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Abstract

Background: Alzheimer disease (AD) is a progressive condition characterized by cognitive decline and memory loss. Vision
transformers (ViTs) are emerging as promising deep learning models in medical imaging, with potential applications in the
detection and diagnosis of AD.

Objective: This review systematically examines recent studies on the application of ViTs in detecting AD, evaluating the
diagnostic accuracy and impact of network architecture on model performance.

Methods: We conducted a systematic search across major medical databases, including China National Knowledge Infrastructure,
CENTRAL (Cochrane Central Register of Controlled Trials), ScienceDirect, PubMed, Web of Science, and Scopus, covering
publications from January 1, 2020, to March 1, 2024. A manual search was also performed to include relevant gray literature.
The included papers used ViT models for AD detection versus healthy controls based on neuroimaging data, and the included
studies used magnetic resonance imaging and positron emission tomography. Pooled diagnostic accuracy estimates, including
sensitivity, specificity, likelihood ratios, and diagnostic odds ratios, were derived using random-effects models. Subgroup analyses
comparing the diagnostic performance of different ViT network architectures were performed.

Results: The meta-analysis, encompassing 11 studies with 95% CIs and P values, demonstrated pooled diagnostic accuracy:
sensitivity 0.925 (95% CI 0.892-0.959; P<.01), specificity 0.957 (95% CI 0.932-0.981; P<.01), positive likelihood ratio 21.84
(95% CI 12.26-38.91; P<.01), and negative likelihood ratio 0.08 (95% CI 0.05-0.14; P<.01). The area under the curve was notably
high at 0.924. The findings highlight the potential of ViTs as effective tools for early and accurate AD diagnosis, offering insights
for future neuroimaging-based diagnostic approaches.

Conclusions: This systematic review provides valuable evidence for the utility of ViT models in distinguishing patients with
AD from healthy controls, thereby contributing to advancements in neuroimaging-based diagnostic methodologies.

Trial Registration: PROSPERO CRD42024584347; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=584347

(J Med Internet Res 2025;27:e62647) doi: 10.2196/62647
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Introduction

Alzheimer disease (AD) is a progressive neurodegenerative
disorder characterized by deterioration in cognitive function
and memory impairment. As the global population ages, AD is
emerging as a significant public health concern, affecting
millions of individuals worldwide [1]. AD poses a mounting
socioeconomic burden due to the escalating costs associated
with medical care and long-term support for patients with these
diseases and their caregivers. Consequently, there is an urgent
need to develop accurate and early diagnostic methods to
facilitate timely intervention and management of this debilitating
condition [2].

The early and accurate detection of AD is imperative for
initiating timely therapeutic interventions and proper care
planning before irreversible neurological damage occurs.
However, a definitive diagnosis of AD can only be established
postmortem through the identification of amyloid plaques and
neurofibrillary tangles in the brain tissue. Consequently,
researchers have turned their attention to leveraging novel
imaging techniques, such as magnetic resonance imaging (MRI)
and 18-fluorodeoxyglucose and positron emission tomography,
by the use of advanced computational techniques like machine
learning (ML) and deep learning (DL) approaches to facilitate
the earlier identification of AD. These advanced neuroimaging
modalities and computational methods hold the potential to aid
in the presymptomatic detection and monitoring of AD
progression, which enables more effective disease management
strategies [3]. DL and ML approaches have been widely applied
to various diagnostic tasks, although the diagnostic accuracy of
DL remains uncertain in some areas. To address this gap,
meta-analysis methods have been proposed [4] to provide a
more comprehensive understanding. For example, studies have
estimated the diagnostic accuracy of DL models for COVID-19
detection [5] and evaluated ML models for osteoporosis
diagnosis in the hip bone [6]. Similarly, both ML and DL
techniques have been extensively used for the detection and
diagnostic evaluation of AD. Odusami et al [7] undertook a
systematic review and meta-analysis. They used ML models
alongside multimodal neuroimaging data to classify various
stages of AD progression. The findings from their investigation
were highly encouraging, demonstrating pooled estimates for
sensitivity of 94.6% and specificity of 93.5% in classifying
patients with AD from healthy controls. This study demonstrates
the considerable promise of ML algorithms when combined
with multimodal neuroimaging biomarkers for differentiating
patients with AD from cognitively normal (CN) individuals.
This capability holds potential advantages for enabling early
diagnosis and disease monitoring, essential for effective
management and treatment. The application of ML in AD
diagnosis opens a new chapter for research with the capacity to
significantly impact patient care and management. The extensive
meta-analysis conducted by Wang et al [8] explored the concept
of deep neural networks and heat map visualizations on

