0.971-0.99)<.0010.892 (0.886-0.898)Sodium

Preoperative urine variables

<.0011.369 (1.325-1.416)<.0012.002 (1.948-2.057)Dipstick protein

<.0010.042 (0.009-0.196).010.118 (0.023-0.617)Specific gravity

aAll variables with P value <.05 in the univariate analysis were included in the multivariate analysis.
bALT: alanine aminotransferase.
cAST: aspartate aminotransferase.
deGFR: estimated glomerular filtration rate.

Model Performance
The dataset was divided into the training set (80%) and the test
set (20%). The training set (n=191,413) and test set (n=47,854)
were balanced for outcomes and randomly assigned. To prevent
outcome prediction bias, the testing subset was only evaluated
after the model had been finalized. Predictive features were
blinded during the outcome assessment phase. The loss function
graph and AUC graphs of the training and validation sets for
the DNN model are shown in Figure 2. Performance of the
training and test sets of the DNN model is also presented in
Multimedia Appendix 4. The performances of the different
models are shown in Table 6.

We hypothesized that a simple system not using too many
variables, for example, fewer than 20 variables, would be more
practical to use in a clinical setting. Therefore, we evaluated
model 2 and model 3 using multiple machine learning methods.
Model 2 included 11 variables that were used in the
classification system developed by Park et al [9], including age,

sex, emergency operation, operation duration, diabetes, ACEi
or ARB usage, blood levels of albumin, hemoglobin, sodium,
eGFR, and urine dipstick protein. In this model, light GBM
(AUC=0.81) and DNN (AUC=0.8) showed the highest
performance. Model 3 included variables that were found
significant on multivariable analysis, including age, sex, systolic
blood pressure, diastolic blood pressure, operation duration,
eGFR, blood levels of creatinine, albumin, sodium, potassium,
chloride, glucose, lactic dehydrogenase, and urine dipstick
protein. In this model as well, light GBM (AUC=0.825), and
DNN (AUC=0.811) showed the highest performance. Model 1
included all 38 preoperative variables and surgical
characteristics, on which light GBM (AUC=0.836), and DNN
(AUC=0.832) demonstrated the best prediction performance
once again. The ROC-AUC for model 1 of the different AKI
prediction models is shown in Figure 3.

To enhance clinical applicability, a nomogram was created
based on a simplified logistic regression model, focusing on 8
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key predictors: age, gender, albumin, hemoglobin, sodium,
operation duration, eGFR, and urine protein. The nomogram
was created by making modifications to a Python nomogram
library called simpleNomo [39]. It provides a graphical tool for

clinicians to estimate the risk of AKI in individual patients by
integrating these factors. This approach allows quick risk
stratification, clinical decision-making, and targeted
interventions [40]. The nomogram is shown in Figure 4.

Figure 2. Loss function graph and AUC graph of the training and validation sets. (A) Loss functions of the validation and training sets converge at
about epoch 86 and stabilize thereafter. (B) AUCs also overlap around epoch 86, and this suggests the model is starting to overfit on the training data.
AUC: area under the curve; Val: validation.
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Table 6. Performance metrics of postoperative acute kidney injury prediction models.

F1-scoreRecall or sensitivitySpecificityPrecision or PPVcNPVbAccuracyAUCaAnalysis and model

