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Abstract

Background: Artificial intelligence (AI) shows considerable promise in the areas of lymphoma diagnosis, prognosis, and gene
prediction. However, a comprehensive assessment of potential biases and the clinical utility of AI models is still needed.

Objective: Our goal was to evaluate the biases of published studies using AI models for lymphoma histopathology and assess
the clinical utility of comprehensive AI models for diagnosis or prognosis.

Methods: This study adhered to the Systematic Review Reporting Standards. A comprehensive literature search was conducted
across PubMed, Cochrane Library, and Web of Science from their inception until August 30, 2024. The search criteria included
the use of AI for prognosis involving human lymphoma tissue pathology images, diagnosis, gene mutation prediction, etc. The
risk of bias was evaluated using the Prediction Model Risk of Bias Assessment Tool (PROBAST). Information for each AI model
was systematically tabulated, and summary statistics were reported. The study is registered with PROSPERO (CRD42024537394)
and follows the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 2020 reporting guidelines.

Results: The search identified 3565 records, with 41 articles ultimately meeting the inclusion criteria. A total of 41 AI models
were included in the analysis, comprising 17 diagnostic models, 10 prognostic models, 2 models for detecting ectopic gene
expression, and 12 additional models related to diagnosis. All studies exhibited a high or unclear risk of bias, primarily due to
limited analysis and incomplete reporting of participant recruitment. Most high-risk models (10/41) predominantly assigned
high-risk classifications to participants. Almost all the articles presented an unclear risk of bias in at least one domain, with the
most frequent being participant selection (16/41) and statistical analysis (37/41). The primary reasons for this were insufficient
analysis of participant recruitment and a lack of interpretability in outcome analyses. In the diagnostic models, the most frequently
studied lymphoma subtypes were diffuse large B-cell lymphoma, follicular lymphoma, chronic lymphocytic leukemia, and mantle
cell lymphoma, while in the prognostic models, the most common subtypes were diffuse large B-cell lymphoma, follicular
lymphoma, chronic lymphocytic leukemia, and Hodgkin lymphoma. In the internal validation results of all models, the area under
the receiver operating characteristic curve (AUC) ranged from 0.75 to 0.99 and accuracy ranged from 68.3% to 100%. In models
with external validation results, the AUC ranged from 0.93 to 0.99.

Conclusions: From a methodological perspective, all models exhibited biases. The enhancement of the accuracy of AI models
and the acceleration of their clinical translation hinge on several critical aspects. These include the comprehensive reporting of
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data sources, the diversity of datasets, the study design, the transparency and interpretability of AI models, the use of cross-validation
and external validation, and adherence to regulatory guidance and standardized processes in the field of medical AI.

(J Med Internet Res 2025;27:e62851) doi: 10.2196/62851
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Introduction

Lymphoma, a malignancy that originates from the
lymphohematopoietic system, is recognized as one of the most
prevalent hematological cancers globally. Epidemiological
studies indicate that Hodgkin lymphoma (HL) and non-Hodgkin
lymphoma (NHL) are prevalent malignant lymphatic disorders
that pose significant public health challenges. Data from
GLOBOCAN 2020 reveal that the projected global incidence
and mortality for HL are 83,087 and 23,376 cases, respectively,
while for NHL, these figures stand at 544,352 and 259,793,
respectively [1,2]. In China, lymphoma is a considerable public
health challenge. Data from the Global Burden of Diseases
(GBD), Injuries, and Risk Factors Study for 2019 reveal that
the age-standardized incidence rate for HL is 0.57 cases per
100,000 individuals, with an age-standardized mortality rate of
0.15 per 100,000 individuals. For NHL, the age-standardized
incidence rate is significantly higher at 4.99 per 100,000
individuals, and the age-standardized mortality rate is 2.32 per
100,000 individuals [3].

Histopathology, which involves examining tissue specimens at
the cellular level, is the gold standard for the diagnosis of
lymphomas [4]. The conventional diagnostic process typically
involves pathologists using hematoxylin-eosin (HE) staining
of tissues and immunophenotyping for diagnosis. For the
diagnosis of high-grade B-cell lymphomas, fluorescence in situ
hybridization (FISH) is also commonly employed in conjunction
[5]. However, this method has several drawbacks, including
subjectivity, time-consuming procedures, and high costs [6].

Traditionally, pathologists have relied on optical microscopes
to analyze pathological tissue sections. However, the advent of
digital pathology has seen a shift toward the use of computers
for reviewing and analyzing scanned whole slide images (WSIs).
This transition is not only driven by the potential for increased
efficiency but also opens new avenues for the development of
automated diagnostic tools [7]. These tools have the potential
to enhance the accuracy, efficiency, objectivity, and consistency
of diagnoses, which is crucial in addressing the global shortage
of pathologists. They can also increase diagnostic throughput
and reduce the reliance on referrals and additional tests [8]. This
field of research is burgeoning, and for certain types of
malignant tumors, these systems are beginning to demonstrate
clinical utility [9]. However, although many research models
of artificial intelligence (AI) applied to lymphoma
histopathology have been published, it is unclear whether there
are methodological biases in these models, and the clinical
utility of AI applied to lymphoma histopathology has not been
summarized.

In this extensive study, we systematically reviewed the literature
exploring the use of AI technologies, including traditional
machine learning (ML) and deep learning (DL) methods, to
assess digital pathology images for lymphoma diagnosis,
prognosis, and other pertinent applications. Our review
encompasses research that focuses on individual diagnostic
factors, such as histological subtypes, as well as studies that
perform computer-assisted tasks like tumor segmentation. We
also assessed the clinical utility of these AI methods with
consideration of potential biases. The objective of this review
is to provide valuable insights and actionable recommendations
based on the existing body of literature. Thus, this review aims
to provide insights and recommendations based on published
literature to improve the clinical utility of future research,
including reducing the risk of bias, improving reproducibility,
and increasing generalizability.

Methods

Literature Search
A thorough search was conducted across 3 prominent research
databases: PubMed, Cochrane, and Web of Science. The search
was restricted to peer-reviewed journals and conference
proceedings to ensure the quality and credibility of the studies
included. The search timeline extended from the inception of
each database up to August 30, 2024. We employed MeSH
terms for more precise retrieval.

Given the multitude of terms related to AI, our search strategy
incorporated keywords such as “artificial intelligence,” “machine
learning,” “neural network,” and “network, neural (computer),”
along with “lymphoma.” We combined multiple relevant terms
for each concept using the OR operator (eg, “artificial
intelligence” OR “machine learning”) and then merged
“lymphoma” with “artificial intelligence” using the AND
operator. This approach ensured that the retrieved studies met
both criteria.

Subsequently, we screened the articles based on their relevance
to histopathological AI, focusing on the title and abstract. The
review protocol was registered on PROSPERO
(CRD42024537394) prior to the screening of search results for
inclusion. Detailed search strategies and methods are provided
in Multimedia Appendix 1.