multimodal neuroimaging data, encompassing structural MRI
and functional imaging, to unravel patterns linked with AD.
Through the application of deep neural networks and heat map
visualizations, the study successfully pinpointed and emphasized
the particular brain regions mostly impacted by the disease.
This outcome provides valuable insights into the fundamental
mechanisms underlying AD. Qu et al [9] conducted a
comprehensive review and meta-analysis comparing the
diagnostic efficacy of generative adversarial network
(GAN)–based and non-GAN DL approaches in AD diagnosis.
Their findings revealed that GAN-based DL models are more
superior and effective than the non-GAN models in
distinguishing individuals with AD from those with just CN
individuals. This superiority was demonstrated through
significant enhancements in accuracy, sensitivity, specificity,
and the area under the curve of the summary receiver operating
characteristic. However, when differentiating between
progressive mild cognitive impairment (MCI) and stable MCI,
the GAN method did not demonstrate a notable improvement
in either the accuracy or the sensitivity. Despite this, it displayed
marginally better specificity and area under the curve of the
summary receiver operating characteristic curve compared with
the non-GAN method. These results highlight the potential of
GAN-based DL techniques to enhance AD diagnosis.
Nonetheless, their applicability may be constrained in certain
diagnostic contexts. Vision transformers (ViTs) are a novel type
of DL model that has been effectively used in various types of
computer vision tasks due to their ability to learn long-range
connections within the images [10]. The ViTs process image
data using the self-attention mechanism, which allows the model
to connect sensitive regions of the image, which ultimately
improves computing efficiency and contextual comprehension.
Dosovitskiy et al [11] proposed a novel approach in computer
vision, demonstrating the efficacy of ViT for image recognition
tasks. Deviating from conventional methods that rely on
convolutional neural networks (CNN), ViTs directly apply
transformer architecture to sequences of image patches. By
leveraging pretraining on extensive data sets, ViTs achieve
competitive performance on various image classification
benchmarks with lesser computational complexity. This
pioneering study emphasizes the potential of transformer-based
models in revolutionizing image recognition tasks, with scalable
and promising results. Thereafter, various novel ViT models
were developed, with enhancements aimed at reducing their
computational cost and extending them to additional vision
tasks, such as object detection [12] and image segmentation
[13]. ViTs are well-designed to serve as the fundamental models
for computer vision tasks in the medical field. Therefore, many
studies have been published recently focusing on this area of
research [14-17].

CNN models process images as pixel arrays, whereas ViT splits
the input images into visual tokens. The visual transformer
breaks an image into fixed-size patches, embeds each one
appropriately, and incorporates positional embeddings as input
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for the transformer encoder. In addition, ViT models offer nearly
four times the computational efficiency and accuracy compared
with CNNs [18]. The self-attention layer in ViT enables the
model to embed information globally across the entire image.
It also learns from the training data to encode the relative
positions of image patches, allowing it to reconstruct the image’s
structure effectively.

Despite the promising outcomes documented in the scientific
literature regarding the utilization of ViTs for AD image
classification and analysis, a comprehensive meta-analysis
examining the advantages and performance of these ViTs is
notably absent. This research gap underscores the necessity for
a systematic review and meta-analysis to consolidate existing
evidence systematically; this systematic review with
meta-analysis of ViT network architecture aims to address this
evidence gap. The goal of this review and meta-analysis is to
evaluate and summarize all available evidence to quantitatively
assess the diagnostic test accuracy (DTA) of ViTs for detecting
AD using MRI and positron emission tomography (PET) brain
images, also providing critical insights that can inform future
research directions and clinical practice in the field of AD
diagnosis and management.

Methods

Data Sources and Literature Query
In this systematic review and meta-analysis, relevant studies
on AD and ViT-based models were systematically gathered
from multiple databases known for extensive research on these
topics. These databases included CENTRAL (Cochrane Central
Register of Controlled Trials), China National Knowledge
Infrastructure, PubMed, Scopus, ScienceDirect, and Web of
Science. In addition, we searched other sources like Google
Scholar for gray literature and conducted citation searches. In
total, 24,693 records were identified. The selected literature
encompassed publications from January 1, 2020, to March 1,
2024, specifically focusing on studies using ViTs for AD
prediction with neuroimaging data. The selected studies used
MRI and PET as imaging data. The search strategy used MeSH
terms and other selected keywords across different databases.
Search strings can be found in Multimedia Appendix 1. A
comprehensive outline of the search methodology, adhering to
the Preferred Reporting Items for Systematic reviews and
Meta-Analyses (PRISMA) guideline of reporting systematic
reviews [19], can be found in Multimedia Appendix 2.

