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Abstract

Background: Although catheter ablation (CA) is currently the most effective clinical treatment for atrial fibrillation, its variable
therapeutic effects among different patients present numerous problems. Machine learning (ML) shows promising potential in
optimizing the management and clinical outcomes of patients undergoing atrial fibrillation CA (AFCA).

Objective: This scoping review aimed to evaluate the current scientific evidence on the application of ML for managing patients
undergoing AFCA, compare the performance of various models across specific clinical tasks within AFCA, and summarize the
strengths and limitations of ML in this field.

Methods: Adhering to the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for
Scoping Reviews) guidelines, relevant studies published up to October 7, 2023, were searched from PubMed, Web of Science,
Embase, the Cochrane Library, and ScienceDirect. The final included studies were confirmed based on inclusion and exclusion
criteria and manual review. The PROBAST (Prediction model Risk Of Bias Assessment Tool) and QUADAS-2 (Quality Assessment
of Diagnostic Accuracy Studies-2) methodological quality assessment tools were used to review the included studies, and narrative
data synthesis was performed on the modeled results provided by these studies.

Results: The analysis of 23 included studies showcased the contributions of ML in identifying potential ablation targets,
improving ablation strategies, and predicting patient prognosis. The patient data used in these studies comprised demographics,
clinical characteristics, various types of imaging (9/23, 39%), and electrophysiological signals (7/23, 30%). In terms of model
type, deep learning, represented by convolutional neural networks, was most frequently applied (14/23, 61%). Compared with
traditional clinical scoring models or human clinicians, the model performance reported in the included studies was generally
satisfactory, but most models (14/23, 61%) showed a high risk of bias due to lack of external validation.

Conclusions: Our evidence-based findings suggest that ML is a promising tool for improving the effectiveness and efficiency
of managing patients undergoing AFCA. While guiding data preparation and model selection for future studies, this review
highlights the need to address prevalent limitations, including lack of external validation, and to further explore model generalization
and interpretability.
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Introduction

Background
Atrial fibrillation (AF) is the most common type of cardiac
arrhythmia [1], and its incidence has risen steadily over the past
3 decades, making it an urgent public health problem worldwide
[2,3]. While AF substantially impacts patients’ quality of life,
it also increases the risk of serious medical conditions [4-7],
such as stroke and thromboembolism. This contributes to
long-term rises in both morbidity and mortality rates [8] as well
as a growing strain on health care costs [9].

Catheter ablation (CA) represents the most effective clinical
intervention currently available for AF [10]. When patients
receive their first CA treatment, the effectiveness rate can reach
60%-80% within 1 year [11,12]. However, the long-term
efficacy is not optimal , and the success rate decreases to
50%-60% at 3 to 5 years [13-15]. The type and degree of AF,
cardiac stroma, obesity, alcohol consumption, and obstructive
sleep apnea syndrome are all known to be potential contributors
to high rates of recurrence in the long term [16,17]. In addition,
the surgical modality and ablation strategy used in treatment
have an impact, particularly for those patients who require
additional non–pulmonary vein (PV) ablations [18].
Consequently, developing tailored management strategies that
consider different patient conditions, optimizing the surgical
approach and enhancing its long-term efficacy, is a challenge
that needs to be resolved in this field.

In clinical practice, to better manage patients, clinical risk scores
(such as APPLE [19]) specifically for predicting postoperative
recurrence of AF CA (AFCA) have emerged in the past decade,
or attempts have been made to use other scores (such as
CHADS2 [20] and CHA2DS2-VASc [21]) to evaluate patients’
postoperative rhythm outcomes after AFCA [22]. These risk
scores typically use a limited number of risk factors as
predictors. Although this simplicity facilitates their adoption
and use in clinical settings, it concurrently caps their predictive
effectiveness. In addition, these scoring models predominantly
rely on the evaluation of specific biomarkers in previous
literature when selecting predictors. This approach may easily
lead to the neglect of some potential predictors [23], thus failing
to truly capture the complexity of the AFCA recurrence
mechanism and making it difficult to truly meet the pursuit of
efficient and personalized patient management.

Rapidly developing machine learning (ML) techniques hold
significant promise as a formidable support in grappling with
the complexities of this challenge. In recent years, the ability
of ML to analyze large biomedical datasets, such as electronic
health records (EHRs), medical imaging, and multiomics data,

has made it increasingly popular in medical research [24,25].
ML models have become promising tools for enhancing the
precision and efficiency of AF diagnosis and treatment. By
analyzing complex, multidimensional datasets, they help identify
individuals at high risk for AF, uncover risk factors and
biomarkers associated with the disease’s progression, and guide
personalized interventions for prognosis. One branch of ML,
deep learning (DL), stands out due to its powerful capabilities
in automatic feature recognition and prediction. In processing
complex data types such as images and electrophysiological
signals, DL has demonstrated performance comparable to that
of human experts [26,27]. Several studies have attempted to
apply ML technology to the management of patients undergoing
AFCA. As the application prospects of ML technology in this
field become increasingly clear, a comprehensive overview and
evaluation of the existing relevant literature is needed.

Objectives
The purpose of this scoping review is to systematically review
the current progress in using ML technology in the management
of patients undergoing AFCA. Specifically, the studies discussed
in this review explore a wide range of ML models and multiple
data modalities, including EHR, imaging omics, and cardiac
electrophysiological signals. We will summarize how these
studies prepare data, select models, and evaluate results across
different clinical tasks. In addition, we will emphasize the
advantages and limitations of ML technology in this field based
on the integration and comparison of these study findings.