DNNd

0.1560.8020.7080.0860.990.7110.832Model 1e

0.1470.750.7110.0820.9880.7120.8Model 2f

0.1440.7850.6880.0790.9890.6910.811Model 3g

Logistic regression

0.1510.8050.6960.0830.990.70.825Model 1

0.1480.7090.7310.0830.9870.730.79Model 2

0.1490.7410.7180.0830.9880.7190.806Model 3

Logistic regression with LASSOh penalty

0.1580.7710.7250.0880.9890.7270.821Model 1

0.1440.7280.7120.080.9870.7130.788Model 2

0.1430.7490.7020.0790.9880.7030.803Model 3

Decision tree

0.1040.6910.6030.0560.9830.6060.679Model 1

0.1140.7080.6330.0620.9840.6350.711Model 2

0.1390.3790.860.0850.9760.8440.626Model 3

Random forest

0.1630.7320.7520.0920.9880.7510.813Model 1

0.1460.7510.7060.0810.9880.7080.806Model 2

0.1610.7080.7580.0910.9870.7560.812Model 3

Light GBMi

0.1570.8130.7080.0870.9910.7110.836Model 1

0.1540.740.730.0860.9880.730.81Model 2

0.1560.7560.7270.0870.9880.7280.825Model 3

Naïve Bayes

0.1370.7670.6770.0750.9880.680.785Model 1

0.1310.770.6580.0720.9880.6620.773Model 2

0.1530.7010.7440.0860.9860.7420.792Model 3

aAUC: area under the curve.
bNPV: negative predictive value.
cPPV: positive predictive value.
dDNN: deep neural network.
eModel 1: age, sex, systolic blood pressure, diastolic blood pressure, BMI, chronic kidney disease, diabetes mellitus, hypertension, cerebrovascular
disease, coronary artery disease, chronic obstructive pulmonary disease, liver cirrhosis, emergency operation, operation duration, angiotensin-converting
enzyme inhibitor (ACEi) or angiotensin II type 1 receptor blocker (ARB) usage, nonsteroidal anti-inflammatory drug (NSAID) usage, estimated
glomerular filtration rate (eGFR), blood levels of creatinine, total protein, albumin, aspartate aminotransferase (AST), alanine aminotransferase (ALT),
urea nitrogen, sodium, potassium, chloride, calcium, creatine phosphokinase, lactic dehydrogenase, C-reactive protein, glucose, hemoglobin, and white
blood cell count, urine specific gravity, and urine protein.
fModel 2: age, sex, emergency operation, operation duration, diabetes mellitus, ACEi or ARB usage, blood levels of albumin, hemoglobin, and sodium,
eGFR, and urine protein.
gModel 3: age, sex, systolic blood pressure, diastolic blood pressure, operation duration, eGFR, blood levels of creatinine, albumin, sodium, potassium,
chloride, glucose, and lactic dehydrogenase, and urine protein.
hLASSO: Least Absolute Shrinkage and Selection Operator.
iGBM: gradient boosting machine.
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Figure 3. ROC-AUC of the AKI prediction models. AKI: acute kidney injury; AUC: area under the curve; DNN: deep neural network; Light GBM:
light gradient boosting machine; LR + L1: logistic regression with Least Absolute Shrinkage and Selection Operator penalty; ROC: receiver operating
characteristic.

Figure 4. A nomogram based on a simplified logistic regression model. eGFR: estimated glomerular filtration rate; Hb: hemoglobin; Na: sodium;
OpDuration: operation duration; Prot: urine protein.
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Finally, our postoperative AKI prediction tool, the CMC-AKIX,
was developed using all 38 variables. Therefore, the DNN model
1 was developed into a user-friendly website, which can be

accessed on the web [41] (shown in Figure 5). This was created
using Flask and hosted on a Google Cloud Virtual Machine.

Figure 5. A sample page of the website application. ACE-I: angiotensin-converting enzyme inhibitor; ALT: alanine aminotransferase; ARB: angiotensin
II type 1 receptor blocker; AST: aspartate aminotransferase; BP: blood pressure; CMC: Catholic Medical Center; COPD: chronic obstructive pulmonary
disease; eGFR: estimated glomerular filtration rate; NSAID: nonsteroidal anti-inflammatory drugs.

Discussion

Using a multicenter database of 239,267 noncardiac surgeries,
we have developed a high-performance risk prediction system
for postoperative AKI that can be easily applied. The model
uses preoperative patient characteristics and laboratory data
along with simple information about the surgery. DNN and light
GBM showed a good performance in predicting postoperative
AKI, with the best performance when all 38 variables were
included.

AKI has a global presence and a high disease burden and
mortality [42]. The incidence of AKI varies widely according
to the geographic locations and is dependent on the setting:
community acquired versus hospital acquired. It was reported
that 1 in 5 adults and 1 in 3 children worldwide experience
hospital-acquired AKI using the KDIGO definition [43]. Causes
of hospital-acquired AKI include sepsis, critical illness, surgery,
and use of nephrotoxic medications [44]. Postoperative AKI
accounts for 30% to 40% of hospital-acquired AKI [1] and
increases the risk of morbidity and in-hospital mortality [2].
Since treatment options are limited, the prevention of
postoperative AKI is the cornerstone of improving patient
outcomes after surgery [1]. Previous studies have found risk
factors that increase the risk of postoperative AKI [1,6,7].
However, the definition of AKI using increased sCr levels as a
marker of kidney damage has a limitation, because sCr levels
begin to increase after the pathological changes of kidney injury
are already in progress. Therefore, earlier and timely prevention
and detection of postoperative AKI can be difficult [45]. This
has led to continuous efforts to develop a risk stratification

system for postoperative AKI. Recently, Park et al [9] have
developed an index to classify postoperative AKI within 90
days after noncardiac surgery from 90,805 patients (SPARK
index), which included 11 variables: age, sex, expected surgery
duration, emergency operation, diabetes, use of RASi, baseline
eGFR, dipstick albuminuria, hypoalbuminemia, anemia, and
hyponatremia. The SPARK index showed a discrimination
power of AUC of 0.80 for postoperative AKI in the discovery
cohort and an AUC of 0.72 in the validation cohort.