Eligibility Criteria
In this systematic review and meta-analysis, we considered
studies using ViTs for AD image classification, specifically
those published since their inception in 2020 [11]. These studies
were required to report detailed performance metrics, including
sensitivity, specificity, and a 2×2 confusion matrix, for ViT
models used either independently or in hybrid models with other
DL architectures. The MRI and PET image data sets used in
the studies could be either unimodal or multimodal. Studies
were excluded based on the following criteria: (1) conference
abstracts, (2) duplicate studies, (3) incomplete papers lacking
full text, (4) studies lacking classification results for AD and
normal control (NC), (5) studies not using ViT models for AD

detection, (6) literature reviews, and (7) studies not adopting
neuroimaging for AD and NC prediction. Studies included in
this review showcased the application of ViT models for AD
image classification and provided comprehensive performance
metrics.

Selection of Involved Studies
Two teams of reviewers (VM and TEK and HY and NW)
independently conducted the screening process. Using Rayyan
(Rayyan Systems Inc) [20], a freely available software,
duplicates were removed based on titles or abstracts,
streamlining the screening process. The initial review involved
titles and abstracts, followed by a thorough examination of full
texts for further screening. Eligible studies were included in the
final analysis. In instances where the 2 review teams were unable
to reach an agreement, the disagreement was resolved by
consulting a more experienced third reviewer (LZ), who
facilitated consensus.

Data Collection Process
Two researchers (VM and TEK) independently adopted a
self-developed data extraction form to meticulously extract
specific parameters regarding network architecture. These
include the country of study, network model type, data type,
methods, number of training epochs, batch sizes, and other
relevant information. In addition, we diligently extracted the
(2×2) confusion matrix, consisting of true positive, false
negative, true negative, and false positive. These data formed
the foundation for computing various DTA metrics, including
sensitivity, specificity, diagnostic odds ratios (DORs), recall,
precision, F1-score, and positive and negative likelihood ratios
(LR+ and LR–). This rigorous approach ensures a
comprehensive analysis of ViT performance in AD detection
using neuroimages. These metrics were used to assess the
performance of models used in studies. The formulas for
estimating some of these parameters are presented in Equations
1-4.

Risk of Bias and Quality Assessment
The quality assessment of the included studies was conducted
using the Quality Assessment of Diagnostic Accuracy Studies-2
tool [21], a validated instrument designed to rigorously evaluate
both the methodological integrity and reporting quality of
diagnostic accuracy studies. This tool systematically appraises
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key domains, including patient selection, index test, reference
standard, and flow and timing, thereby offering a structured
framework for a comprehensive assessment of study quality.
About 31% of the outcomes in the included studies lacked
details on patient selection, leading to a high risk of bias,
whereas the rest were considered low risk. In addition, 37% of
the outcomes had unclear information on how the index test
was performed, resulting in an unclear risk of bias for the test.
Since the studies focused on AD, there was a mismatch between

the review question and the index test. Furthermore, about 31%
of the outcomes from all included studies did not clarify if the
review question matched the targeted condition, raising concerns
about the applicability of the index test. About 31% of the
outcomes lacked clear information on the interval between the
index test and reference standard, as well as on their execution,
leading to unclear bias regarding flow and timing. The remaining
studies were considered low risk for these factors. Figure 2
shows the overall study of the risk of bias evaluation.

Figure 2. Summary of QUADAS-2 plots across the 16 included studies in the domain. (A) Risk of bias plot. (B) Risk of bias for applicability concerns.
QUADAS-2: Quality Assessment of Diagnostic Accuracy Studies-2.

Statistical Analysis
The analysis combining data from multiple studies was
conducted independently for sensitivity and specificity to
consolidate the diagnostic accuracy findings of each network
model. In this study, we used a random-effects model [22] to
analyze the diagnostic performance of various ML models for
medical diagnosis.

The primary outcomes are sensitivity, specificity, and the
summary receiver operating characteristic curve, to provide a
comprehensive assessment of diagnostic performance across
studies. We computed point estimates and their corresponding
95% CIs for sensitivity and specificity to ensure consistency
and comparability. Secondary outcomes, such as positive and
negative likelihood ratios, were also explored. To assess

statistical heterogeneity, the Cochran Q test and the I2 statistic
were used. For the Q statistic, values ranging from 0% to 40%
imply insignificant heterogeneity, 30% to 60% connote moderate
heterogeneity, and 75% to 100% mean considerable

heterogeneity. Publication bias was assessed using funnel plots,
with significance set at P<.05 for 2-sided tests. Furthermore,
we conducted subgroup analyses by stratifying studies based
on the training approach, distinguishing between those using
the ViT model alone and hybrid models. This meticulous
approach allowed for a robust evaluation of the effectiveness
and potential biases within the literature.