Literature Selection
A researcher (YF) manually removed duplicate papers with the
assistance of the reference management software EndNote 20.
Subsequently, another researcher (ZH) independently screened
the articles for inclusion in 2 stages: the first based on titles and
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abstracts, and the second based on the full text. Disagreements
were discussed and arbitrated by a third researcher (JL).

The inclusion criteria required the research to evaluate the use
of at least one AI approach to make diagnostic or prognostic
inferences on human histopathology images from suspected or
confirmed cases of lymphoma. Studies were only included if
AI methods were applied directly to the digital pathology images
or to features that were automatically extracted from the images.
Fundamental tasks, such as segmentation and cell counting,
were included as these could be used by pathologists for
computer-aided diagnosis. Only conventional light microscopy
images were considered, with other imaging modalities, such
as fluorescence and hyperspectral imaging, excluded.
Publications that did not include primary research, such as
review papers, were excluded. Non-English language articles
and research where a full version of the manuscript was not
accessible were excluded.

In the studies included, models were deemed of interest if they
adhered to the same inclusion criteria. When several models
were compared against the same outcome, the model of interest
was typically the newly proposed one. If this was ambiguous,
the model with the best performance during the validation phase
was selected. When multiple models from a single study
exhibited similar modeling techniques, the one with superior
validation performance was included in the assessment. Results
from the same model at varying levels of precision (eg, patch
level, slice level, and patient level) were not treated as distinct
outcomes.

Risk of Bias Assessment
The risk of bias in the models of interest was assessed using the
Prediction Model Risk of Bias Assessment Tool (PROBAST)
[10]. The tool evaluates the likelihood that the reported results
are distorted due to limitations in study design, conduct, and
analysis. PROBAST includes 20 guiding questions categorized
into 4 domains: Participants, Predictors, Outcomes, and
Analysis. These questions are summarized to indicate a high
risk or low risk of bias or are marked as unclear when
insufficient information is available for a comprehensive
assessment and no information is available to suggest a high
risk of bias. It is important to note that an unclear risk of bias
does not imply a methodological flaw but rather indicates
incomplete reporting.

The Participants domain involves the recruitment and selection
of participants to ensure the consistency and representativeness
of the study population targeting the intended demographic.
Relevant details include the recruitment strategy, inclusion
criteria, and number of participants enrolled.

The Predictors domain addresses the consistent definition and
measurement of predictive variables, which in this context often
refers to the generation of digital pathology images. This
encompasses methods for the fixation, staining, scanning, and
digital processing of tissues prior to modeling.

The Outcomes domain involves the appropriate definition and
consistent determination of ground truth labels. This includes
the criteria used to ascertain diagnoses or prognoses, the

expertise of those determining these labels, and whether the
labels are independent of any model outputs.

The Analysis domain encompasses statistical considerations in
the evaluation of model performance to ensure valid and not
overly optimistic results. It includes various factors, such as the
number of participants for each outcome in the test set, the
validation methods used (cross-validation, external validation,
internal validation, etc), the metrics for assessing performance,
and the methods to address the impact of censoring,
confounding, and missing data. Some of these factors are
interrelated. For example, the risk of bias due to a small dataset
is somewhat mitigated by cross-validation, which increases the
effective size of the test set and can be used to assess variability,
reducing the optimism of the results. Additionally, the risk
associated with using a small dataset depends on the type of
outcome being predicted; robust analysis for a 5-class
classification requires more data than a binary classification.
There must also be sufficient data across all relevant patient
subgroups; for instance, if multiple subtypes of lymphomas are
included, it is not acceptable for 1 subtype to be represented by
only a few patients. Due to these interrelated factors, there are
no rigid standards for determining the appropriate size of a
dataset.

Inconsistencies in methodology often lead to bias risk. For
example, inconsistencies in HE staining from different research
centers can lead to heterogeneity in the visual characteristics of
digital pathology slides, potentially causing spurious correlations
through random or systematic differences within or between
subgroups in the dataset. Using a large dataset during training
may enhance the model’s generalizability, but this must be
tightly controlled to avoid introducing systematic confounding.
Inconsistencies in the determination of outcomes may mean
that the results of a study are unreliable due to spurious
correlations in the underlying factual labels or invalid due to
misjudgment of the labels.

While PROBAST provides a framework for assessing the risk
of bias, there is a degree of subjectivity in interpreting the signal
questions. Therefore, each model was analyzed by 2 independent
researchers (YF and ZH), with at least one computer scientist
and one pathologist involved in the bias risk assessment of each
model.

The Quality Assessment of Diagnostic Accuracy Studies-AI
(QUADAS-AI) tool was used to evaluate the sensitivity of the
included studies. QUADAS-AI is the AI-specific extension of
QUADAS-2 [11] and QUADAS-C [12], and includes 4 domains
for determining the risk of bias (patient selection, reference
standard, index test, and flow and timing) and 3 domains for
applicability issues (index test, patient selection, and reference
standard) (Multimedia Appendix 2).

Data Synthesis
Data extraction was independently performed by 2 researchers
(YF and MZ), using a form containing 67 fields within the
categories Overview, Data, Methods, Results, and
Miscellaneous. A summary of this process is provided in
Multimedia Appendix 3.
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Information was sought from full-text articles, as well as
references and supplementary materials where appropriate.
Inferences were made only when both researchers were
confident that this gave the correct information, with
disagreements resolved through discussion. Fields that could
not be confidently completed were labeled as being unclear.

All extracted data were summarized in 2 tables, 1 each for
study-level and model-level characteristics. Only models of
interest were included in these tables. The term model outcome
refers to the model output (whether this was a clinical outcome
[diagnosis or prognosis] or a diagnostically relevant outcome
that could be used for computer-aided diagnosis, such as tumor
segmentation). The data synthesis did not include any
meta-analysis due to the diversity of the included methods and
model outcomes. The PRISMA (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses) 2020 guidelines for

reporting systematic reviews were followed, with checklists
provided in Multimedia Appendix 3.

Results

Results of Literature Screening
As shown in Figure 1, the initial literature search identified a
total of 3565 records, with 1375 being duplicates. After
screening titles and abstracts, 2052 records were excluded,
leaving 41 studies for inclusion in the review. All studies that
met the inclusion criteria were identified through research
databases, with no eligible records found in trial registries.
Although the search was performed from 1949, all included
studies were published since 2010, and more than 80% were
published since 2020. The characteristics of these studies are
summarized in Table 1. The model construction parameters of
the 41 included studies are detailed in Table 2.

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 2020 flowchart. AI: artificial intelligence.
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Table 1. Characteristics of the 41 studies included in this systematic review.

