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Abstract

Background: An intelligence-enabled clinical decision support system (CDSS) is a computerized system that integrates medical
knowledge, patient data, and clinical guidelines to assist health care providers make clinical decisions. Research studies have
shown that CDSS utilization rates have not met expectations. Clinicians’ intentions and their attitudes determine the use and
promotion of CDSS in clinical practice.

Objective: The aim of this study was to enhance the successful utilization of CDSS by analyzing the pivotal factors that influence
clinicians’ intentions to adopt it and by putting forward targeted management recommendations.

Methods: This study proposed a research model grounded in the task-technology fit model and the technology acceptance
model, which was then tested through a cross-sectional survey. The measurement instrument comprised demographic characteristics,
multi-item scales, and an open-ended query regarding areas where clinicians perceived the system required improvement. We
leveraged structural equation modeling to assess the direct and indirect effects of “task-technology fit” and “perceived ease of
use” on clinicians’ intentions to use the CDSS when mediated by “performance expectation” and “perceived risk.” We collated
and analyzed the responses to the open-ended question.

Results: We collected a total of 247 questionnaires. The model explained 65.8% of the variance in use intention. Performance
expectations (β=0.228; P<.001) and perceived risk (β=–0.579; P<.001) were both significant predictors of use intention.
Task-technology fit (β=–0.281; P<.001) and perceived ease of use (β=–0.377; P<.001) negatively affected perceived risk.
Perceived risk (β=–0.308; P<.001) negatively affected performance expectations. Task-technology fit positively affected perceived
ease of use (β=0.692; P<.001) and performance expectations (β=0.508; P<.001). Task characteristics (β=0.168; P<.001) and
technology characteristics (β=0.749; P<.001) positively affected task-technology fit. Contrary to expectations, perceived ease of
use (β=0.108; P=.07) did not have a significant impact on use intention. From the open-ended question, 3 main themes emerged
regarding clinicians’ perceived deficiencies in CDSS: system security risks, personalized interaction, seamless integration.

Conclusions: Perceived risk and performance expectations were direct determinants of clinicians’adoption of CDSS, significantly
influenced by task-technology fit and perceived ease of use. In the future, increasing transparency within CDSS and fostering
trust between clinicians and technology should be prioritized. Furthermore, focusing on personalized interactions and ensuring
seamless integration into clinical workflows are crucial steps moving forward.
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Introduction

Background
The complexity of modern medical information and the rapid
updating of medical knowledge make it difficult for clinical
staff to master the latest diagnostic and treatment information.
Medical errors are an important cause of a poor prognosis in
patients. At the same time, high-quality medical resources are
often concentrated in big cities and large-sized medical
institutions, while those in grassroots and remote areas are
relatively scarce. Therefore, how to improve the efficiency and
accuracy of clinical diagnosis and treatment is an important
clinical and public health issue at present [1].

In recent years, with the rapid development of artificial
intelligence (AI) technology, the integration and practical
application of AI in health care have provided a promising
solution to address the aforementioned issues. AI-enabled
clinical decision support systems (CDSS) have become a core
concept for leveraging technology to support the health care
field [2]. CDSS are the results of combining traditional decision
support systems and AI. CDSS are designed to enhance medical
decision-making by using targeted clinical knowledge, patient
information, and other health data to improve health care
services. CDSS are typically implemented as web applications
or integrated with electronic health records and computerized
physician order entry systems. For intelligent diagnostic
assistance, CDSS use natural language processing techniques
to analyze unstructured text data such as patient complaints,
medical histories, and physical signs. They automatically extract
key clinical features, dynamically matching them with
disease-symptom associations in knowledge graphs. CDSS also
incorporate evidence-based medical rules and updated clinical
guidelines to emulate expert reasoning and assess potential
causes, complications, and rare disease risks. Through
interactive visualization interfaces, they present diagnostic
rationales, risk alerts, and recommended diagnostic pathways,
ensuring decision logic remains fully traceable [3].