Methods

This scoping review was conducted following the PRISMA-ScR
(Preferred Reporting Items for Systematic reviews and
Meta-Analyses extension for Scoping Reviews) guidelines [28].

Information Sources and Search Strategies
A comprehensive search was conducted to identify relevant
studies across 5 databases as of October 7, 2023: PubMed, Web
of Science, Embase, the Cochrane Library, and ScienceDirect.
The specific search strategies used for each database are detailed
in Table S1 in Multimedia Appendix 1. In addition to obtaining
literature through search formula, additional relevant articles
(3/246, 1.2%) were manually identified by using a
forward-backward snowballing approach.

Study Inclusion and Exclusion Criteria
In line with the thematic focus and objectives of our review,
the studies included in this scoping review were required to
meet the eligibility criteria outlined in Textbox 1. Studies were
excluded from this scoping review if they met any of the
exclusion criteria.
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Textbox 1. Inclusion and exclusion criteria for published studies applying machine learning (ML) technology for the management of patients undergoing
catheter ablation for atrial fibrillation.

Inclusion criteria

• Article type: articles (peer reviewed and formally published)

• Study topic: specializes in the management of patients undergoing catheter ablation for atrial fibrillation

• Study participants: real patients with atrial fibrillation

• Study design: ML techniques were clearly applied and described; results of the study and the ML model performance outcome metrics were
explicitly presented

• Language of publication: English

Exclusion criteria

• • Article type: reviews; meta-analyses; editorials; case reports; editorial materials; other types of publications

• Study topic: atrial fibrillation disease detection; risk prediction of new onset of atrial fibrillation

• Study participants: only used fictional patient data

• Study design: did not apply ML techniques; did not explicitly report on the model outcome metrics

• Language of publication: non-English

Study Selection
After removing duplicates, all retrieved studies were manually
screened by title and abstract to exclude those clearly not aligned
with the objectives of this review. Studies that passed this initial
screening were then downloaded in full and assessed based on
the inclusion and exclusion criteria during a full-text review.
This process was independently conducted by 2 reviewers, with
any disagreements resolved through consultation with a third
reviewer to reach a consensus.

Data Extraction
Two reviewers independently extracted data from the selected
studies, and a third reviewer was responsible for assessing and
addressing any discrepancies and biases in data extraction. The
following data items were extracted: author names and
publication years, data sources, dataset sizes, ML models, model
variables, model tasks (such as prediction or detection), and
model results. If multiple ML models were used in a study, we
will report only the one with the best performance.

Quality Assessment
We selected the widely recognized Quality Assessment of
Diagnostic Accuracy Studies-2 (QUADAS-2) [29] and
Prediction model Risk Of Bias Assessment Tool (PROBAST)
[30] as methodological quality assessment tools. We divided
the included studies into 2 subgroups for independent evaluation
based on different research objectives, namely, subgroup A:

studies that aim at image classification or segmentation, assessed
using an adapted version of QUADAS-2; and subgroup B: with
the goal of predicting patient prognosis, assessed using
PROBAST. This assessment was independently conducted by
2 reviewers, and any disagreements or discrepancies that arise
during the assessment process were resolved with the
involvement of a third reviewer.

During our review, we adjusted some signal questions in
QUADAS-2 as needed. Tables S2 and S3 in Multimedia
Appendix 1 report the specific signal questions and assessment
instructions for the tools used in the quality assessment process
for this review.

Results

Study Selection and Study Characterization
A total of 246 studies were identified from different databases
using the method described in the Information Sources and
Search Strategies section (Figure 1). After excluding duplicate
publications (65/246, 26.4%), nonarticle publications (32/246,
13%), and studies that did not match the research objectives of
this scoping review (115/246, 46.7%), 34 (13.8%) studies
remained for full-text assessment. Ultimately, 23 studies were
deemed eligible and were included for data extraction and
synthesis. Table S4 in Multimedia Appendix 1 provides a
detailed list of the studies excluded after full-text assessment,
along with the reasons for their exclusion.
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Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flowchart of study selection.

Table 1 provides the basic characteristics of the studies included
in this review. The publication of these studies was concentrated
within the past 5 years, which can be attributed to the maturation
of ML technologies and the growing interest in precision
medicine among researchers in the field of AF. The included
studies were conducted in 9 different countries, with the United

States (7/23, 30%) having the largest number of studies,
followed by China (5/23, 22%) and the United Kingdom (4/23,
17%). This diversity in publication countries reflects the global
interest in using ML models for the management of patients
undergoing AFCA. Regarding the types of models used, most
of the included studies (14/23, 61%) used DL techniques.
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Table 1. Basic characteristics of the included studies (N=23).

Studies, n (%)Characteristic

Country of study

7 (30)United States

5 (22)China

4 (17)United Kingdom

2 (9)Korea

1 (4)Spain

1 (4)The Netherlands

1 (4)Canada

1 (4)Italy

1 (4)Japan

Year of publication

3 (13)2023

7 (30)2022

6 (26)2021

6 (26)2020

1 (4)2019

Type of models

23 (100)Machine learning

14 (61)Deep learning

Key medical tasks

16 (70)Patient prognosis prediction

3 (13)Ablation targets identification

4 (17)Ablation strategy improvement

Regarding the application direction of ML in AFCA patient
management, this review divides the included studies into 3
subgroups corresponding to 3 key medical tasks based on the
purpose of the model. The first and most common focus is the
development of prognostic models for patients undergoing
AFCA (16/23, 70%). These studies aim to provide accurate,
timely, and personalized postoperative risk predictions for
patients undergoing AFCA [31-46]. Although these studies
share similar objectives, they use diverse types of data, with
EHRs being the primary data source. The second key task
focuses on the identification of ablation targets (3/23, 13%),
aiming to use the feature extraction capabilities of DL models
to identify potential ablation targets, such as rotors [47,48] and
focal sources [49], from electrophysiological and medical

imaging data. Third, some studies focus on using preoperative
imaging data of patients to improve ablation strategies
(4/23,17%), assisting physicians in recognizing interpatient
differences to guide ablation treatments [50-53].