Code avail-
able

Model taskOutcome typeSubtypesInternal patholo-
gy images, n

Internal partic-
ipants, n

Geographi-
cal distribu-
tion

Data sourcePublication

NoneIdentificationDiagnosisBurkitt lymphoma,

DLBCLa, and

2560128AmericaSingle centerAchi et al
[13], 2019

small lymphocytic
lymphoma

[15]ClassificationDiagnosisNodal small lym-
phocytic lym-

Unclear629GermanySingle centerSteinbuss et al
[14], 2021

phoma/CLLb and
DLBCL

NoneClassificationDiagnosisFLc and DLBCLUnclear388JapanSingle centerMiyoshi et al
[16], 2020

[18]IdentificationDiagnosisFLUnclear378FranceSingle centerSyrykh et al
[17], 2020

NoneIdentification,
semantic seg-
mentation

PrognosisPediatric nodular
lymphocyte–pre-
dominant Hodgkin
lymphoma

Unclear53GermanySingle centerSereda et al
[19], 2023

NoneClassificationDiagnosisCLL, MCLd, and
FL

374UnclearChinaSingle centerZhang et al
[20], 2020

[22]ClassificationDiagnosisDLBCL31231005AmericaMulticenterLi et al [21],
2022

NoneClassificationOtherCLL, MCL, and
FL

374UnclearChinaSingle centerZhang et al
[23], 2021

NoneClassification,
cell nuclei
segmentation

OtherMonomorphic ep-
itheliotropic intesti-
nal T-cell lym-
phoma

4040ChinaMulticenterYu et al [24],
2021

NoneClassificationOtherDLBCL and FLUnclear842JapanSingle centerTakagi et al
[25], 2023

[27]ClassificationDiagnosisCLL, MCL, and
FL

15,000UnclearSaudi ArabiaSingle centerHamdi et al
[26], 2023

NoneClassificationOtherDLBCL and
Burkitt lymphoma

10,81870AmericaSingle centerMohlman et al
[28], 2020

NoneIdentification,
classification,

DiagnosisMFe6011TurkeySingle centerKarabulut et al
[29], 2023

cell nuclei
segmentation

NoneClassificationDiagnosisCLL, MCL, and
FL

15,353347BrazilSingle centerdo Nascimen-
to et al [30],
2018

NoneClassificationOtherCLL, MCL, and
FL

374UnclearChinaMulticenterZhu et al [31],
2019

NoneClassificationOtherDLBCL, Burkitt
lymphoma, and FL

Unclear262JapanSingle centerHashimoto et
al [32], 2022

NoneIdentification,
semantic seg-
mentation

OtherFL300UnclearGreeceSingle centerMichail et al
[33], 2014

NoneClassificationOtherFL50017GreeceSingle centerKornaropou-
los et al [34],
2014

NoneSemantic seg-
mentation

PrognosisMCL309103ChinaSingle centerChuang et al
[35], 2022
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Code avail-
able

Model taskOutcome typeSubtypesInternal patholo-
gy images, n

Internal partic-
ipants, n

Geographi-
cal distribu-
tion

Data sourcePublication

[37]Semantic seg-
mentation

PrognosisDLBCLUnclear209AmericaMulticenterVrabac et al
[36], 2021

NoneClassificationPrognosisHLfUnclear83GermanySingle centerMotmaen et al
[38], 2023

NoneIdentificationMYC translo-
cation detec-
tion

DLBCL354287HollandMulticenterSwiderska-
Chadaj et al
[39], 2021

NoneClassificationOtherOcular adnexal
mucosa–associated
lymphoid tissue
lymphoma

1290129JapanSingle centerTagami et al
[40], 2023

NoneCell nuclei
segmentation,
classification

PrognosisCLL and FLUnclear61AmericaSingle centerIrshaid et al
[41], 2022

NoneCell nuclei
segmentation,
classification

PrognosisCLL213125AmericaMulticenterEl Hussein et
al [42], 2022

NoneCell nuclei
segmentation,
classification

PrognosisCLL213135AmericaMulticenterChen et al
[43], 2022

[45]ClassificationDiagnosisPrimary central
nervous system
lymphoma

UnclearUnclearChinaMulticenterZhang et al
[44], 2024

[47]IdentificationOtherDLBCL376172AmericaSingle centerTavolara et al
[46], 2024

NoneClassificationDiagnosisHigh-grade B-cell
lymphoma

Unclear57IsraelSingle centerPerry et al [5],
2023

[49]Cell nuclei
segmentation

PrognosisDLBCL220220ChinaSingle centerYan et al [48],
2024

NoneCell nuclei
segmentation

PrognosisDLBCL251216AmericaSingle centerLee et al [50],
2024

NoneCell nuclei
segmentation

PrognosisPrimary central
nervous system
lymphoma

132114ChinaSingle centerDuan et al
[51], 2024

NoneCell nuclei
segmentation

DiagnosisGastric MALTg

lymphoma

350UnclearChinaSingle centerQuan et al
[52], 2024

NoneClassificationDiagnosisCLL, FL, and
MCL

1500UnclearSaudi ArabiaSingle centerAl-Mekhlafi
et al [53],
2022

NoneClassificationDiagnosisFL374UnclearAustraliaSingle centerSomaratne et
al [54], 2019

NoneClassificationDiagnosisCLL, FL, and
MCL

374UnclearAmericaMulticenterCodella et al
[55], 2016

NoneIdentificationMYC translo-
cation detec-
tion

DLBCL15791AmericaMulticenterSwiderska-
Chadaj et al
[56], 2020

NoneClassificationDiagnosisMF700UnclearIndiaUnclearBasu et al
[57], 2022

[59]ClassificationDiagnosiscHL, DLBCL, and
MCL

UnclearUnclearAmericaSingle centerShankar et al
[58], 2023
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Code avail-
able

Model taskOutcome typeSubtypesInternal patholo-
gy images, n

Internal partic-
ipants, n

Geographi-
cal distribu-
tion

Data sourcePublication

NoneClassificationDiagnosiscHL, nodular lym-
phoma predomi-
nant, Burkitt lym-
phoma, FL, MCL,
large B-cell lym-
phoma, and T-cell
lymphoma

323UnclearSaudi ArabiaUnclearSoltane et al
[60], 2022

NoneClassificationDiagnosisOrbital MALT
lymphoma

1270127JapanSingle centerTagami et al
[61], 2024

aDLBCL: diffuse large B-cell lymphoma.
bCLL: chronic lymphocytic leukemia.
cFL: follicular lymphoma.
dMCL: mantle cell lymphoma.
eMF: mycosis fungoides.
fHL: Hodgkin lymphoma.
gMALT: mucosa-associated lymphoid tissue.

J Med Internet Res 2025 | vol. 27 | e62851 | p. 7https://www.jmir.org/2025/1/e62851
(page number not for citation purposes)

Fu et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 2. Model construction parameters for the 41 included studies.