Previous studies have suggested that CDSS hold promise for
enhancing clinician performance, promoting patient safety, and
improving the overall quality of health care [4-7]. However, the
potential of CDSS in medicine remains underutilized [8].
Various tertiary hospitals in Shanghai, as leaders in digital
transformation, are starting to implement CDSS. Despite this,
hospital investment in CDSS does not always achieve the desired
results, and there may even be a negative correlation between
inputs and outputs [9]. A CDSS was deployed in a tertiary
hospital in Shanghai for 12 months, resulting in a
lower-than-expected utilization rate (43% for the tertiary
hospital) due to clinicians’ distrust of the system and its poor
integration into clinicians’ workflows [2]. The perceptions of
clinicians, as end users of the system, will ultimately influence
the development of a CDSS [10]. Therefore, it is crucial to

understand the key factors that influence clinicians’ intent to
use a CDSS, yet limited studies are available [11].

Therefore, we had 3 aims for this study. First, we attempted to
identify the factors influencing clinician intent to use a CDSS
via a theoretical model. Second, we empirically examined the
applicability of the model in the context of implementing a
CDSS. Third, we proposed corresponding managerial
implications based on the results.

Theory and Related Work
A number of studies exploring the use of CDSS from the
perspective of human factors have applied a variety of
theoretical models, including but not limited to the technology
acceptance model (TAM) [12-14], stating that clinicians’
interactions with CDSS are influenced by their overarching
perceptions of technology. These perceptions encompass their
attitudes, beliefs, and experiences with various technological
tools and systems, which collectively shape their acceptance
and utilization of CDSS. TAM elucidates how perceived ease
of use and perceived usefulness act as intermediary factors
between system characteristics and its utilization [11].

There are additional studies that consider the specificity of
information technology in the health care field and use the
task-technology fit (TTF) framework to assess the level of
support provided by information technology to clinicians’work
[15,16]. The TTF framework evaluates how well the
characteristics of technology and the requirements of tasks align
to enhance user performance. By analyzing both technology
and task characteristics, the model aims to identify areas where
adjustments or improvements can be made to better meet user
needs and optimize performance [17]. The TTF framework has
undergone empirical validation across diverse settings,
encompassing health care domains such as hospital information
systems and electronic health records [15,18].

Each model exhibits unique advantages. TAM primarily focuses
on exploring user behaviors and trends, emphasizing users’
perceptions of the technology’s ease of use and perceived
usefulness. Nevertheless, TAM may not comprehensively take
into account specific task requirements. Conversely, the TTF
model heavily emphasizes assessing the congruence between
technology and task characteristics, focusing on how well the
technology aligns with the task’s demands. It offers valuable
insights into how effectively the technology facilitates the
efficient, effective accomplishment of tasks.

Several studies have integrated the TTF model with TAM,
demonstrating synergistic effects between the two models. This
integration highlights the importance of both user perceptions
and task-technology alignment, thus providing a more
comprehensive understanding of user behavior and system
effectiveness than either model alone [19-22]. By integrating
TAM and the TTF model, researchers can harness the strengths
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of both, offering a more comprehensive understanding of user
acceptance and system performance. Previous research has
substantiated the substantial influence of the task-technology
fit on perceived ease of use. This validation underscores the
critical role of aligning technology with task requirements in
shaping users’ perceptions of how easy the system is to use and
how beneficial it is for their tasks [23]. Therefore, the TTF
model can serve as a precursor factor influencing perceived
ease of use. Based on this rationale, this study selected the core
variable of “perceived ease of use” from the TAM.

Given the complexity and constant evolution of AI, it has yet
to become a cornerstone of the health care system or medical
education. The lingering uncertainty regarding the safety and
potential risks posed by AI to patients remains a pivotal factor
influencing clinicians’ intentions to adopt the technology
[11,24,25]. At the same time, the significant impact of
task-technology fit and perceived ease of use on perceived risk
has also been verified [26,27]. Therefore, this study further
incorporated the variable of “perceived risk” into the research

framework., aiming to deepen the comprehension of clinicians’
tendencies to adopt a CDSS.

Drawing upon the theoretical underpinnings and existing
research findings, we herein introduced a theoretical model
(Figure 1) along with the corresponding hypotheses: (1) task
characteristics positively affect the task-technology fit
(hypothesis 1), (2) technology characteristics positively affect
the task-technology fit (hypothesis 2), (3) task-technology fit
positively affects performance expectations (hypothesis 3), (4)
task-technology fit negatively affects perceived risk (hypothesis
4), (5) task-technology fit positively affects perceived ease of
use (hypothesis 5), (6) perceived ease of use negatively affects
perceived risk (hypothesis 6), (7) perceived risk negatively
affects performance expectations (hypothesis 7), (8) performance
expectations positively affects intention to use (hypothesis 8),
(9) perceived ease of use positively affects intention to use
(hypothesis 9), and (10) perceived risk negatively affects
negatively affect intention to use (hypothesis 10).