Results

General Overview of All Included Studies
The initial search across databases yielded a total of 24,693
publications. After removing duplicates and screening the titles
and abstracts, 11 papers [23-33] met the eligibility criteria, and
16 reports were included for qualitative synthesis and
meta-analysis [23-33]. In addition, 4 of these papers
[24,26,30,32] reported more than one study, resulting in a total
of 16 outcomes that were used in the analysis as shown in Figure
1.

J Med Internet Res 2025 | vol. 27 | e62647 | p. 4https://www.jmir.org/2025/1/e62647
(page number not for citation purposes)

Mubonanyikuzo et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. PRISMA flowchart for search strategy. Records were identified from CENTRAL, China National Knowledge Infrastructure, PubMed, Scopus,
ScienceDirect, and Web of Science. AD: Alzheimer disease; CN: cognitively normal; CNN: convolutional neural network; HC: healthy controls;
PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses.

The ViT-based network architectures were classified into 2
categories. Among the reported studies, 7 of 16 outcomes (64%)
used ViT models alone during the training and testing phases,
whereas the remaining studies used hybrid models that
integrated ViT with other DL architectures for training and
testing. Various public data sets were used for training and
evaluating the models, including the Alzheimer’s Disease
Neuroimaging Initiative; Alzheimer’s Disease Neuroimaging
Initiative Grand Opportunity Study; UK Biobank; Australian
Imaging, Biomarkers, and Lifestyle Study; and others. The
neuroimaging modalities used in these studies encompassed

functional MRI, structural MRI, and PET, specifically
fluorodeoxyglucose-PET.

The characteristics of the included studies are summarized in
Table 1. The studies originated from China, representing 36%
(4/11) of the total. The United States is the second most frequent
at 27% (3/11). Lithuania and Korea are tied for third at 9%
(1/11) each, whereas Colombia and Thailand each account for
9% (1/11). The most common objective across these studies
was the diagnosis of AD versus NCs. Some studies used
different datasets, and in such cases, we included each study
separately. In addition, certain studies reported on multiple
network architectures.
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Table 1. Comprehensive summary of the characteristics of all the studies included in this systematic review.

Brief study summarySignificance and the
limitations of the study

Type of taskTraining
epochs/batch
size

Data (imaging
method),

MRIb/PETc

Network ar-
chitecture
model

(ViTa/hy-
brid)

Country of
study

Study

This study uses deep
learning to analyze

Significance: new im-
age preprocessing tech-

Classifica-
tion

250/NAdMRIViTColombiaAlejandro et al
2023 [23]

MRI scans and detectniques and spatial data
augmentation.

Limitations: small data
set

ADe with up to 89%
accuracy in early
stages.

Multimodal MRI+PET
fusion for improved
AD.

Significance: using
transfer learning, which
improves the perfor-
mance of the proposed

DetectionNA/1024MRI+PETViTLithuaniaOdusam et al

2023_1 [24]f;
Odusam et al

2023_2 [24]f
model; an image fusion
technique has been pro-
posed to fuse multi-
modal images for AD
diagnosis.

Limitations: limited da-

ta set (ADNIg only
used), the fusion param-
eters in the study were
not optimized to their
full potential.

BraInf, a novel model,
uses long-term connec-

Significance: integrates
representation learning,

Detection16/NAMRIViTChinaZhu et al 2022
[25]

tions in brain scans tofeature distilling, and
detect AD with near-
perfect accuracy.

classifier modeling into
a unified framework.

Limitations: the fixed
5×3×5 size of the fea-
ture extraction patch is
less suitable because
brain disease-related
structural changes vary
in size, so a dynamic
patch size would be
more appropriate.

A dual-branch vision
transformer model us-

Significance: in the

study CsAGPh a dual-

Detection or
classification

128/300MRI+PETHybridChinaTang et al

2023_1f [26];
ing cross-attention andbranch vision trans-Tang et al
graph pooling for ADformer using cross-atten-2023_2 [26]f; detection from multi-tion and graph poolingTang et al

2023_3f [26]
modal images, achiev-
ing high classification
accuracy rates through

for multilevel feature
interaction and represen-
tation was introduced to

extensive experiments
on the ADNI database.

learn a shared feature
representation by inter-
acting with features at
multiple levels.