External
results

Internal
results

MetricExternal
valida-
tion da-
ta

Valida-
tion
type

Final mod-
el predic-
tion preci-
sion

Final modelFeature
extrac-
tion

Magnifi-
cation

Patch
size

Original
image
size

Stain
type

Publication

None95%Accura-
cy

NoneInternal
valida-
tion

PatchCNNcLearned40×40×40WSIbHEaAchi et al
[13]

None95%Accura-
cy

NoneInternal
valida-
tion

PatchEfficient NetHand-
crafted

40×395×395WSIHESteinbuss et
al [14]

None94%Accura-
cy

None5-fold
cross-
valida-
tion

PatchCNNHand-
crafted

5×64×64WSIHEMiyoshi et al
[16]

None0.92-
0.99

AUCeNoneInternal
valida-
tion

PatchBNNdHand-
crafted

20×299×299WSIHESyrykh et al
[17]

None95.4%Accura-
cy

None5-fold
cross-
valida-
tion

PatchResNet-50LearnedUnclear224×224WSIHEZhang et al
[20]

100%100%Accura-
cy

402External
valida-
tion

Patch17CNN+trans-
form

Learned40×945×945WSIHELi et al [21]

None0.99,
99.8%

AUC,
accura-
cy

NoneInternal
valida-
tion

WSIMobileNet-
VGG-16, de-
cision
tree–based

Hand-
crafted

UnclearUnclearWSIHEHamdi et al
[26]

machine
learning

None94.2%Accura-
cy

NoneInternal
valida-
tion

PatchDLfLearned200×600×600Micro-
scopic im-
ages

HEKarabulut et
al [29]

None96%-
100%

Accura-
cy

NoneInternal
valida-
tion

UnclearClassifica-
tion using
the polynomi-
al

Unclear1000×UnclearMicro-
scopic im-
ages

HEdo Nascimen-
to et al [30]

None95.43%Accura-
cy

NoneInternal
valida-
tion

PatchYOLOv4-
tiny CNN

Hand-
crafted

Unclear256×256PatchIHCgSereda et al
[19]

None0.94AUCNoneInternal
valida-
tion

PatchCNNHand-
crafted

40×132×132WSIHEChuang et al
[35]

95%NoneCI179External
valida-
tion

PatchHover-NetHand-
crafted

40×224×224WSIHEVrabac et al
[36]

None0.79AUCNoneInternal
valida-
tion

PatchYOLOv4Hand-
crafted

20×320×320WSIPicrosir-
ius Red

Motmaen et
al [38]

None0.85AUCNoneInternal
valida-
tion

PatchCNNHand-
crafted

40×128×128WSIHEIrshaid et al
[41]

0.93NoneAUC28External
valida-
tion

WSIHover-NetHand-
crafted

20×256×256WSIHEEl Hussein
et al [42]

92.5%NoneAccura-
cy

68External
valida-
tion

WSIHover-NetHand-
crafted

20×256×256WSIHEChen et al
[43]
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External
results

Internal
results

MetricExternal
valida-
tion da-
ta

Valida-
tion
type

Final mod-
el predic-
tion preci-
sion

Final modelFeature
extrac-
tion

Magnifi-
cation

Patch
size

Original
image
size

Stain
type

Publication

93%NoneSensitiv-
ity

49External
valida-
tion

WSIU-NetLearned20×UnclearWSIHESwiderska-
Chadaj et al
[39]

None98.63%Accura-
cy

NoneInternal
valida-
tion

PatchResNet-50Hand-
crafted

UnclearUnclearWSIHEZhang et al
[23]

None0.96AUCNoneInternal
valida-
tion

PatchDecision
tree–based
machine
learning

Hand-
crafted

40×115×115WSIHEYu et al [24]

None0.83Accura-
cy

None5-fold
cross-
valida-
tion

PatchCNNLearned40×224×224WSIHETakagi et al
[25]

None0.92AUCNoneInternal
valida-
tion

PatchCNNLearned200×224×224WSIHEMohlman et
al [28]

None0.98Overall
grading
accura-
cy

None10-fold
cross-
valida-
tion

PatchVGG-16,

LSTMh
LearnedUnclear64×64WSIHEZhu et al

[31]

None68.3%Accura-
cy

None5-fold
cross-
valida-
tion

PatchCNNLearned20×224×224WSIHEHashimoto
et al [32]

None97.4%Accura-
cy

NoneInternal
valida-
tion

Microscop-
ic images

SVMiHand-
crafted

40×UnclearMicro-
scopic im-
ages

HEMichail et al
[33]

None99.22%Accura-
cy

NoneHold-
out K-
folds

WSILaplacian
Eigenmaps

Hand-
crafted

Unclear71×71WSIHEKornaropou-
los et al [34]

None0.86AUCNone10-fold
cross-
valida-
tion

PatchSVMHand-
crafted

20×2048×2048WSIHETagami et al
[40]

None0.96AUCNoneExternal
valida-
tion

PatchDLLearned40×256×256WSIHEZhang et al
[44]

0.857,
0.991

NoneSensitiv-
ity,
specifici-
ty

108External
valida-
tion

PatchResNet-50Hand-
crafted

40×224×224WSIIHCTavolara et
al [46]

None0.95AUCNoneInternal
valida-
tion

PatchDLHand-
crafted

40×384×384WSIHEPerry et al
[5]

96%NoneICCj61External
valida-
tion

PatchCNNHand-
crafted

40×256×256WSIIHCYan et al
[48]

90.2%,
70.0%

NoneSensitiv-
ity,
specifici-
ty

48External
valida-
tion

PatchViT-S/8Learned40×224×224WSIHELee et al
[50]

0.92NoneAUC46Internal
valida-
tion

PatchKNNkHand-
crafted

20×512×512WSIHEDuan et al
[51]
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External
results

Internal
results

MetricExternal
valida-
tion da-
ta

Valida-
tion
type

Final mod-
el predic-
tion preci-
sion

Final modelFeature
extrac-
tion

Magnifi-
cation

Patch
size

Original
image
size

Stain
type

Publication

None96.79%,
SD
1.50%;
99.38%,
SD
0.15%

Sensitiv-
ity,
specifici-
ty

None5-fold
cross-
valida-
tion

PatchResNet 50Hand-
crafted

40×512×512WSIHEQuan et al
[52]

None0.99AUCNoneInternal
valida-
tion

PatchResNet 50Hand-
crafted

40×512×512WSIHEAl-Mekhlafi
et al [53]

0.99NoneAUC213External
valida-
tion

PatchAlexNetHand-
crafted

Unclear227×227WSIHESomaratne et
al [54]

None92.3%Accura-
cy

None3-fold
cross-
valida-
tion

PatchUnclearUnclearUnclearUnclearWSIHECodella et al
[55]

0.83NoneAUC66External
valida-
tion

PatchCNNHand-
crafted

20×512×512WSIHESwiderska-
Chadaj et al
[56]

None94.67%,
97.3%

Sensitiv-
ity,
specifici-
ty

NoneInternal
valida-
tion

PatchCNNHand-
crafted

40×224×224WSIHEBasu et al
[57]

None0.95AUCNoneInternal
valida-
tion

PatchResNet 50Hand-
crafted

40×UnclearWSIHEShankar et al
[58]

None91.6%Accura-
cy

None5-fold
cross-
valida-
tion

PatchResNet 50LearnedUnclear224×224WSIHESoltane et al
[60]

None0.8AUCNone5-fold
cross-
valida-
tion

PatchDLHand-
crafted

20×2048×2048WSIHETagami et al
[61]

aHE: hematoxylin-eosin.
bWSI: whole slide image.
cCNN: convolutional neural network.
dBNN: Bayesian neural network.
eAUC: area under the receiver operating characteristic curve.
fDL: deep learning.
gIHC: immunohistochemical.
hLSTM: long short-term memory.
iSVM: support vector machine.
jICC: intraclass correlation coefficient.
kKNN: k-nearest neighbors.