Figure 1. Conceptual model. +: positive effect; -: negative effect; H: hypothesis.

Methods

Study Design and Setting
We conducted the study in 3 tertiary hospitals (Shanghai
Children’s Hospital, Ren Ji Hospital, and Shanghai Sixth
People’s Hospital) in Shanghai. The study involved
administering a questionnaire survey to 247 clinicians across
the inpatient and outpatient departments of the 3 hospitals. The
study spanned a duration of 4 months, from December 2023 to
March 2024.

Sample Size and Sampling
Marcoulides and Saunders [28] contended that the minimum
sample size is contingent on the maximum number of arrows
directed toward the latent variable. Although establishing a
suitable sample size is crucial for structural equation modeling
(SEM), consensus on the ideal sample size within the literature
is lacking. Evidence suggests that even simple SEM can yield

meaningful results with small sample sizes. However, as a
general guideline, a minimum sample size of 100 to 150 is often
recommended for conducting SEM analyses [29]. Simple
random sampling was used for this study, with a total of 247
clinicians participating in and completing the study. This sample
size is sufficient to yield statistically significant results.

Measurement Instruments
The questionnaire comprised 3 sections: demographic
characteristics, multiple-item scales, and an optional open-ended
question (“What deficiencies do you identify in the CDSS?”).
The 7 constructs within the model were evaluated using
multi-item scales adapted from those by Davis [30], Stone and
Grønhaug [31], Goodhue [32], and Venkatesh et al [33], with
modifications made to the original items to align with the
context of this research, which primarily focuses on clinicians’
attitudes toward CDSS use. The items were scored using 5-point
Likert scales. Table 1 presents the origins and definitions of the
constructs.
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Table 1. Definitions of the constructs.

ReferenceOperational definitionConstruct

Goodhue and Thompson
[34]

Those that might move a user to rely more heavily on certain aspects of the informationTask characteristics

Goodhue and Thompson
[34]

The characteristics of using a CDSSa during clinicians’ operation of itTechnology characteristics

Stone and Grønhaug [31]The degree to which a clinician believes that using a CDSS would enhance his or her job
performance

Task-technology fit

Venkatesh et al [33]The performance-related consequence of the behavior, specifically performance expecta-
tions that deal with job-related outcomes

Performance expectations

Davis [30]The degree to which clinicians believe that using a CDSS would be free from effortPerceived ease of use

Stone and Grønhaug [31]An assumption of risk on the part of clinicians with the use of a CDSSPerceived risk

Venkatesh et al [33]Clinicians’ intention to use a CDSSIntention to use

aCDSS: clinical decision support system.

Multimedia Appendix 1 contains the items corresponding to
each construct along with their respective sources. We conducted
a pretest involving 63 clinicians, and the results indicated that
the questionnaire demonstrated good reliability and validity.

Data Collection and Recruitment
We specifically included clinicians with varying levels of
seniority and educational backgrounds. We distributed an email
to clinicians affiliated with the hospital through list servers. The
email outlined the objectives of the study, gave an overview of
the CDSS, and contained a link to the online survey. Interested
clinicians voluntarily participated after providing their consent.
A total of 247 clinicians participated in the study, and all 247
questionnaires collected were audited and considered valid. In
addition, we randomly selected 48 clinicians and administered
an open-ended survey to garner their insights on the
shortcomings and potential improvements of the CDSS.

Statistical Analysis
Frequencies and percentages were used to describe the
characteristics of the clinicians. Analyses were carried out using
SPSS version 25.0 (IBM Corp). After analyzing the descriptive
statistics, the next step in the research process was to validate
the model and test the hypotheses using a partial least squares
SEM analysis. This analysis was conducted in Smart PLS4.
Partial least squares SEM is a variance-based approach that
does not assume multivariate normality, making it robust for
analyzing data with non-normal distributions and small sample
sizes.

The implementation of the method involves a 2-step process
[35]. The first step involves using the partial least squares

algorithm to evaluate the reliability and validity of the
measurement model. In the second step, we assessed the fit of
the structural model and tested hypotheses using bootstrapping.

The open-ended question was analyzed via thematic analysis,
analyzing the number of themes and the frequency of occurrence
of each theme.