Characteristics of the Data in the Included Studies
When developing ML models for patient management, key
factors to consider include dataset size, data modality, and
resource availability. Table 2 outlines the wide range of data
modalities covered in this review, and we note that there is a
wide variation in the choice of variables and the number of
features across studies, which highlights the diversity and
complexity of factors associated with influencing patient
management in AFCA.
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Table 2. Summary of data use of the included studies.

Data sourcesInput data for the modelPatient cohortStudy

Time framePatients, n

Taipei Veterans General
Hospital

PVCTaOctober 2004 to December
2017

358Liu et al [50], 2020

Cleveland ClinicCTb, age, LAVc, AFd type, and
catheter ablation technique

2013 to 2016203Firouznia et al [31], 2021

Cleveland ClinicCT, age, sex, LAV, LVEFe, BMI,
sinus rhythm at the time of ablation,

July 2015 to November
2016

68Atta-Fosu et al [32], 2021

AF type, and catheter ablation tech-
nique

2018 STACOM Split Chal-
lenge and St. Thomas Hospi-
tal

LGE-MRIf2011 to 2016122Muizniece et al [51], 2021

2018 STACOM Split Chal-
lenge and St. Thomas Hospi-
tal

LGE-MRI2011 to 2016122Muffoletto et al [52], 2021

Hopkins University HospitalPersonalized atrial computational
modeling and LGE-MRI

December 2011 to Decem-
ber 2015

32Shade et al [33], 2020

St. Thomas HospitalDifferent types of fibrosis in the
atrial matrix, fibrograms, AF induc-

NRg100Roney et al [34], 2022

tion protocols, ERPh values, PVIi

size, visual fibrosis score, total sur-
face area of left atrium, total surface
area of the PVs, fibrotic area of PVs,
LVEF, BMI, age, female, conges-

tive HFj, hypertension, diabetes
mellitus, stroke, coronary artery
disease, and type of AF

Local regional ethics com-
mittee

LGE-MRI2011 to 2018190Yang et al [53], 2020

Chang Gung Memorial
Hospital

Transthoracic echocardiographyJuly 2008 to July 2019606Hwang et al [35], 2020

Focal Source and Trigger
randomized controlled trial
(Chauhan et al [54])

uEGMkNR78Liao et al [49], 2021

Gregorio Marañón Universi-
ty General Hospital

uEGM, bEGMl, and uLATmNR48Ríos-Muñoz et al [47], 2022

Comparison of Algorithms
for Rotational Evaluation in
Atrial Fibrillation Registry

EGMnUp to December 201735Alhusseini et al [48], 2020

the Dallas VA Medical
Center

3D atrial endocardial unipolar and
bipolar voltage map

January 2015 to January
2019

12An et al [36], 2022

Stanford University Tertiary
Referral Center

EGM, ECGo, age, gender, height,
weight, BMI, ethnicity and race,

2015 to 2017156Tang et al [37], 2022

hypertension, hyperlipidemia, TIAp,

stroke, CADq, diabetes mellitus,
chronic kidney disease, congestive

HF, OSAr, type of AF, previous
history of AF ablation, LVEF,

LADs, LAV, LASAt, and LASIu

West China Hospital of
Sichuan University

BSPMvNR14Li et al [38], 2019

Reveal LINQ Usability
Study and clinical data from
a single center

Clinical data and heart rate variabil-
ity characteristics extracted from

ICMw

October 2005 to July 201474Saiz-Vivo et al [39], 2021
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Data sourcesInput data for the modelPatient cohortStudy

Time framePatients, n

Guangdong Provincial Peo-
ple’s Hospital

12-lead ECGJanuary 2012 to May 20191618Jiang et al [40], 2023

Chungbuk National Univer-
sity Hospital

Age, sex, height, weight, hyperten-
sion, AF type, AF duration, LAD,

LAMIx, LVEF, and eGFRy

February 2017 to October
2020

177Lee et al [41], 2022

Yonsei AF Ablation Cohort
Database

Age, female, AF type, BMI, heart
failure, hypertension, diabetes mel-
litus, stroke or TIA, vascular dis-
ease, left atrium dimension, LVEF,

EEMz, creatinine, hemoglobin, and
preablation PR interval

2009 to 20181872Park et al [42], 2022

National Readmission
Database 2013

Age, total hospital discharges,
number of diagnoses, number of
chronic diseases, length of hospital-
ization, number of surgeries, gender,
diabetes, hypertension, hypothy-

roidism, COPDaa, renal failure, de-
pression, peripheral vascular dis-
ease, obesity, size of hospital beds,
type of hospital, and discharge sta-
tus

January 2013 to December
2013

11,334Hung et al [43], 2020

European Society of Cardiol-
ogy-European Heart Rhythm
Association Long-Term
Registry for Atrial Fibrilla-
tion Ablation

LVEDVab, estimated glomerular
filtration rate, BMI, age, pre- and
post–left atrium diameters, LVEF,
CHAD2 DS2-VASc score, dyslipi-

demia, AFLac, type of ablation pro-
cedure, type of AF, structural heart
disease, hypertension, baseline sinus
rhythm, gender, abnormal ECG,
heart failure, CAD, and smoking
history