Risk of Bias Assessment
The PROBAST assessment findings are detailed in Table 3.
Despite some studies encompassing multiple models of interest,
each paper highlighted 1 model with superior predictive value
for bias risk analysis. Most models exhibited either a high
overall bias risk (13/41) or an unclear overall bias risk (28/41),
with none of the models presenting a low overall bias risk (0/41).

Most high-risk models predominantly allocated their high-risk
scores in the Participants domain (10/41). Conversely, most
low-risk scores were concentrated in the Predictors (26/41) and
Outcomes (26/41) domains. Almost all studies reported an
unclear risk of bias in at least one domain, with the Participants
(16/41) and Statistical Analysis (37/41) domains being the most
frequently affected. Qualitative summaries are presented in
Figure 2.
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Table 3. Prediction Model Risk of Bias Assessment Tool (PROBAST) risk of bias assessment results for the 41 papers included in this review.

Overall judgementAnalysisOutcomesPredictorsParticipantsPublication

Unclear concernsUnclearUnclearLowUnclearAchi et al [13]

High concernsUnclearLowUnclearHighSteinbuss et al [14]

High concernsUnclearLowLowHighMiyoshi et al [16]

High concernsLowLowLowHighSyrykh et al [17]

Unclear concernsUnclearLowLowLowSereda et al [19]

Unclear concernsUnclearUnclearLowUnclearZhang et al [20]

High concernsUnclearLowLowHighLi et al [21]

Unclear concernsUnclearLowUnclearUnclearZhang et al [23]

Unclear concernsUnclearLowLowUnclearYu et al [24]

Unclear concernsUnclearLowLowUnclearTakagi et al [25]

Unclear concernsUnclearUnclearLowUnclearHamdi et al [26]

High concernsLowLowLowHighMohlman et al [28]

Unclear concernsUnclearLowLowUnclearKarabulut et al [29]

Unclear concernsUnclearUnclearUnclearUncleardo Nascimento et al [30]

Unclear concernsUnclearUnclearLowUnclearZhu et al [31]

Unclear concernsUnclearUnclearLowUnclearHashimoto et al [32]

Unclear concernsUnclearUnclearUnclearUnclearMichail et al [33]

Unclear concernsUnclearLowLowLowKornaropoulos et al [34]

Unclear concernsUnclearUnclearLowUnclearChuang et al [35]

Unclear concernsUnclearLowLowLowVrabac et al [36]

High concernsUnclearLowUnclearHighMotmaen et al [38]

Unclear concernsUnclearUnclearUnclearUnclearSwiderska-Chadaj et al [39]

High concernsUnclearLowUnclearHighTagami et al [40]

High concernsUnclearLowLowHighIrshaid et al [41]

High concernsUnclearLowLowHighEl Hussein et al [42]

High concernsUnclearLowLowHighChen et al [43]

Unclear concernsUnclearLowUnclearUnclearZhang et al [44]

Unclear concernsUnclearUnclearLowLowTavolara et al [46]

High concernsHighLowHighLowPerry et al [5]

Unclear concernsUnclearLowLowLowYan et al [48]

Unclear concernsUnclearLowLowLowLee et al [50]

High concernsHighHighLowLowDuan et al [51]

High concernsUnclearUnclearUnclearLowQuan et al [52]

High concernsUnclearLowUnclearLowAl-Mekhlafi et al [53]

Unclear concernsUnclearLowUnclearLowSomaratne et al [54]

High concernsHighUnclearUnclearLowCodella et al [55]

Unclear concernsUnclearLowUnclearLowSwiderska-Chadaj et al [56]

Unclear concernsUnclearUnclearUnclearUnclearBasu et al [57]

Unclear concernsUnclearLowLowLowShankar et al [58]

Unclear concernsUnclearUnclearLowUnclearSoltane et al [60]

Unclear concernsUnclearLowLowLowTagami et al [61]
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Figure 2. Prediction Model Risk of Bias Assessment Tool (PROBAST) risk of bias.

Data Synthesis Results

Data in the Included Literature
The number of participants across internal datasets varied
significantly, with studies recruiting anywhere from 10 to 1005
patients diagnosed with lymphoma. Concurrently, the model
development used a broad range of histopathological slides
(count: 10-15,353). In most studies, the samples for model
development were WSIs involving excised or biopsied tissues
(38/41), with other samples using microscopic images (3/41).
Most studies used HE-stained tissues (37/41), while others
employed various immunohistochemical (IHC) staining methods
(4/41). Some studies employed a multimodal analysis method
that integrated pathological images with clinical information
[25,35,50].

Among the included studies, most (29/41) used single-center
data and few (10/41) used multicenter data. A small number of
studies had unclear data sources, and the United States was the
most common (12/41) source country.

Models in the Included Literature
The studies encompassed a variety of models, with the most
prevalent being convolutional neural networks (CNNs),

accounting for 30 out of 41 studies. A minority of studies
employed support vector machines (SVMs) and random forests
(2 studies each). The CNN architectures that were explored
included Mobile Net, VGG-16, Hover-Net, U-Net, and
ResNet-50. These newer CNNs generally incorporated multiple
standardized blocks that featured layers for convolution,
normalization, activation, and pooling [23]. One study stood
out by leveraging transfer learning and integrating 17 distinct
DL models to create a highly accurate platform, achieving a
diagnostic accuracy rate of 100% [21]. This approach
significantly bolstered the model’s ability to generalize. Another
innovative study developed a novel architecture by applying a
topological optimization method to the conventional VGG-16
model [26]. Some studies opted for a hybrid approach,
combining traditional ML techniques with DL. They used CNNs
for feature extraction, followed by decision tree–based methods
for quantification and classification [24,26]. Notably, 1 study
implemented a CNN framework grounded in Multiple Instance
Learning (MIL), which autonomously concentrated on image
patches from regions of interest within tumors, showcasing an
advanced method for image analysis [32].