Ethics Approval
This study was approved by the Ethics Committee of Shanghai
Children's Hospital (approval number: 2021R077-E01). All
clinical physicians participated in this study voluntarily, without
compensation, and anonymously under informed consent. They
retained the right to decline to answer any survey questions or
withdraw from the study at any time. All collected data were
thoroughly de-identified to ensure participant confidentiality

Results

Demographic Information
The study involved the participation of 247 clinicians, and all
valid questionnaires were collected. In Table 2, the demographic
information of the clinicians is presented. A total of 129
(129/247, 52.2%) men and 118 (118/247, 47.8%) women
participated in the study, with ages ranging between 25 years
and 55 years. Individuals aged 25 years to 40 years constituted
the majority, comprising 62.8% (155/247) of the participants.
Regarding professional titles, resident physicians (66/247,
26.7%) and attending physicians (60/247, 24.3%) were the
predominant groups.
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Table 2. Participant characteristics (N=247).

Participants, n (%)Participant characteristics

Gender

129 (52.2)Men

118 (47.8)Women

Age (years)

47 (19)≤24

155 (62.8)25-40

45 (18.2)≥41

Professional position

66 (26.7)Resident physician

60 (24.3)Attending physician

38 (15.4)Deputy chief physician

8 (3.2)Chief physician

75 (30.4)Others

Working experience (years)

40 (16.2)<1

102 (41.3)1-10

71 (28.7)11-20

34 (13.8)≥21

System usage time (years)

106 (42.8)<1

56 (22.7)1-3

32 (13)4-5

53 (21.5)≥6

Intention to Use a CDSS Dimensional Scores
The average scores of the dimension items in this study were
as follows: clinicians' task characteristics (4.45, SD 0.87),
technological characteristics (3.97, SD 0.80), task-technology
fit (4.20, SD 0.74), performance expectancy (4.14, SD 0.78),
perceived ease of use (4.03, SD 0.92), perceived risk (1.80, SD
0.85), and intention to use (3.88, SD 1.28).

Measurement Model Assessment
We typically assessed the reliability of each latent construct
(eg, factors, variables) using measures like composite reliability
or Cronbach α [36]. Furthermore, we assessed the convergent

validity by examining the loadings of the indicators on their
respective constructs and the average variance extracted (AVE)
[37]. The outcomes of this analysis are summarized in Table 3.
The results presented in Table 3 reveal that all Cronbach α and
composite reliability values exceeded 0.7, indicating solid
internal consistency and reliability for each construct. Moreover,
the AVE for each construct surpassed 0.5, signifying adequate
convergent validity. Additionally, the factor loadings for each
item were above 0.7, suggesting that each item reliably measures
its respective construct. Collectively, these findings demonstrate
robust reliability and convergent validity for the measurement
model.
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Table 3. Construct reliability and convergent validity.

Factor loadingCronbach αAVEbCRaConstructs and items

—d0.9300.9330.965TACc

0.974———TAC1

0.958———TAC2

—0.9180.9240.961TECe

0.963———TEC1

0.960———TEC2

—0.8710.8860.939TTFf

0.947———TTF1

0.935———TTF2

—0.9150.7970.940PEOUg

0.890———PEOU1

0.854———PEOU2

0.936———PEOU3

0.890———PEOU4

—0.8840.8120.928PEh

0.913———PE1

0.915———PE2

0.875———PE3

—0.9020.8360.939PRi

0.888———PR1

0.915———PR2

0.939———PR3

—0.9160.9230.960ITUj

0.961———ITU1

0.961———ITU2

aCR: composite score.
bAVE: average variance extracted.
cTAC: task characteristics.
dNot applicable.
eTEC: technology characteristics.
fTTF: task-technology fit.
gPEOU: perceived ease of use.
hPE: performance expectations.
iPR: perceived risk.
jITU: intention to use.