April 2012 to April 20153128Saglietto et al [44], 2023

The First Affiliated Hospital
of Air Force Medical Univer-
sity

Age, male, BMI, diastolic blood
pressure, systolic blood pressure,
smoking history, CHA2DS2-VASc,
HABLED score, AF duration, hyper-
tension, CAD, type 2 diabetes melli-
tus, chronic HF, atrial septal defect,
LAD, LVEF, and white blood cell
counts

January 2018 to December
2020

471Ma et al [45], 2023
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Data sourcesInput data for the modelPatient cohortStudy

Time framePatients, n

Toyo University Ohashi
Medical Center

NT-proBNPad, paroxysmal AF,

LAAVae, and LAV

Jun 2016 - Oct 2019310Zhou et al [46], 2022

aPVCT: pulmonary vein computed tomography.
bCT: computed tomography.
cLAV: left atrial volume.
dAF: atrial fibrillation.
eLVEF: left ventricular ejection fraction.
fLGE-MRI: late gadolinium-enhanced cardiac magnetic resonance.
gNR: not reported.
hERP: effective refractory period.
iPVI: pulmonary vein isolation.
jHF: heart failure.
kuEGM: unipolar endocardial electrogram.
lbEGM: bipolar endocardial electrogram.
muLAT: unipolar localized activation time.
nEGM: electrogram.
oECG: electrocardiogram.
pTIA: transient ischemic attack.
qCAD: coronary artery disease.
rOSA: obstructive sleep apnea.
sLAD: left atrial diameter.
tLASA: left atrial surface area.
uLASI: left atrial spherical index.
vBSPM: body surface potential map.
wICM: implantable cardiac monitor.
xLAMI: left atrial mass index.
yeGFR. estimated glomerular filtration rate.
zEEM: peak transmitral flow velocity (E), and tissue Doppler echocardiography of the peak septal mitral annular velocity (em).
aaCOPD: chronic obstructive pulmonary disease.
abLVEDV: left ventricular end-diastolic volume.
acAFL: atrial flutter.
adNT-proBNP: N-terminal pro-brain natriuretic peptide.
aeLAAV: left atrial appendage volume.

The characteristics of the data used in the included studies are
provided in Table 3, which summarizes dataset size, data
modality, data source, and whether the data were multicenter.
There was substantial variation among the included studies in
the size of the dataset used to develop the ML model, with
patient numbers ranging from 8 to 5872, but few studies
adequately described their methodology or reasons for
determining the sample size, in contrast to studies of randomized
controlled trials based on statistical methods. In terms of data
resource availability, only 17% (4/23) of the studies used

publicly available datasets of patients with AF (2013 Nationwide
Readmissions Database [43], 2018 Atria Segmentation Data
[51,52], and European Society of Cardiology-European Heart
Rhythm Association Long-Term Registry for AF Ablation [44])
for model development or validation, while most of the
remaining studies (19/23, 83%) used private single-center
retrospective datasets. In addition, 17% (4/23) of the studies
used multicenter datasets in model development or external
datasets for validation after model development [39,44,51,52].
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Table 3. Characteristics of the data used in the included studies (N=23).

ReferencesStudies, n (%)Characteristics of used data

Size of dataset

[33,36,38,47,48]5 (22)<50

[32,34,39,49]4 (17)50-100

[37,41,51-53]5 (22)101-200

[31,45,46,50]4 (17)201-500

[35]1 (4)501-1000

[40,42-44]4 (17)>1000

Data modality

[31,32,34,37,41-46]10 (43)Electronic health records

[31-35,50-53]9 (39)Medical imaging

[36-38,40,47-49]7 (30)Electrophysiological signal

[33,34]2 (9)Biomedical simulation

[39]1 (4)Other

[31,32,34,37]4 (17)Multimodal input used

Availability of data source

[31-42,45-50,53]19 (83)Private

[43,44,51,52]4 (17)Public

Multicenter data used

[39,44,51,52]4 (17)Yes

[31-38,40-43,45-50,53]19 (83)No

To provide a more intuitive integration and comparison of the
data modalities of the included studies, an evidence heat map
was used to visualize the results (Figure 2), which highlights
and reveals the medical imaging data and electrophysiological
signal data involved in the included studies. In studies aimed
at predicting patient prognosis, the most commonly used data
type was the EHR (10/16, 63%), and it is worth noting that a
small number of studies (4/16, 25%) in this segment also used

multimodal data, combining either imaging data or
electrocardiographic signals (or both) with clinical features to
build model, and reported superior model performance relative
to their constructed unimodal models. Intracardiac electrograms
(EGMs) are a key data modality in studies focused on
identifying ablation targets, whereas imaging data are commonly
used in studies aimed at improving ablation strategies.
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Figure 2. Evidence heat map of data modality by machine learning model (grouped by medical task).

Modeling Approaches and Performance
Distinct medical tasks and research objectives necessitate the
application of various ML techniques. Table 4 provides the ML
models constructed in each study and the specific values of their
performance indicators. It should be noted that if >1 ML model
was constructed in 1 study at the same time, only the optimal
model performance among them will be reported in this review,
and the complete information of the ML models is provided in
Table S2 in Multimedia Appendix 1. In this review, if a study
reports multiple ML models simultaneously, we will report only
the optimal model performance among them. Table 4 provides
details on the used ML techniques, medical tasks, and model
performances in the included studies.