In the analysis encompassing various models, most studies
predominantly used patches (33/41), with a subset operating at
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the WSI level (6/41). Two distinct aggregation approaches were
implemented: premodeling and postmodeling aggregation. The
premodeling method necessitated the creation of slide-level
features prior to modeling, whereas the postmodeling approach
entailed consolidating patch-level model outputs to formulate
slide-level predictions. For models that used patch images as
the basis for final modeling, it was essential to segment the
original images into individual patches before proceeding with
modeling. The patch sizes varied from 40×40 to 2048×2048
pixels, with the most frequently employed dimensions being
224×224 pixels (9/41) and 256×256 pixels (5/41). Subsequently,
a variety of feature extraction techniques were applied,
encompassing both handcrafted or predefined features (27/41)
and features that were automatically learned by the models
(12/41).

The handcrafted features encompassed a diverse spectrum of
attributes, including texture, color, cellular, and nuclear
morphological characteristics. These meticulously crafted
features were predominantly employed as inputs for traditional
ML algorithms, such as SVM and random forest models.

In contrast, learned features were predominantly extracted
through the application of CNNs, which also frequently served
as the classifier of choice. Ultimately, the outputs from the
patch-level models were synthesized to develop predictive
models. This aggregation was achieved through various
methods, such as attention-based weighted averaging,
concatenation, and more sophisticated embedding techniques.
These included Fisher vector encoding and k-means clustering,
with the process often culminating in the selection of the
maximum value to enhance the predictive accuracy of the
models [36,62].

Among the papers that specified magnification levels, the most
prevalent were 20× (10/41) and 40× (17/41). A handful of
studies employed varying magnifications strategically to
pinpoint informative tissue regions and to enhance their
modeling accuracy [16,17,40].

A limited number of models integrated histopathological data
with other data modalities [25,35,50]. The multimodal
approaches observed in the literature included the premodeling
integration of unimodal features extracted independently, as
well as the amalgamation of unimodal predictions from distinct
models [63]. Additionally, transformer-based methods were
frequently employed for encoding the intricate relationships
between different modalities [64,65]. While attention-based
methods have been used in the study of other malignancies for
several years [66], their application in lymphoma research is a
relatively recent development. Among the studies reviewed, 1
study stood out by using a variant of the transformer architecture
to encode the interplay between medical imaging data and
clinical records. This study introduced a novel personalized
attention mechanism (PersAM) for the classification of
lymphoma subtypes, marking a significant advancement in the
field [25].

Analysis in the Included Literature
Most studies relied on internal validation (30/41), while external
validation using independent lymphoma datasets was seldom

conducted (11/41). In terms of internal validation, partial
validation was typically executed through a 5-10–fold
cross-validation approach. Some papers detailed the
hyperparameter selection process using the training dataset, yet
only reported evaluations on a test set derived from the same
data source [24,33,67]. For external validation, models were
trained on WSIs and subsequently validated on either WSIs
(10/11) or tissue microarrays (TMAs) (1/11) from separate
independent sources. Notably, the model of 1 study was
externally validated against data from normal lymph node tissues
[14]. In a particular instance, a model that achieved perfect
validation accuracy (area under the receiver operating
characteristic curve [AUC]=1.0) with internal validation
underperformed on external cases, with an AUC ranging from
0.63 to 0.69. This discrepancy may stem from the sensitivity of
ML algorithms to preprocessing steps, and neural networks, in
accordance with statistical principles, necessitate a representative
sample to ensure reliable inductive reasoning [12]. In another
study, a comprehensive evaluation was conducted using
polynomial, SVM, random forest, and decision tree classifiers
to assess the efficacy of the proposed method [30].

Most models were assessed using accuracy or AUC, as well as
other metrics, including sensitivity, specificity, hazard ratio,
and the C-index. Even when studies reported sensitivity and
specificity, CIs were not reported. In the internal validation
results of all models, the AUC ranged from 0.75 to 0.99 and
accuracy ranged from 68.3% to 100%. In models with external
validation results, the AUC ranged from 0.93 to 0.99.

The burgeoning demand for AI methods in health care is
undeniable, yet the lack of interpretability remains a significant
impediment to their clinical adoption [68,69]. Enhancing the
interpretability of AI models is crucial for fostering trust among
medical professionals in the future AI systems they will rely
upon. In a thorough analysis of the studies included, it was
observed that the majority of studies (20/41) undertook efforts
to analyze the interpretability of their models, with a notable
minority (8/20) delving into visual interpretability analysis of
the histopathological images that significantly influenced the
model’s prognostic assessments. Several studies meticulously
characterized the spatial distribution and interrelationships of
typical cells, their nuclei, and the microenvironments within
the regions of interest [24,32,36,42], thereby showcasing the
interpretability of their AI systems. One study presented
graphical features that were correlated with clinical prognostic
information [38]. A handful of studies opted for traditional ML
models, such as decision trees [26], which are inherently more
transparent and align closely with human reasoning processes,
thus facilitating a more intuitive understanding of the
decision-making process.

Clinical Utility
Among the 41 models included, 17 were diagnostic models, 10
were prognostic models, 2 were models to detect gene
translocation, and 12 were other prediction- and
diagnosis-related information models. The tasks of these models
included identification (8/41), classification (24/41), and
segmentation (9/41).
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In the field of AI-based diagnostic models for lymphoma
histopathology, the most common subtypes included diffuse
large B-cell lymphoma (DLBCL) (5/41), follicular lymphoma
(FL) (8/41), chronic lymphocytic leukemia (CLL) (5/41), and
mantle cell lymphoma (MCL) (8/41). Additionally, a small
number of studies developed diagnostic models for Burkitt
lymphoma, central nervous system lymphoma, high-grade
lymphoma, HL, and T-cell lymphoma. A study using CNNs for
cell segmentation of WSIs of NHL achieved an average
diagnostic accuracy of 100%, 99.73%, and 99.20% for CLL,
FL, and MCL, respectively [20]. Researchers have successfully
harnessed the power of both DL and traditional ML to develop
a diagnostic tool with remarkable accuracy rates ranging from
95% to 100% for identifying MCL, FL, and CLL. This
cutting-edge approach involves the precise segmentation of cell
nuclei and the meticulous measurement of key morphological
features such as area, perimeter, eccentricity, and diameter [30].