Moreover, discriminant validity was evaluated to ensure that
the constructs in the measurement model were distinct from
each other. Discriminant validity is a concept in research and
statistics that assesses the extent to which different measures
or constructs truly represent distinct concepts or variables. This
analysis helped confirm that the measures intended to represent
different constructs do not overlap substantially. By examining
the correlations between constructs and comparing them with
the square root of the AVE for each construct, we could

determine whether the measures exhibit adequate discriminant
validity. The outcomes of this analysis are summarized in Table
4. As evidenced in Table 4, the outcomes confirm that
discriminant validity was achieved. This is evident by ensuring
that the square root of the AVE for each construct exceeded the
correlations between that construct and other constructs.
Importantly, this criterion was met for all constructs included
in the analysis. Consequently, the measurement model
successfully demonstrated discriminant validity, indicating that
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the constructs are distinct from each other as intended [37] based
on the comprehensive assessment of the measurement model,
which included evaluating construct reliability, convergent

validity, and discriminant validity. As a result, we could proceed
with confidence to test the research hypotheses using this robust
measurement model.

Table 4. Discriminant validity.

Intention to
use

Perceived
risk

Perceived
ease of use

Performance
expectations

Task-technology
fit

Technology char-
acteristics

Task characteristicsConstructs

0.039–0.0540.0760.0840.2450.1030.966Task characteristics

–0.542–0.3940.6670.6780.7670.9620.103Technology characteristics

0.640–0.5830.6890.9010.9410.7670.245Task-technology fit

0.595–0.5710.8930.9010.6750.6780.084Performance expectations

–0.7740.9140.8930.6890.6920.6670.076Perceived ease of use

0.9610.914–0.571–0.583–0.542–0.394–0.054Perceived risk

0.961–0.7740.5950.6400.4680.3700.039Intention to use

Structure Model Assessment
In our research, all variance inflation factors were below the
predefined cutoff value of 5. Therefore, we concluded that no
multicollinearity was present in our data set [38]. The
assessment of the research model involved evaluating the path
coefficients (β) and coefficients of determination (R²). Table 5
presents the path coefficients along with their significance levels,
hypothesis outcomes, and R²values. Additionally, Figure 2
provides a visual representation of the research model,
illustrating the relationships between the variables and
highlighting the significant paths identified through the analysis.
These results offer insights into the strength and direction of
the relationships between the variables within the model, as
well as the extent to which they explain the variance in the
dependent variables. The coefficient of determination, or R²,
represents the proportion of variance in the endogenous latent
variable (in this case, “intention to use”) that is accounted for

by the predictors included in the model. In our analysis, the
entire model explained 65.8% of the variance in “intention to
use.” This level of explained variance is considered substantial,
indicating that a significant portion of the variability in the
intention to use can be attributed to the predictors included in
the model. The path coefficients (β) indicate the strength and
direction of the direct effects of independent variables on
dependent variables in the structural model. In our analysis,
hypotheses based on the TTF framework (hypotheses 1, 2, 3,
8) were all supported, suggesting significant relationships
between the TTF model constructs and the specified dependent
variables. Similarly, hypotheses related to the newly integrated
constructs, perceived ease of use and perceived risk (hypotheses
4, 5, 6, 7, 10), were also supported, indicating significant direct
effects between these constructs and the specified dependent
variables. However, hypothesis 9, presumably involving a
relationship between one of the newly integrated constructs and
a dependent variable, was not supported by the data.

Table 5. Hypothesis test results.

OutcomeP valuePath coefficient (β)PathHypothesis

Supported<.0010.168Task characteristics to task-technology fitHypothesis 1

Supported<.0010.749Technology characteristics to task-technology fitHypothesis 2

Supported<.0010.508Task-technology fit to performance expectationsHypothesis 3

Supported<.001–0.281Task-technology fit to perceived riskHypothesis 4

Supported<.0010.692Task-technology fit to perceived ease of useHypothesis 5

Supported<.001–0.377Perceived ease of use to perceived riskHypothesis 6

Supported<.001–0.308Perceived risk to performance expectationsHypothesis 7

Supported<.0010.228Performance expectations to intention to useHypothesis 8

Rejected.070.108Perceived ease of use to intention to useHypothesis 9

Supported<.001–0.579Perceived risk to intention to useHypothesis 10
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Figure 2. Result of the structure model. *P<.001; **P>.05.