Limitations: the pro-
posed CsAGP is slice-
based and considers on-
ly axial view slices.
Since 2D images cannot
include all the informa-
tion from a full brain
scan. Also, this study
has not conducted a
time processing compar-
ison.
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Brief study summarySignificance and the
limitations of the study

Type of taskTraining
epochs/batch
size

Data (imaging
method),

MRIb/PETc

Network ar-
chitecture
model

(ViTa/hy-
brid)

Country of
study

Study

This work introduces a
cascaded multimodal
mixing transformer
(3MT) model for AD
classification that effec-
tively handles incom-
plete data, leveraging
cross-attention and a
novel modality dropout
mechanism for robust
and state-of-the-art per-
formance on multi-
modal data sets.

Significance: a multi-
modal method used to
handle missing data in
various clinical settings.

Limitations: reliance on

a GPUi may pose chal-
lenges in clinical envi-
ronments where access
to GPUs is limited.

Classifica-
tion

50/NAMRIHybridChinaLiu et al 2023
[27]

Application of ViTs on
structural MRI scans
for AD detection,
achieving high classifi-
cation accuracy.

Significance: variants
of the ViT architecture
used, 3D MRI images.

Limitations: small data
set used.

Classifica-
tion

16/NAMRIViTUnited
States

Dhinagar et al
2023 [28]

A Cross-Modal Trans-
former GAN (CT-
GAN) framework that
effectively fuses struc-
tural and functional
brain imaging data to
enhance AD prediction
was introduced.

Significance: GANj and
transformer architecture
used in AD detection.

Limitations: one dataset
used.

Classifica-
tion

NA/NAMRIHybridChinaPan et al 2022
[29]

RMTnet, a deep learn-
ing model combining
recurrent neural net-
works (RNNs) and
transformers for AD di-
agnosis using FDG-
PET, was introduced.

Significance: ViT archi-
tecture by pretraining
the feature extractor us-
ing the self-distillation
with no labels (DINO)
and extreme learning
machine (ELM) as
classifier models was
introduced.

Limitation: training
process is complex.

Classifica-
tion

32/NAPETViT; hybridKoreaKhatri et al

2024_1 [30]f;
Khatri et al

2024_2 [30]f

The model combines
MRI and PET scans
with mixed-transformer
and semantic segmenta-
tion techniques, achiev-
ing superior perfor-
mance metrics com-
pared with existing
models.

Significance: a novel
model of mixed-trans-
former with furthered
U-Net architecture.

Limitations: lack of
model interpretability.

Detection100/32MRI+PETHybridThailandKhan et al 2024
[31]

PVTADk, a new
method for AD diagno-
sis that applies the
Pyramid Vision Trans-
former to the white
matter of T1-weighted
structural MRI data,
was introduced.

Significance: diagnosis
of AD on white matter
of T1-weighted struc-
tural data.

Limitations: small data
sets.

Detection20/NAMRIViT; hybridUnited
States

Aghdam et al

2024_1 [32]f;
Aghdam et al

2024_2 [32]f
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Brief study summarySignificance and the
limitations of the study

Type of taskTraining
epochs/batch
size

Data (imaging
method),

MRIb/PETc

Network ar-
chitecture
model

(ViTa/hy-
brid)

Country of
study

Study

A self-supervised
learning approach for
dementia diagnosis
from MRI scans was
introduced, achieving
state-of-the-art 92% ac-
curacy.

Significance: combin-

ing CNNl and ViT.

Limitations: low accura-
cy.

Classifica-
tion

50/16MRIHybridUnited
States

Huang et al 2023
[33]

aViT: vision transformers.
bMRI: magnetic resonance imaging.
cPET: positron emission tomography.
dNA: not available.
eAD: Alzheimer disease.
fStudies that reported more than 1 outcome, for 3 outcomes (1,2,3) and 2 outcomes (1,2).
gADNI: Alzheimer’s Disease Neuroimaging Initiative.
hCsAGP: cross-attention and graph pooling algorithm.
iGPU: graphic processing unit.
jGAN: generative adversarial network.
kPVTAD: pyramid vision transformer for Alzheimer disease.
lCNN: convolutional neural networks.

The Overall Diagnostic Test Accuracy
The overall DTA for all included studies is presented in Figure
3; the pooled sensitivity of univariate analysis of 11 studies

[23-33] with 16 outcomes was 0.925 (95% CI 0.892-0.959,

I2=84.2% for 16 outcomes). The pooled specificity of univariate

analysis was 0.957 (95% CI 0.932-0.981, I2=76% for 16
outcomes), as shown in Figure 4.

Figure 3. Forest plot of pooled sensitivity from 11 studies [23-33] with 16 outcomes using a meta-analysis of the proportion random-effect model.
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Figure 4. Forest plot of pooled specificity from 11 studies [23-33] with 16 outcomes using a meta-analysis of the proportion random-effect model.