In the realm of AI-based prognostic models for lymphoma
histopathology, the most common subtypes include DLBCL
(3/4), CLL (2/42), HL (2/41), and FL (2/41). Sereda et al [19]
used DL-based cell detection on digital slides from patients
with nodular lymphocyte-predominant Hodgkin lymphoma
(NLPHL) to quantitatively assess the histological patterns of
lymphocyte-predominant cells. They identified 6 key features
of lymphocyte-predominant cell spatial patterns and achieved
a high average precision in cell detection (mean 95.24%, SD
0.17%). Furthermore, they found a strong correlation between
treatment response and the density and number of
lymphocyte-predominant cells (P<.05). Several studies have
identified independent prognostic factors for DLBCL and MCL
by segmenting cell nuclei and calculating the geometric
characteristics of each segmented nucleus [35,36]. Several
studies [41-43] addressed the clinical challenge of large cell
transformation in indolent B-cell lymphomas, such as FL and
CLL. They trained a CNN to predict large cell transformation
based on tumor cell morphology, including the small cell
proportion, chromatin pattern, presence of distinct nucleoli, and
proliferation index. The machine-generated quantifications
demonstrated superior reproducibility compared to estimates
made by pathologists and showed a stronger correlation with
the outcome data. The precise assessment and evaluation of
PD-L1 biomarkers are crucial for the targeted immunotherapy
triage of cancer patients. Notably, Yan et al [48] developed an
AI-based image analysis method that encompasses the detection,
segmentation, and classification of PD-L1+ cells for the
evaluation of PD-L1 expression in patients with DLBCL. This
method has produced highly correlated quantitative results
compared to the subjective assessments of pathologists.
However, none of the prognostic models included T-cell
lymphoma subtypes in the studies.

Regarding AI-based histopathological models for detecting gene
translocations in lymphoma, 2 studies focused on DLBCL as
the tumor type [39,56]. Their results showed that it is possible
to predict MYC translocation based on morphology alone. This
would allow simple and fast prescreening, saving about 34%
of genetic testing using the current algorithm.

Overall, methodologically, all studies exhibited a high or unclear
risk of bias, primarily due to limited analysis and incomplete

reporting on participant recruitment. Most high-risk models
(10/41) predominantly assigned high-risk classifications to
participants. Almost all studies presented an unclear risk of bias
in at least one domain, with the most frequent being participant
selection (16/41) and statistical analysis (37/41). The primary
reasons for this were insufficient analysis of participant
recruitment and a lack of interpretability in outcome analyses.
In the diagnostic models, the most frequently studied lymphoma
subtypes were DLBCL, FL, CLL, and MCL, while in the
prognostic models, the most common subtypes were DLBCL,
FL, CLL, and HL. None of the prognostic models included
T-cell lymphoma subtypes in the studies. In the internal
validation results of all models, the AUC ranged from 0.75 to
0.99 and accuracy ranged from 68.3% to 100%. In models with
external validation results, the AUC ranged from 0.93 to 0.99.

Sensitivity Analysis
To further evaluate the sensitivity of our conclusions, we
conducted a sensitivity analysis by selecting diagnostic models
from the literature we included and performing a QUADAS-AI
diagnostic evaluation. The results are presented in Multimedia
Appendix 4.

Our findings revealed that out of the 17 diagnostic models
considered, 15 were rated as high-risk models and 2 were
deemed unclear. Most high-risk models were classified as such
primarily due to their use of nonpublic datasets (13/17). A
minority of studies (2/17) were rated as high risk because they
failed to provide a clear description of their data sources.
Therefore, we used QUADAS-AI to evaluate the diagnostic
models and concluded that all the methodologies included in
the diagnostic models were biased.

To further assess the sensitivity of our conclusions, we
considered that the distribution of lymphoma subtypes varies
by region, which could potentially bias the results. Therefore,
we only included studies from the United States, as it was the
most common source country (12/41). We found that in the
United States, the most common subtypes in AI-based diagnostic
models for lymphoma histopathology were DLBCL (5/12), FL
(2/12), and MCL (2/12). Regarding AI-based prognostic models
for lymphoma histopathology, the most common subtypes were
DLBCL (2/12), CLL (3/12), and FL (1/12). In the models for
detecting gene translocations in lymphoma histopathology, 1
study focused on DLBCL. These findings are largely consistent
with our previous conclusions.

Discussion

Current Status of AI in Lymphoma Assessment
AI has significantly enhanced the precision of lymphoma
diagnostics by eliminating the subjectivity often associated with
human observation [16,26]. For instance, a study by Achi et al
[13] demonstrated the power of CNN in accurately
distinguishing between various lymphoma subtypes. Their
diagnostic model, designed for 4 distinct lymphoma categories
(benign lymph nodes, DLBCL, Burkitt lymphoma, and small
lymphocytic lymphoma), achieved an impressive 95% accuracy
rate in image prediction. Notably, in a multicenter study [21],
the diagnostic accuracy of AI for DLBCL reached 100%.
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Moreover, AI provides invaluable insights into the tumor
microenvironment, enabling the identification and quantification
of image features that surpass simple density assessments. It
delves into higher-order relationships and offers a quantitative
evaluation of lymphocyte aggregation patterns and the complex
interplay between tumor regions. Such capabilities are pivotal
for advancing cancer clinical research and the development of
new therapeutics [36,70].

However, methodologically, the risk assessments of the included
studies in this review were all rated as high or unclear, primarily
due to incomplete reporting, absence of detailed patient source
information, and inadequate explanation of the predictors used.
This highlights the need to expedite the clinical translation of
AI in lymphoma diagnosis, ensuring that these advanced tools
are rigorously validated and seamlessly integrated into clinical
practice.

Frequently omitted details include the precise origin of patient
data, the total number of patients involved, the quantity of
samples or images used, and the techniques employed for tissue
processing and digitization. Most studies reported data from
single centers, and this scarcity may stem from AI researchers
not dedicating sufficient effort to comprehend these images,
whether for training purposes or external validation. Information
about the predictors (histopathology images and their features)
was generally better reported; however, there remains an absence
or inadequacy of the detailing of certain critical aspects. For
example, it is often unclear whether the investigators assessed
the predictors without knowing the outcomes or whether all
histopathology images were processed uniformly, which could
have introduced bias. Moreover, some researchers rely on a
limited dataset and analyze a single test data split without
implementing methods to mitigate overfitting and model
optimism, such as cross-validation or external validation. These
limitations are prevalent in lymphoma AI research, resulting in
weak validation and an elevated risk of bias within the models.

Code sharing is crucial for enhancing the reproducibility of
research findings and mitigating the effects of incomplete
reporting. However, in the review of 41 papers, only 9 included
codes, and the data in the other studies were either incomplete
or difficult to access. To foster better reproducibility, code
repositories should provide comprehensive documentation. This
should include instructions for setting up the environment, an
overview of the code’s functionality, guidance on how to
produce results, and, of course, the code itself
[14,17,21,26,38,44,46,48,58].

Several studies are dedicated to enhancing the interpretability
of DL tools by employing existing methods. These include post
hoc techniques and supervised ML models that interpret the
outcomes after DL models have generated predictions [71,72].
In the realm of AI research focused on lymphoma, most current
studies offer personalized interpretability for analysis. This
includes visual attention heatmaps and traditional ML
highlighting the spatial locations of key feature areas and their
interrelationships. However, traditional ML, often crafted in
partnership with domain experts, can provide greater
interpretability as it relies on manually engineered features.
Despite this advantage, the process of handcrafting features is

inherently challenging and complex. It demands a substantial
time commitment from pathologists or oncologists, who are
responsible for developing these methods.