Qualitative Data Analysis
From the 48 responses regarding clinicians’ expectations that
CDSS fail to meet, 3 themes emerged. The first theme,
mentioned 28 times, revolved around reducing system security
risks. Clinicians expect a CDSS not only to offer accurate
predictions but also to provide transparent explanations for its
decisions. This transparency is crucial for fostering trust among
health care professionals, ensuring regulatory compliance, and
safeguarding patient safety. The second theme, mentioned 10
times, pertained to personalized interactions. Clinicians
expressed a desire for a CDSS to move beyond standardized
interactions and instead offer personalized conversations. They
sought tailored content and forms of interaction that would
better meet their individual needs and preferences. The third
theme, mentioned 10 times, was related to effective utilization.
Clinicians emphasized the importance of efficiently using a
CDSS within their busy clinical workflows. Given that time is
a scarce resource in health care settings, clinicians expect a
CDSS to be designed in a way that seamlessly integrates into
their workflows and enhances efficiency rather than adding
burdensome tasks.

Discussion

Principal Findings and Comparison With Prior Work
As CDSS gain widespread adoption in health care, significant
questions arise concerning how they shape performance
expectations and perceived risks, as well as clinicians’
willingness to adopt and seamlessly integrate this technology
into their clinical workflows. This study marks a pioneering
effort at combining the perceived risk theory with the TTF
framework, examining how perceived ease of use and the
task-technology fit influence clinicians’ perceived risk and
performance expectations, thereby impacting clinicians’
willingness to adopt AI systems in their practice.

In our study, clinicians’ willingness to adopt a CDSS varied
from moderate to moderately high. We pinpointed several
crucial factors that significantly influenced their intention to
utilize this technology. Notably, we discovered that perceived
risk had a negative impact on clinicians’ intention to use CDSS,
with a significant portion of them exhibiting a low level of
perceived risk associated with the system. Indeed, perceived
risk arises from the system’s lack of transparency. The absence

of transparency in a CDSS refers to a deficiency in clarity or
openness in how the system makes decisions or generates
recommendations. This opacity can foster uncertainty among
clinicians regarding the rationale behind the system’s outputs,
thereby undermining their trust and confidence in its reliability,
hindering their ability to effectively integrate the CDSS into
clinical decision-making processes [39]. This finding is
consistent with prior research on users’ adoption of mobile
service systems, indicating that higher perceived risks associated
with new technology use correspond to lower levels of
willingness to use it [40]. Additionally, we observed that the
perceived risk served as a pivotal mediating factor in the
interplay between the task-technology fit and clinicians’
intention to utilize a CDSS. This is due to clinicians’
considerations of the system’s potential risks and uncertainties
when evaluating the task-technology fit. When clinicians
perceive a low fit between tasks and technology, they may be
apprehensive that the system may not adequately support their
work demands, subsequently enhancing their perception of risk
associated with using the system, ultimately diminishing their
usage behavior [41].

We also found that clinicians’ performance expectations for
CDSS were at a high level. Our findings indicate a significant
positive influence of performance expectations on clinicians’
intention to use a CDSS. This suggests that clinicians are more
likely to adopt the technology if they believe it enhances their
productivity and contributes to better clinical outcomes for their
patients. This is consistent with the findings of a 2021 study
that explored the impact of performance expectations on the
adoption of AI [42]. At present, the primary factor affecting
clinicians’ performance expectations of a CDSS is the system’s
inability to effectively integrate into their daily workflows. The
main reason is that clinicians have already established a
relatively smooth workflow in their daily practice. They are
accustomed to using tools and processes that may differ from
a CDSS. If the CDSS cannot seamlessly integrate with
clinicians’ existing workflows, they may perceive its use as
adding to their workload, reducing efficiency, or even causing
workflow interruptions [43,44].

Our findings revealed that the accuracy of a CDSS serves as a
pivotal determinant of physicians’ adoption intentions. System
accuracy not only directly impacts perceived technical utility
but also amplifies risk perception among clinicians. It not only
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directly affects the perceived usefulness of the technology but
also significantly heightens clinicians’ perceptions of risk. In
practice, physicians’ doubts about a CDSS, especially the risk
of systematic errors like diagnostic bias, can erode their trust.
In the field of geriatric emergency medicine, for instance, the
complexity of clinical decisions, which involves managing
multiple diseases and age-related diagnostic bias, can make
doctors more aware of CDSS errors. As a result, they may rely
more on their experience than algorithm suggestions. Although
AI advances may boost CDSS diagnostic accuracy, it is still
just a clinical aid, not a replacement. The MDCalc platform,
with over 500 evidence-based tools for risk stratification and
drug dose calculations, is a case in point. It is designed to
enhance, not replace, clinical reasoning. In breast cancer
treatment decisions, physicians balance evidence-based medicine
and patient-centered values. This shows the irreplaceability of
human decisions and the need for human-machine collaboration
in complex medical scenarios. Previous studies have shown that
an AI-based CDSS had a diagnostic accuracy of 93.6% and a
recall rate of 66.5% in 1850 cardiology cases. The study noted
that the high accuracy rate enabled physicians to focus on
diagnoses quickly, reducing missed diagnoses and delays, thus
enhancing their trust in the system and willingness to adopt it.
In addition, the system further improved the completeness and
efficiency of clinical decision-making by alerting physicians to
diagnoses they may have missed [45].