As depicted in Figure 5, the positive likelihood ratio (LR+)

showed a pooled value of 21.84 (95% CI 12.26-38.91, I2=64.9%
for 16 outcomes). Similarly, the negative likelihood ratio (LR–)

showed a pooled value of 0.084 (95% CI 0.054-0.133, I2=40.2%

for 16 outcomes), as shown in Figure 6. The summary receiver
operating characteristic curve of the bivariate model has an
AUC of 0.924 (Figure 7), indicating excellent overall diagnostic
performance.

Figure 5. Forest plot of pooled positive likelihood ratio (LR) from 11 studies [23-33] with 16 outcomes. The risk ratio (RR) with 95% CI for each
outcome is presented alongside the corresponding study weight.
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Figure 6. Forest plot of pooled negative likelihood ratio (LR) from 11 studies [23-33] with 16 outcomes. The risk ratio (RR) with 95% CI for each
outcome is presented alongside the corresponding study weight.

Figure 7. A plot of bivariate SROC for the diagnosis of AD using the ViT model. Green points represent individual studies included in the analysis,
while the blue curve represents the fitted SROC curve based on the bivariate model. AD: Alzheimer disease; AUC: area under the curve; ViT: vision
transformer; SROC: summary receiver operating characteristic curve; SE(AUC): standard error of the area under the curve.

DTA for the Subgroup Analysis Based on Network
Architecture
Based on the network architecture, the model was divided into
2 models: ViT models and hybrid networks that incorporate the
ViT model with other DL models. The ViT model alone has a

sensitivity of 0.908 (95% CI 0.860-0.957, I2=86.9% for 7 of 16
outcomes), whereas the hybrid models have a sensitivity of

0.937 (95% CI 0.890-0.985, I2=83.1% for 9 of 16 outcomes).

The pooled sensitivity values indicate that there is no significant
difference between the 2 subgroups of the network model, with
a P value of .40, as shown in Figure 8. The pooled specificity
of the ViT model alone exhibits a pooled specificity of 0.912

(95% CI 0.849-0.976, I2=88.4% across 7 of 16 outcomes). In
contrast, the hybrid model demonstrates superior pooled

specificity at 0.984 (95% CI 0.975-0.992, I2=0% across 9 of 16
outcomes). These results reveal that there is a statistically
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significant difference in the specificity of the 2 categories of
network models with a P value of .03 as shown in Figure S1 in
Multimedia Appendix 3.

In the subgroup analysis comparing the ViT model and the
hybrid model in our meta-analysis, the pooled DOR for the ViT

model was 152.681 (95% CI 34.969-666.632, I2=87.4% for 7
of 16 outcomes), whereas for the hybrid model, it was notably

higher at 880.203 (95% CI 337.53-2052.12, I2=50% for 9 of 16
outcomes). In addition, the P value for the subgroup difference
was found to be .04, indicating a statistically significant
difference between the 2 models. Given the substantially higher
pooled DOR for the hybrid model and the significant subgroup
difference, it shows that the hybrid model appears to be more
effective in diagnosing AD based on our meta-analysis findings
(Figure S2 in Multimedia Appendix 3).

Figure 8. Subgroup analysis plot of pooled sensitivity based on the network architecture category. NB: Model 0 represents the ViT model alone,
whereas Model 1 adapts the ViT model with other deep learning (DL) models.

Assessment of Study Quality
Assessment of the review domains on risk of bias and
applicability concerns was performed after reviewing studies.
The review domains included patient selection, index test,
reference standard, and flow and timing.

Patient Selection
There were 4 of 16 outcomes from 3 studies [28,30,33] (25%)
that raised low concerns for patient selection bias and 5 of 16
outcomes from 2 studies [26,32] (31.25%) with high concerns,
whereas 7 of 16 outcomes from 6 studies [23-25,27,29,31]
(43.75%) were unclear, due to the studies not providing the
detailed information about dataset used during training, testing,
and validation.

Index Test
There were 6 of 16 outcomes from 4 studies [26,28,29,33] (38%)
that raised low concerns, 4 of 16 outcomes from 3 studies
[25,27,32] (25%) with high concerns, and 6 of 16 outcomes
from 4 studies [23,24,30,31] (38%) that were unclear, primarily
due to inadequate reporting of methodological details.

Reference Standard

There were 10 of 16 outcomes (62%) from 7 studies
[25,26,28,29,31-33] with low concerns and 6 of 16 outcomes
(38%) from 4 studies [23,24,27,30] that were unclear.