In recent years, there has been a notable increase in hybrid
approaches that combine DL with handcrafted strategies. These
methods might involve using DL algorithms for the preliminary
detection of cells or elements, followed by the application of
easily interpretable traditional ML techniques for making
predictions. By doing so, they harness domain knowledge to
ensure the biological interpretability of the approach [73].

Development of the Field
The domain of AI in lymphoma histopathology diagnosis and
prognosis is experiencing rapid growth, with a notable surge in
scholarly publications since 2019. Most of these studies have
leveraged deep neural networks for automated feature extraction
and classification. In contrast, a smaller subset of research has
employed conventional ML algorithms [24,30,33,40]. Recent
investigations have expanded their scope to encompass a wider
array of diagnostic outcomes, such as identifying specific
lymphoma subtypes [17,21], predicting prognosis [35,36], and
detecting genetic translocations [39,56].

Despite advancements regarding the role of AI in lymphoma
research, there has not been a noticeable trend toward larger
datasets, either in the number of slides analyzed or the number
of participants involved. While there is no indication that more
recent studies have adopted stricter internal validation methods,
there is a positive shift toward increased external validation.
Prior to 2019, no studies incorporated external validation on
lymphoma data; however, 10 recent publications have done
this. Although these validations often involve limited data, their
inclusion signifies a step forward in research methodology.

These external validations are essential for the practical
application of AI models in clinical settings, as they must be
robust enough to handle the visual diversity present in data from
various sources. This diversity can fluctuate both between and
within different data centers over time. As the field evolves, we
expect to see an increase in studies that rigorously validate their
models against larger, high-quality, independent datasets. This
includes transparent reporting on patient recruitment and
selection processes, histopathology slide preparation, and
digitization techniques. Such practices will be instrumental in
mitigating the biases, limited reproducibility, and restricted
generalizability that currently plague much of the research in
this domain.

In the realm of oncology, there has been a marked surge in the
number of published multimodal research studies since 2019.
Notably, this growth includes only a handful of studies focused
on multimodal research in lymphoma. Histopathological
examination of tissue sections continues to be the cornerstone
for cancer diagnosis, yet even seasoned pathologists often seek
support from biomarker assays to enhance diagnostic accuracy.
Multimodal research, which amalgamates diverse data types,
such as genomics, proteomics, transcriptomics, and clinical
data, has been pivotal in steering the trajectory of cancer
research. This approach not only consolidates information from
various sources but also transforms it, offering novel insights

J Med Internet Res 2025 | vol. 27 | e62851 | p. 15https://www.jmir.org/2025/1/e62851
(page number not for citation purposes)

Fu et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


[74,75]. For instance, a multimodal framework can facilitate a
dual-modality analysis where a pathological image is processed
to yield outputs from another domain, such as genetic
sequencing or different imaging formats [63]. Such a model,
when adeptly trained, can be leveraged to analyze pathological
images from patients without overt medical conditions,
extracting valuable indicators pertinent to precision medicine,
including genetic sequences. As we anticipate advancements
in high-throughput technologies, alongside the fields of
transcriptomics, metabolomics, and proteomics, the future holds
promise for an increase in the integration of multidimensional
omics data with histopathological images in multimodal
analyses.

This integration is poised to significantly bolster the clinical
utility of AI, enabling more precise and personalized treatment
strategies in oncology. By harnessing the power of multimodal
research, we can expect a future where AI plays an even more
integral role in clinical decision-making, thereby enhancing
patient outcomes.

Current Limitations and Future Recommendations
A considerable amount of published research lacks the necessary
clinical and pathological details to evaluate potential biases
effectively. As a result, it is imperative for AI researchers to
meticulously document the origins of their data. This
transparency is crucial for understanding the variability within
the dataset and for determining whether this diversity has been
adequately addressed in the research methodology. Additionally,
the modeling and analytical techniques employed must be
thoroughly described to ensure the reliability and reproducibility
of the findings.

To further improve reproducibility, we recommend that
researchers provide code and data whenever possible. Digital
pathology studies on lymphoma are currently constrained by
the lack of publicly available data. Furthermore, WSIs from
different centers can lead to significant heterogeneity in image
data due to differences in scanning equipment across various
centers. This variability can introduce confounding factors that
complicate the task of developing robust AI models and
assessing their generalizability. Such limitations can increase
the risk of bias and confusion in research findings.

To mitigate these issues, during the image preprocessing stage,
it is essential to diligently address and eliminate confounding
factors arising from variations in staining, the presence of
bubbles, and other artifacts. This meticulous attention to detail
will enhance the accuracy and reliability of AI-driven diagnostic
and analytical tools.

For AI to be clinically valuable, rigorous validation is
paramount, particularly considering the constraints inherent in
existing datasets. We recommend that researchers employ
comprehensive analytical methods, such as cross-validation and
external validation, to substantiate the robustness of their
findings and the capacity of their models to extend to new
datasets. Moreover, it is essential to report CIs for results, with
a focus on the 95% CI, especially when comparing various
models. This practice aids in discerning whether observed
differences in model performance are genuinely significant or
merely a product of random variation. By doing so, researchers
can make more informed decisions about the efficacy and
reliability of different AI models in clinical settings.

Researchers are recommended to follow regulatory guidance
and standardized processes in the field of medical AI, such as
reporting guidelines and quality assessment tools, such as
QUADAS-AI, which provide a specific framework for assessing
the risk of bias and the applicability of studies of diagnostic test
accuracy in AI centers.

Moreover, a lack of interpretability is a barrier to the clinical
adoption of AI. Therefore, we recommend that researchers strive
to demonstrate the interpretability of their models to enhance
the understanding and trust of clinical and pathological
professionals.

Lymphoma is a diverse type of blood cancer that includes a
variety of subtypes. From the literature we have reviewed, the
current application of AI in lymphoma histopathology has
primarily been focused on the diagnosis and prognosis of B-cell
lymphoma. There are relatively fewer AI models for HL or
T-cell lymphoma and other rare subtypes. This could be
attributed to the higher incidence of B-cell lymphomas compared
to other subtypes [1,2]. However, given the high aggressiveness
and heterogeneity of T-cell lymphoma and HL [76], we hope
that in future model development, more researchers will develop
AI models for T-cell lymphoma and HL from a
multidimensional clinical perspective.

Conclusion
Methodologically, the diagnostic and prognostic models of AI
applied to lymphoma histopathology were evaluated, and the
models were found to be biased. The enhancement of the
accuracy of AI models and the acceleration of their clinical
translation hinge on several critical aspects. These include the
comprehensive reporting of data sources, the diversity of
datasets, the study design, the transparency and interpretability
of AI models, the use of cross-validation and external validation,
and adherence to regulatory guidance and standardized processes
in the field of medical AI.
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