The clinical value of a CDSS hinges on its accuracy, yet medical
decision-making inherently intertwines scientific rigor with
humanistic considerations. In the short term, a CDSS is best
positioned as an intelligent clinical adjunct, mitigating human
errors to elevate overall care quality. However, fully supplanting
physician judgment remains untenable, constrained by both
technological immaturity and the irreplaceable role of human
empathy in medicine. Future innovations must prioritize the
development of trustworthy, transparent, and interoperable
systems that seamlessly integrate into clinicians’ workflows,
fostering collaborative human-AI synergy rather than
competition.

It is intriguing that, in this particular study, perceived ease of
use emerged as insignificant within the context of a CDSS. This
suggests that other factors might have played a more dominant
role in influencing clinicians’ intentions to use these systems.
However, the clinicians’ intentions to use a CDSS were
indirectly influenced by the perceived ease of use, mediated
through the variable of perceived risk. It is not uncommon to
find studies within the realm of information system use where
the relationship between perceived ease of use and use intention
is deemed insignificant [46,47]. This result underscores that,
even if a system is user-friendly, if it fails to deliver tangible
benefits in terms of patient care or diagnostic accuracy,
clinicians may not be motivated to use it.

Through qualitative data analysis, we pinpointed 3 key areas
where clinicians perceived shortcomings in a CDSS: lack of
transparency, limited personalized interactions, and inadequate
integration with clinical workflows. This revelation provides
hospital administrators and system developers with valuable
insights into the underlying reasons for the low utilization rates
of CDSS. When clinicians encounter a CDSS with opaque

algorithms, their perceived risk increases. Additionally, the
absence of personalized interactions and seamless integration
into workflows diminishes clinicians’performance expectations,
thereby leading to reluctance for continued CDSS usage.

Managerial and Public Health Implications
Drawing upon the unique characteristics and requirements of
clinical tasks, a CDSS can be tailored and optimized to
harmonize with clinicians’operational routines and bolster their
decision-making processes. Concurrently, a real-time feedback
loop should be embedded within a CDSS to systematically
gather clinicians’ongoing usage feedback and recommendations.
This feedback loop facilitates a deep understanding of clinicians’
satisfaction levels and identifies areas for potential improvement.
All the aforementioned measures help ensure that the CDSS
remains tightly synchronized with the changing tasks and needs
of clinicians.

The lack of transparency, interpretability, regulatory and ethical
compliance, and accountability issues surrounding AI’s
participation in medical decision-making pose a series of
challenges in the health care industry, which has sparked the
demand for explainable AI in the medical field. Explainable AI
not only provides accurate predictions but also offers transparent
explanations for its decisions, which is crucial for building trust
with clinicians, validating generated insights, ensuring
regulatory compliance, and ensuring patient safety [48].
Improving the transparency and explainability of CDSS hinges
on integrating technical design with practical application
strategies, enabling clinicians to comprehensively understand
the system’s decision logic, verify its scientific basis, and build
trust. This enhancement should focus on 3 core approaches.
First, the “Chain of Diagnosis” framework enables interpretable
model design and visualized reasoning pathways by breaking
down complex medical diagnoses into clear, sequential steps:
symptom abstraction, disease prediction, and confidence
assessment. For instance, a dental pain differential diagnosis
system uses a symptom-disease mapping matrix to differentiate
similar conditions like pulpitis and dental caries. It triggers
additional symptom collection commands based on preset
confidence thresholds, such as cold sensitivity tests. Using
Shapley Additive Explanations, the system quantifies the
contribution of key indicators (eg, lactate levels in sepsis
prediction) and presents the basis of decision-making through
heat map gradients [49]. Second, constructing a dynamic
medical knowledge graph based on authoritative guidelines
directly links each recommendation to its original evidence
source. Clinicians can trace the basis of recommendations
through an interactive interface, which includes literature DOI
codes, guideline update versions, and evidence level labels.
Publicly maintaining knowledge base version iteration logs
further ensures system transparency, effectively alleviating trust
crises caused by “black box” decision-making [50]. Third,
dynamic interaction and multiround consultation designs, based
on the information entropy reduction principle, optimized
diagnostic workflows. Multiround consultation design reduces
diagnostic uncertainty. When system confidence is below a
critical value, it automatically starts targeted symptom checks
(eg, confirming visual blurring) and shows the impact of new
symptoms on differential diagnoses via evolving probability
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distribution charts. For example, in the DiagnosisGPT system,
the real-time updated probability distribution chart visually
presents the evolution of hypotheses: The probability of
influenza diagnosis drops from 0.4 to 0.1, while that of
tuberculosis rises to 0.7. This dynamic reasoning process aligns
with clinical thinking, significantly reducing the perceived risk
of “arbitrary machine decisions.” Ultimately, a closed-loop
framework of “technical verifiability, evidence traceability, and
decision controllability” fosters human-AI trust collaboration,
ensuring the CDSS aligns with clinical workflows, adheres to
ethical standards, and prioritizes patient safety. This triad of
strategies bridges the gap between algorithmic outputs and
clinical interpretability, empowering physicians to critically
evaluate and responsibly act on AI-generated insights.