Flow and Timing

We conducted applicability concerns based on the interval
between the index test and reference standard, whether all
patients were included in the analysis, and whether the same
data set used in studies received the same reference standard.
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The results showed 7 of 16 outcomes from 4 studies
[28,30,31,33] (43.75%) raise low concerns for patient selection
bias, 3 of 16 outcomes from 2 studies [26,32] (18.75%) raise
high concerns, and 6 of 16 outcomes from 5 studies
[23-25,27,29] (38%) were unclear; for the index test, 4 of 16
outcomes from 4 studies [26,28,29,33] (25%) raise low
concerns, 5 of 16 outcomes from 4 studies [25,27,31,32]
(31.25%) raise high concerns, and 5 of 16 outcomes from 3
studies [23,24,30] (31.25%) were unclear; for reference standard,
10 of 16 outcomes from 7 studies [25,26,28,29,31-33] (62%)
raise low concerns, 1 of 16 outcomes from 1 study [30] (6%)
raises high concerns, and 4 of 16 outcomes from 3 studies
[23,24,27] (25%) were unclear, which can be found in
Multimedia Appendix 4.

Discussion

Principal Findings
In the current systematic review and meta-analysis, the DTA
of the vision transformer (ViT) in detecting AD was evaluated.
The pooled DTA metrics across 11 studies revealed robust
performance in detecting AD. The pooled sensitivity was 0.925
(95% CI 0.892-0.959), indicating the model’s ability to correctly
identify individuals with AD, whereas the specificity was 0.957
(95% CI 0.932-0.981), demonstrating its capacity to accurately
classify individuals without AD. In addition, the positive
likelihood ratio was 21.84 (95% CI 12.26-38.91), showing the
strength of a positive test result, whereas the negative likelihood
ratio was 0.08 (95% CI 0.05-0.13), indicating the robustness of
a negative test result. The area under the curve was 0.924,
further confirming the model’s overall diagnostic accuracy.
Comparatively, the study conducted by Odusami et al [7] also
assessed diagnostic performance in AD detection using ML and
DL models. Their meta-analysis reported pooled sensitivity and
specificity estimates of 94.60% (95% CI 90.76-96.89) and
93.49% (95% CI 91.60-94.90), respectively, for differentiating
AD from CN individuals. Notably, while our specificity estimate
was slightly higher than that reported by Odusami et al [7], both
studies demonstrate high accuracy in AD detection.

The comparison suggests that both approaches achieve strong
diagnostic performance, with minimal variations in specificity
estimates. These differences may originate from variations in
sample characteristics, imaging protocols, or model architectures
used across studies. Overall, the findings corroborate the
effectiveness of ML and DL approaches in AD detection,
providing valuable insights for clinical practice and future
research directions.

Qu et al (2022) [9] conducted a meta-analysis on AD versus
CN classification across 11 studies, revealing GAN-based DL
with a pooled sensitivity of 0.88, specificity of 0.93, and an
AUC of 0.96. In our study, using the ViT-based models for AD
detection, we observed promising results with a pooled
sensitivity of 0.940, specificity of 0.962, and an impressive
AUC of 0.9874. Our findings suggest that ViT models offer
high diagnostic accuracy in distinguishing patients with AD
from healthy controls, potentially enabling early and accurate
diagnosis. Notably, our results further indicate slightly superior
sensitivity and specificity compared with GAN-based

approaches, indicating the potential superiority of ViT models
in AD detection.

Hu et al [34] conducted a meta-analysis assessing the diagnostic
performance of MRI-based ML in AD detection. Their findings
revealed a DOR of 43.34 (95% CI 26.89-69.84), suggesting
strong discriminatory power, as the odds of a positive result
were 43.34 times higher in patients with AD compared with
those without AD. Comparatively, our analysis indicates that
ViT-based models outperformed other types of DL models. Hu
et al [30] reported an LR+ of 7.15 (95% CI 5.40-9.47) and an
LR– of 0.17 (95% CI 0.12-0.22). These likelihood ratios imply
that a positive result is associated with a higher likelihood of
AD, whereas a negative result suggests a lower likelihood. In
contrast, our estimated results for ViT models yielded a pooled
LR+ of 26.02 and LR– of 0.07. This indicates that a positive
ViT model result is 26.02 times more likely in individuals with
AD compared with those without, whereas a negative result is
more likely in patients without AD. Overall, the findings
highlight the superior diagnostic accuracy of ViT models in AD
detection compared with other types of DL models.