The classical ML models covered in this review are diverse,
with random forest (6/23, 26%) and support vector machines
(6/23, 26%) appearing most frequently, and in some studies,
although they are not the best-performing models, they have
been applied for feature selection or as comparative models. Of
the 23 studies, 5 (22%) used the k-nearest neighbors algorithm,
3 (13%) used logistic regression, and 2 (9%) used the decision
tree. In addition, 17% (4/23) of the studies used integrated
learning models such as XGBoost and AdaBoost. It is important
to note that DL models represented by convolutional neural
network (CNN) and RestNet were the most frequently used as
performance-optimized models in all the included studies,

particularly in those studies that used image data and electrical
signal data as model inputs, and 61% (14/23) of the studies
reported performance-optimized models belonging to the DL
type. Specifically, CNN and its variants were applied in 30%
(7/23) of the studies, and ResNet was applied in 9% (2/23) of
the studies.

In terms of model performance evaluation indicators, the main
ones used were area under the receiver operating characteristic
curve (AUC; 17/23, 74%), sensitivity and specificity (11/23,
48%), and accuracy (11/23, 48%), while some studies chose to
assess the model performance with metrics such as F1-score.
From the information in Tables 4 and 5, it can be seen that the
performance of ML models in the included studies was good
overall. Among them, 74% (17/23) of the studies reported the
AUC values of the ML models, and the values of this
performance indicator ranged from 0.5 to 0.98. The average
AUC for ML models predicting patient prognosis was 0.8
(SD=0.11), with a median of 0.83 (IQR 0.74-0.86), and 13%
(3/23) of the studies had a model AUC >0.90. Furthermore,
48% (11/23) of the studies reported model sensitivity and
specificity, with sensitivity ranging between 0.71 and 0.97 and
specificity ranging from 0.79 to 0.99. In terms of accuracy, 48%
(11/23) of the studies reported this statistic, with values ranging
from 0.72 to 0.99. All models aimed at improving ablation
strategies reported accuracy, with an average of 0.87.
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Table 4. Performance for each machine learning model according to the medical tasks (N=23).

OtherAccuracySpecificitySensitivityAUCaMedical tasks and proposed model

Patient prognosis prediction

NRNRNRNRc0.87RFb [31]

NRNR0.890.960.965RF [42]

NRNRNRNR0.721RF [44]

NRNRNRNR0.667RF [45]

NRNRNRNR0.78XGboost [32]

NRNR0.890.820.82QDAd [33]

F1-score=0.8NRNRNR0.85SVMe [34]

NR0.7960.7890.8030.861CNNf [35]

NRNRNRNR0.859CNN [37]

NR0.960.960.88NRCNN-SVM [38]

F1-score=0.710.920.950.7230.84CNN [40]

CIg=0.76NRNRNR0.76CNN [46]

PR=0.8860.8540.9910.7130.91KNNh [43]

NR0.820.870.76NROWVi [39]

F1-score=0.9330.875NRNR0.5MLPj [36]

NRNRNRNR0.766MLP [41]

Ablation targets identification

NRNR0.8220.7810.980ResNet [49]

MCCl=0.680NRNRNR0.81CRNNk [47]

NR0.950.930.97NRCNN [48]

Ablation strategy improvement

NR0.8860.9570.750.88ResNet [50]

NR0.72NRNRNRReinforcement Q-learning [51]

DIn=93.110.990.990.92NRMVVTm [53]

NR0.865NRNRNRCNN [52]

aAUC: area under the curve.
bRF: random forest.
cNR: not reported.
dQDA: quadratic discriminant analysis.
eSVM: support vector machine.
fCNN: convolutional neural network.
gCI: C-index.
hKNN: K-nearest neighbor.
iOWV: optimal weighted voting.
jMLP: multilayer perceptron.
kCRNN: convolutional recurrent neural network.
lMCC: Matthews correlation coefficient.
mMVTT: fully automatic multiview dual-task recursive attention model.
nDI: Dice score.
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Table 5. Statistical validation of the machine learning models.

Medical tasks involved (fraction) and corresponding study referenceStudies, n (%)Statistics

AUC (%a)

2 (9)<70 • Patient prognosis prediction (2/2): [36,45]

4 (17)70-79 • Patient prognosis prediction (4/4): [32,41,44,46]

4 (17)80-85 • Patient prognosis prediction (3/4): [33,34,40]
• Ablation targets identification (1/4): [47]

4 (17)86-90 • Patient prognosis prediction (3/4): [32,35,37]
• Ablation strategy improvement (1/4): [50]

3 (13)>90 • Patient prognosis prediction (2/3): [42,43]
• Ablation targets identification (1/3): [49]

Sensitivity (%b)

7 (30)<85 • Patient prognosis prediction (5/7): [33,35,39,40,43]
• Ablation targets identification (1/7): [49]
• Ablation strategy improvement (1/7): [50]

1 (4)85-89 • Patient prognosis prediction (1/1): [38]

1 (4)90-95 • Ablation strategy improvement(1/1): [53]

2 (9)>95 • Patient prognosis prediction (1/2): [42]
• Ablation targets identification (1/2): [48]

Specificity (%c)

2 (9)<85 • Patient prognosis prediction (1/2): [35]
• Ablation targets identification (1/2): [49]

3 (13)85-89 • Patient prognosis prediction (3/3): [33,39,42]

2 (9)90-95 • Patient prognosis prediction (1/2): [40]
• Ablation targets identification (1/2): [48]

4 (17)>95 • Patient prognosis prediction (2/4): [38,43]
• Ablation strategy improvement (2/4): [50,53]