Machine learning approaches are more flexible than statistical
methods as they are free from statistical assumptions such as
noncollinearity or normal distribution of residuals. It allows all
possible interactions between variables according to
multidimensional nonlinear patterns and aggressively searches
for as many informative and interesting features as possible
[13]. Lei et al [11] used machine learning techniques to stratify
the risk of postoperative AKI within 7 days after noncardiac
surgery from a single center cohort of 42,615 patients. In that
study, GBM showed the highest performance with an AUC of
0.817 (95% CI 0.802-0.832) and included 339 preoperative and
intraoperative variables. Bihorac et al [10] developed a machine
learning–based risk prediction tool (MySurgeryRisk) for 8 major
postoperative complications within 24 months after any kind
of surgery from a single center cohort of 51,457 patients. Using
this platform, the authors validated the model’s performance
for predicting postoperative AKI, with an AUC of 0.82 (95%
CI 0.82-0.83), including 135 variables from a cohort of 22,300
surgeries [46].

The strength of our study is that we used a multicenter dataset
of a larger scale than previous ones. Data were extracted from
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the CMC Clinical Data Warehouse, which included data from
seven academic hospitals located in five cities in South Korea.
The prediction model was developed using 38 clinical and
laboratory parameters in combination that exhibited the best
prediction performance. These variables are used in clinical
practice and can be extracted from electronic medical records.
In addition, by including the department of surgery as a variable,
the CMC-AKIX can be applied to various kinds of noncardiac
surgery. We are looking to simplify the model and improve
usability by allowing incomplete data or missing values to be
filled in with best estimate values using imputation methods
such as MICE.

Our study holds a distinct advantage in that it compared several
of the most widely used machine learning methods in clinical
data modeling. By doing so, we systematically observed and
elucidated the strengths and limitations of each model, using a
large, well-curated dataset. We observed that certain methods
were more affected by the imbalanced dataset, including the
decision tree classifier, random forest, and naïve Bayes. We
aim to offer insights into the selection of different algorithms
for applications in clinical studies.

This study has several limitations. First, the results of this study
have not been externally validated in independent cohorts from
different countries, races, and ethnicities. As such, further
external validation is needed to assess the generalizability of
the CMC-AKIX model across diverse populations. Second, our
definition of postoperative AKI as AKI developing within 30
days after surgery may be controversial as most studies
observing postoperative AKI apply the time period of 7 days
in conjunction with the KDIGO criteria [15]. A 30-day period
was selected for this study because postoperative complications
or morbidity in most studies is defined as events occurring
within 30 days after surgery [47,48]. Patients with AKI that
persist for more than 7 days, beyond the 30-day period of the
study, have been organized in a second cohort study observing
postoperative risk of acute kidney disease and CKD [49]. Third,

the urine output definition of the KDIGO criteria was not used
because of a lack of urine output data. This could have led to
incomplete identification of postoperative AKI. Fourth, the
intraoperative and postoperative factors were not included in
the risk prediction system, which also affects postoperative
renal outcomes. As the purpose of our model is mainly to
identify patients at high risk for postoperative AKI while they
are still in the preoperative setting, intraoperative and
postoperative variables should not be included.

In the future, we look to collaborating with other institutions
with different demographic data to validate the model and see
if it could perform well with different demographic populations.
Also, the model will be fine-tuned in the process of including
diverse datasets, and the performance of the model will be
improved by creating an appropriate ensemble of machine
learning models to gain the benefits of the different machine
learning structures and advantages [50]. At last, practical use
of the model may be significantly increased by incorporating
it into an electronic alert system to automatically identify
patients at high risk for postoperative AKI, providing timely
risk alerts, and thereby allowing for proactive management such
as cessation of causative medications or prescription of
fluids—ultimately improving patient care [51]. Such systems
could also allow for continuous updates and refinements of the
model as new data become available, ensuring its relevance and
adaptability. By supporting evidence-based decision-making
and improving perioperative risk management, this approach
has the potential to significantly enhance patient outcomes and
optimize resource allocation in diverse health care settings. In
conclusion, we propose a machine learning–based risk prediction
tool, the CMC-AKIX, using individual patients’ preoperative
characteristics and surgical information. This model was adapted
to a user-friendly web-based program, and one can use it even
if all variables are not included. This tool may guide
preoperative counseling, decision-making, and perioperative
care.
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