Although this study did not prove that perceived ease of use
can directly increase clinicians’ willingness to use a CDSS, a
pleasant system interface, simple and easy operation process,
and easy-to-understand information prompts can effectively
reduce clinicians’ perceived risk, increase clinicians’
performance expectations, and thus indirectly affect clinicians’
use of the system. Therefore, providing comprehensive user
support, including detailed user manuals, online help documents,
and video tutorials, ensures that clinicians can easily obtain the
necessary help during use, ultimately improving effectiveness
and utilization in clinical decision-making.

Contribution
The contribution of this study is the identification of several
key factors that influence clinicians’ use of CDSS. There
remains a notable gap, with only a limited number of studies
integrating both TAM and the TTF model to comprehensively
understand CDSS adoption factors [51,52]. Our study captures
the perception of clinicians and degree of technical fit with the
task. This study offers a dual contribution. Theoretically, it
identifies pivotal factors influencing clinicians’ readiness to
embrace CDSS and verifies the model’s applicability and utility
via a cross-sectional survey. Practically, the study’s findings
furnish tailored managerial recommendations to foster the
implementation and efficacy of CDSS, thus bridging the gap
between theory and practice in health care settings.

Limitations
There are some limitations of this study that must be
acknowledged. One limitation of the study is the reliance on
intention to use as a final variable. Although willingness to use
can predict usage behavior, it is important to note that it is not
synonymous with actual usage behavior. The study may not
fully capture the complex dynamics that affect CDSS utilization
in real-world clinical settings. Another limitation of the study
is that this study was conducted in 3 tertiary hospitals in
Shanghai; extrapolating the results to hospitals with different
contextual factors should be done cautiously. Last, the
cross-sectional nature of the study may restrict the ability to
establish causality between the identified factors and clinicians’
willingness to use a CDSS. Longitudinal studies tracking
changes in attitudes and behaviors over time would provide
stronger evidence of causal relationships.

Conclusions
In conclusion, this study set out to uncover the critical factors
shaping clinicians’ intentions to use a CDSS. Performance
expectations and perceived risk emerged as significant predictors
of usage intention. Task-technology fit and perceived ease of
use can significantly influence users’ perceived risk and
performance expectations. Therefore, CDSS developers must
emphasize the advantages of AI technology, align technology
objectives with organizational missions (task-technology fit),
prioritize a user-friendly design to reduce effort expectancy
(perceived ease of use), articulate the system’s capabilities
clearly (performance expectancy), and mitigate risk perceptions
by refining the overall design. In the future, management
policies should encourage the active involvement of clinicians
and all stakeholders in the decision-making process concerning
CDSS. This participatory approach ensures that diverse
perspectives are considered, leading to greater acceptance and
buy-in from health care professionals. Furthermore, establishing
clear accountability and responsibility frameworks can foster
trust and confidence among users, guiding the use of AI
technology. By implementing these measures, organizations
can mitigate risk perception, enhance performance, and
ultimately increase clinicians’ intentions to integrate CDSS into
their daily practice.
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