Accuracy (%d)

2 (9)<80 • Patient prognosis prediction (1/2): [35]
• Ablation strategy improvement (1/2): [51]

2 (9)80-86 • Patient prognosis prediction (2/2): [39,43]

4 (17)87-92 • Patient prognosis prediction (2/4): [36,40]
• Ablation strategy improvement (2/4): [50,52]

3 (13)>92 • Patient prognosis prediction (1/3): [38]
• Ablation targets identification (1/3): [48]
• Ablation strategy improvement (1/3): [53]

aAUC: area under the curve; AUC values were mentioned in 17 included studies.
bSensitivity was mentioned in 11 included studies.
cSpecificity was mentioned in 11 included studies.
dAccuracy was mentioned in 11 included studies.
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Findings of the Included Studies

Identifying AFCA Targets
Three studies discussed the application of ML techniques in
identifying potential targets for CA in AF [47-49]. Clinically,
electrophysiologists must resort to time-consuming and complex
invasive cardiac electrophysiological examinations to confirm
ablation targets; deep neural networks can help improve this
process. Liao et al [49] applied ResNet to classify raw
intracardiac EGMs during AF, accurately identifying patients’
putative focal source target site with performance approximating
that of human experts, obtaining an AUC of 0.98. Two other
studies [47,48] applied CNN to detecting rotors in the
intracardiac EGMs, with one of the them taking into account
the interpretability of DL model and using gradient-weighted
class-activation mapping (Grad-CAM) to explore how the model
classifies AF electrical patterns [48], and the other designed the
convolutional recurrent neural network from the perspective of
improving model, while experimenting with multiple types of
input signals, resulting in improved classification performance
of the model.

Improving CA Strategies for AF
Due to varying degrees of individualization among patients, the
development of a rational and effective strategy for AFCA relies
on the judgment and surgical experience of the physician [16].
Notably, 17% (4/23) of the studies demonstrated the potential
of DL to improve this process [50-53]. A common factor among
these studies is that they were all based on imaging data. Liu et
al [50] used the patient’s preablation PV computed tomography
(CT) images to construct a ResNet-based prediction model,
which identified potential non-PV triggering factors before
ablation treatment with an AUC of 0.88, thereby prompting
physicians to perform necessary additional ablation on the basis
of PV isolation. In 3 other studies, cardiac late
gadolinium-enhanced cardiac magnetic resonance (LGE-MRI)
was used [51-53]. Muffoletto et al [52] and Muizniece et al [51]
used CNN and reinforcement learning (Q-Learning) algorithms,
respectively, to directly engage in the process of formulating
personalized ablation strategies for patients with AF and
achieved success rates of 79% and 72%, respectively, in their
respective test sets. Yang et al [53] proposed a joint
segmentation method based on the multiview two-task recursive
attention model to provide clinicians with segmented left
ventricular (LV) anatomical structures and LV scars directly
and simultaneously from LGE-MRI, which can be used to
provide valuable guidance for ablation treatment.

Prognosis for Patients With AFCA
The high long-term recurrence rate of CA has been troubling
patients and clinicians. Of the 23 included studies, 16 (70%)

focused on the prognosis of patients after AFCA. Furthermore,
35% (8/23) of the studies [38,40-46] attempted to predict the
risk of postprocedural recurrence of AF using easily accessible
preprocedural patient clinical characteristics, with commonly
used variables including age, gender, BMI, comorbidities, and
electrocardiogram (ECG), but their modeling performance varied
widely, with reported AUC ranging from 0.667 to 0.965. Four
studies [31,32,34,37] chose to fuse features from multiple
modalities as the input of ML model for recurrence prediction
of AF. For example, Tang et al [37] proposed a CNN-based
multimodal fusion framework to predict AF recurrence 1 year
after CA using patients’ clinical features, EGMs, ECG, and
their combinations. The comparison of multiple experimental
results showed that the recurrence prediction AUC of the
multimodal feature fusion model was improved by 13.2% (0.86
vs 0.76) compared with the single-modality model. Independent
prediction of AF recurrence using various types of examination
images is also a feasible approach, but the relative performance
is not particularly impressive. In contrast, several other studies
have shown that models combining radiomics data with common
clinical features exhibit predictive performance with better
results [31,32,34].

Quality Assessment
The risk of bias and applicability of the included studies in
subgroup A (5/23, 22%; targeting patients classification and
image segmentation) were confirmed by using the adapted
QUADAS-2 tool. The results presented in Figure 3 indicate that
the “index test” domain is the most susceptible to bias. All
studies exhibit a high risk of bias in this domain because they
rely solely on single-center data for model development and
lack external validation, which is essential to fully assess the
model’s generalizability. The applicability of 60% (3/5) of the
studies showed unclear or high risk of bias in different fields.

For subgroup B (16/23, 70%; targeting patient prognosis
prediction), the result indicated that the overall risk of bias and
applicability was determined to be low in 25% (4/16) of the
studies and high in 69% (11/16) of the studies, and the latter
was also due to insufficient consideration of model
generalization issues in the assessment of the “analysis” domain,
resulting in a high risk of bias. Furthermore, 12% (2/16) of the
studies were rated as uncertain risk in terms of applicability due
to unclear inclusion criteria for the study participants. The results
are shown in Figure 4.

The detailed risk of bias and applicability assessment results
for both subgroups are shown in Figure S1 and Table S5 in
Multimedia Appendix 1.
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Figure 3. Summary of the assessment results of the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool on 5 patient classification
and image segmentation studies in subgroup A.