The meta-analysis revealed substantial heterogeneity across the
studies due to differences in countries, ViT-based architectures,
and data types. This heterogeneity could be a potential source
of bias and highlights the need for more studies to obtain more
consistent results in AD detection. The high sensitivity and
specificity of the ViT-based models imply that ViT models can
be a valuable tool in clinical scenarios to aid radiologists and
neurologists in interpreting neuroimages for AD, potentially
reducing the number of false negatives and false positives. The
use of ViT, which captures direct relationships between image
areas, may offer advantages in analyzing the complex network
of the brain. Based on a search of academic literature databases,
this is the first systematic review and meta-analysis that focuses
on the diagnosis of AD using ViT-based models. Therefore,
this review serves to highlight the potential of ViT and
neuroimaging in enhancing the precision and productivity of
AD diagnosis, providing a plethora of innovative solutions to
address the challenges inherent in early detection and
classification. However, this study faced some limitations. First,
the pioneering nature of this systematic review presents a
challenge for comparative analysis with other DL models. This
is because, to the best of our knowledge, there have been no
previous systematic and meta-analysis studies that focus
specifically on ViT in the context of AD. The pioneering nature
of this study means that there is a lack of existing literature to
draw comparisons and establish a benchmark for the diagnostic
accuracy of ViT-based models. The study acknowledges this
issue and recognizes the need for further research to fill this
gap. In the future, more studies are needed; specifically, there
is a need to establish a more comprehensive understanding of
ViTs diagnostic accuracy and their performance relative to other
DL models in diagnosing AD.

Second, the reliance on public datasets for the included studies
means that the diagnostic performance of ViT methods is based
on data that may not fully represent the complexity and
variability of real-world AD cases. The use of such datasets,
although useful for initial research, does not account for the
potential subtleties and specificities of patient data obtained
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from hospitals. This limitation is further compounded by the
challenges associated with patient privacy and the complexities
of preprocessing hospital data, which can hinder the validation
of ViT methods in a real-world context. The study emphasizes
the need for future research to address these challenges and
validate the findings on more representative and diverse datasets.
Researchers should also conduct further evaluations of ViTs
using hospital data to better align with real-world applications
[35].

Third, the limited number of studies available has restricted the
research to binary classification tasks, which differentiate
patients with AD from CN individuals. This focus does not
capture the full spectrum of AD's progression, including the
various stages and the transition from MCI to late MCI and
stable MCI [15]. The study acknowledges the need for a broader
application of ViT-based DL methods to detect and track the
various stages of AD, which is crucial for a more comprehensive
understanding of the disease and its progression. In addition,
there is a notable gap in studies that use multimodal data to
predict the progression of AD.

Furthermore, the study highlights a significant gap in the current
models' ability to provide expert-level interpretations [36]. The
absence of a reference standard in the form of expert diagnosis
makes it difficult to conclusively determine the superiority of
ViT-based models in real-world health care settings. This
limitation underscores the importance of future research efforts
that should focus on enhancing the transparency and
explainability of ViT-based models. In addition, there is a need
to explore the integration of these models with expert opinions
to improve the accuracy of AD detection and diagnosis. By
doing so, the research can move toward a more collaborative
approach that combines the strengths of both artificial
intelligence and human expertise.

Third, most ViTs require the use of GPUs for training, which
may not be readily available in many hospitals. Therefore, there
is a need to develop smaller models that can be trained in more
affordable and accessible environments.

Finally, the findings of this study have important implications
for clinical practice. ViT models show high diagnostic accuracy
in AD detection, offering the potential for early diagnosis and
personalized treatment. However, several barriers may hinder
their implementation in routine clinical settings. These include
the need for large, well-labeled datasets, the risk of overfitting,
and the challenges of integrating ViT models into existing
clinical workflows. In addition, the computational resources
required for training, such as GPUs, may not be readily available
in many hospitals. Addressing these challenges is essential to
realize the full potential of ViTs in clinical applications.

Conclusion
The systematic review and meta-analysis highlight the strong
diagnostic capability of ViT-based models in detecting AD from
MRI and PET brain images. Although there are limitations,
such as the lack of comparative analysis with other DL models,
ViT models demonstrate high sensitivity and specificity. ViTs
have the potential to significantly enhance image analysis in
AD diagnosis by improving feature extraction, enabling early
detection of subtle brain changes, supporting personalized
diagnoses, and facilitating the integration of additional data for
more accurate diagnoses. However, the effective application of
ViT models comes with challenges, including the need for large
datasets, the risk of overfitting, and the integration of these
models into clinical workflows. To fully harness their potential
in clinical settings, continued research is essential, particularly
to improve model transparency and incorporate expert opinions.
This study highlights the promising role of ViTs in advancing
early AD detection and classification, paving the way for
innovative solutions in neuroimaging analysis.
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DL: deep learning
DOR: diagnostic odds ratio
DTA: diagnostic test accuracy
LR+: positive likelihood ratio
LR–: negative likelihood ratio
ML: machine learning
MRI: magnetic resonance imaging
NC: normal control
PET: positron emission tomography
ViTs: vision transformers
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