Figure 4. Summary of the assessment results of the Prediction model Risk Of Bias Assessment Tool (PROBAST) on 16 patient prognosis prediction
studies in subgroup B.

Discussion

Principal Findings
ML has shown great advantages in processing and analyzing
medical data and has been increasingly applied to solve various
medical problems [24], including those in the field of AF.
Compared with several existing ML-related reviews in this field
[55-57], we focus more on the research of applying ML in the
management of patients undergoing AFCA. We systematically
evaluated the 23 highly relevant studies and found that ML
performed well overall in AFCA patient management. Models
constructed in several studies performed as well as human
clinicians in identifying potential ablation targets (rotors and
focal sources) and assisting in improving ablation strategies
(left atrium scar segmentation) [48,49,53]. It should be noted
that comparisons between all included studies are hampered to
some extent by the heterogeneity of ML results, and some
findings may require discussion at a smaller granularity.

General Overview of the Studies
The results of our review suggest that the application of ML
techniques to the prognosis of patients undergoing AFCA seems
promising and has received the most attention from researchers
within the scope of this review (16/23, 70%). Compared with

traditional prediction models, ML models have a better
prediction effect on the long-term recurrence of AF after CA.
In the past decade, the construction of AF recurrence prediction
models was mainly based on 2 methods; the first is to directly
use clinical risk scores, such as APPLE [19], CAAP-AF [58],
and MB-LATER [59]. The second is to use some specific
biomarkers of patients with AF (such as LA volume [60] and
LA sphericity index [61]) or to combine the scoring system with
clinical variables and biomarkers for statistical inference.
Several different evaluation studies have shown that the AUC
range for the prediction of AF recurrence of the models
constructed using the abovementioned methods is 0.55 to 0.67
[19,20,22], which is lower than the results of ML models
reported in most of the included studies. Most of these ML
models achieved performance values >0.8 in terms of AUC,
accuracy, and F1-score indicators. The reason for the poor
predictive performance of the traditional methods may lie in
the limitations of the predictor dimensions, as scoring and
statistical models usually rely on previous literature to select a
limited number of clinical variables and specific markers due
to the need to fully consider clinical ease of use and
interpretability, which also leads to some extent to the neglect
of the interactions between variables.
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In contrast, ML models are capable of handling much larger
and diverse datasets, particularly including imaging and
electrophysiologic signal data that were not directly amenable
to statistical analysis in the past. Through comprehensive
learning of complex data patterns and nonlinear relationships,
ML models can achieve more accurate predictive results, which
will have many positive impacts for effective intervention in
the long-term health of patients undergoing AFCA. On the one
hand, the predictive results provided by ML models will guide
postprocedure medical management and expectations [37] and
help clinicians to take interventions in advance, including
medication, lifestyle modifications, or regular follow-ups; on
the other hand, the application of ML models can also improve
patient engagement in health management and treatment
adherence, as in the case of the web calculator developed by
Saglietto et al [44], which allows the free personalized prediction
of the probability of recurrence after 1 year of AFCA treatment,
serving as a decision-support tool that facilitates patient-centered
care and joint decision-making between physicians and patients.

Similarly, optimizing CA strategies and identifying potential
ablation targets could also benefit from the integration of ML.
Because of the different mechanisms of AF triggering and
maintenance among patients and the difficulty of identifying
patients with one or more of several different mechanisms [16],
physicians need to develop ablation strategies and identify
ablation targets with the help of different means, such as imaging
(including MRI and CT) or invasive electrophysiologic
examinations. When dealing with some specific patient groups,
such as patients with non–PV-triggered AF, this process not
only tests the physician’s clinical experience but also raises the
patient’s exposure time to radiation [62]. Several studies in this
review demonstrated that the DL models can identify potential
ablation targets based on the patient’s EGM data, with 82.5%
and 80.4% accuracy[47,49], or guide CA according to
personalized appropriate strategies based on LGE-MRI images
[51,52], which is conducive to guiding clinicians to implement
targeted treatment and shorten the duration of radiation
exposure. In addition, using ML technology and patient
preoperative data to determine whether additional ablation is
needed on the basis of PV isolation is also meaningful for
improving patient selection and reducing the risk of
postoperative recurrence in patients [31,50]. With the help of
ML technology, physicians were given the opportunity to
intuitively gain insights from these data into the mechanisms
that initiate or maintain arrhythmias in patients, thereby
efficiently locating ablation targets, reducing uncertainty in CA
treatment and late recurrence, optimizing the allocation of
medical resources, and ultimately improving patients’ clinical
outcomes.

In terms of model training, using multimodal data from patients
with AF to develop ML models might be a promising approach
to improve model performance. Models benefit from multimodal
data that more fully reflect the demographic characteristics,
clinical features, and actual cardiac condition with
electrophysiological characteristics of patients with AF, as
reported in some previous studies [31,32,34,37]. In traditional
prognostic studies involving patients who have undergone
ablation, factors such as AF type, ejection fraction values, LA

volume [63], and obstructive sleep apnea [10] have been
acknowledged as potential predictors that may be independently
or jointly associated with recurrence. However, after
comprehensively analyzing the cardiac morphological structure,
electrophysiological structure, and clinical characteristics with
the help of ML, factors that have been ignored, such as fractal
characteristics [31,32], have attracted attention. This suggests
that ML will reveal previously unknown associations and
patterns that will drive new insights and innovations in the
management of patients undergoing CA for AF. It is worth
noting that the use of ML techniques to process multimodal
data is common across the medical field (eg, oncology [64] and
lymphocytosis [65]), but it needs to be further popularized in
the field of AF, particularly for the management of patients
undergoing AFCA.

In addition, compared with classical ML methods, DL seems
to have more obvious advantages in the field of AFCA patient
management. As shown in Tables 1 and 4, >60% (14/23, 61%)
of the studies included in this scoping review used DL
technology, and a notable characteristic of this subset of studies
is that many involved data modalities beyond general clinical
features, encompassing imaging data (CT, echocardiography,
etc) or electrophysiological signal (ECG, EGM, etc). This is
attributed to DL’s demonstrated prowess in complex feature
learning, time series processing, and other aspects, contributing
to its gradual emergence as a mainstream technology in the field
of computer-aided detection and diagnosis [66]. In a blinded,
randomized controlled trial designed by He et al [67] for DL
algorithm, the initial assessment of LV ejection fraction by DL
was even superior to that of sonographers. Therefore, we believe
that in the future, there will be more data-driven instances of
applying DL to AFCA patient management to promote
substantive progress in this field, such as optimizing treatment
strategies, reducing the risk of complications, and conducting
early intervention in patient populations prone to recurrence.

Existing Limitations of the ML Models
We also noted some general limitations to the current use of
ML techniques in AFCA patient management, which have
hindered its more comprehensive implementation. In using the
adapted QUADAS-2 and PROBAST to assess the risk of bias
for all included studies, we found that most of the studies (19/23,
83%) were conducted based on single-center, retrospective data
and lacked external validation, which raises concerns as to
whether ML models can be generalized to a high level. Limited
by data availability, some ML models with excellent results
will not be perfectly reproduced on other datasets. In addition,
the absence of an external validation set may result in
overestimating the model’s performance, preventing an accurate
assessment of the ML model’s true capability [68]. Therefore,
how to break through the limitations of single-center studies is
an issue that has to be considered when further promoting the
in-depth use of ML.

In addition, there remain some difficulties in effectively
comparing and evaluating the results of ML models applied to
the management of patients undergoing AFCA. We found that
even for the similar medical task (eg, patient prognosis
prediction or ablation strategy improvement), existing studies
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still showed significant heterogeneity in the reporting and
analysis of results [36,46], which hinders objective comparisons
between the results of different ML models.

It is also worth noting that when considering the use and
introduction of ML techniques from a practical perspective, we
should correctly recognize that there are differences in the level
of trust and acceptance of ML among different individuals (both
physicians and patients). This phenomenon is partly caused by
the “black box” problem of some DL models [69], which was
rarely discussed in the studies included in this scoping review.
Without the ability to understand how models make decisions,
physicians will be more likely to trust their own clinical
experience and medical knowledge to confirm treatment
decisions based on interviews, symptom judgments, and clinical
examinations, as they may not be willing to take responsibility
for suboptimal results of ML models [70]. More critically, the
“black box” prevents clinicians and researchers from fully
understanding or explaining the principles behind model
decisions [55], which is a limitation that cannot be ignored for
research with the original intention of explaining medical
problems.

Future Research
In future studies, the composition of the patient cohort and the
construction of the dataset are primary issues that need to be
considered. The challenges of conducting multicenter studies
primarily stem from the legal, ethical, and privacy constraints
associated with sharing raw AFCA patient data [71]. Distributed
learning, represented by paradigms such as integrated learning
and federated learning, would be a strategy for future studies
to realize effective collaboration among multicenters [72]. In a
network of distributed learning nodes, individual institutions
do not need to share patient data externally. Instead, they
contribute to constructing the final model across multiple centers
by updating the model (eg, adjusting the weighting parameters)
[73].

In addition, efforts should be accelerated to develop standardized
protocols and consensus guidelines for the evaluation of ML
models, thus helping clinicians in selecting more appropriate
ML techniques to address specific clinical tasks in the
management of patients undergoing AFCA [74,75].

To address the issue of limited clinical interpretability of ML
models, commonly used techniques in medical research, such
as Shapley Additive Explanation and attention mechanisms
[45,76-78], can generate input importance maps to highlight
the features that contribute most to model detection. We believe
that more research will be devoted to opening this “black box”
in the future [79]. Whether it is physicians, patients, or
researchers, the real hope is that ML will be able to prompt as
much human-understandable auxiliary information as possible
to prove its usefulness as an additional decision point in the
complex, changing, practice-based patient management
environment of AFCA.

Strengths and Limitations
To the best of the authors’ knowledge, this is the first scoping
review of studies applying ML techniques to the management
of patients undergoing AFCA. We summarized the various ML
methods, variables, model results, and clinical application
scenarios that have emerged; emphasized the huge potential for
further in-depth application of ML and the limitations that need
to be overcome; and provided guidance for future research in
terms of data preparation and model selection. Moreover, some
sources of evidence were critically evaluated using modified
QUADAS-2 and PROBAST to make the conclusions of the
review more reliable and convincing. This study has several
limitations. First, the results of the included studies could not
be synthesized into quantitative analysis. Although all studies
reported model performance, different indicators were not
directly comparable. Second, this review only focused on studies
published in English and did not cover other languages and gray
literature, which may have led to the omission of some important
findings in this field.

Conclusions
The rapid development of ML has injected vitality into the
transformation of AFCA patient management to become more
precise and reliable. It could improve the identification of
ablation targets, ablation strategies, and prediction of patient
prognosis, which will effectively improve treatment
effectiveness and patient management efficiency. Despite its
broad prospects, the widespread and in-depth application of ML
technology in AFCA patient management still requires
consideration of issues from data and the model itself, such as
data quality, model generalization, and model interpretability.
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