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Abstract

Background: Noninvasive volumetric measurements during the first trimester of pregnancy provide unique insight into human
embryonic growth and development. However, current methods, such as semiautomatic (eg, virtual reality [VR]) or manual
segmentation (eg, VOCAL) are not used in routine care due to their time-consuming nature, requirement for specialized training,
and introduction of inter- and intrarater variability.

Objective: This study aimed to address the challenges of manual and semiautomatic measurements, our objective is to develop
an automatic artificial intelligence (AI) algorithm to segment the region of interest and measure embryonic volume (EV) and
head volume (HV) during the first trimester of pregnancy.

Methods: We used 3D ultrasound datasets from the Rotterdam Periconception Cohort, collected between 7 and 11 weeks of
gestational age. We measured the EV in gestational weeks 7, 9 and 11, and the HV in weeks 9 and 11. To develop the AI algorithms
for measuring EV and HV, we used nnU-net, a state-of-the-art segmentation algorithm that is publicly available. We tested the
algorithms on 164 (EV) and 92 (HV) datasets, both acquired before 2020. The AI algorithm’s generalization to data acquired in
the future was evaluated by testing on 116 (EV) and 58 (HV) datasets from 2020. The performance of the model was assessed
using the intraclass correlation coefficient (ICC) between the volume obtained using AI and using VR. In addition, 2 experts
qualitatively rated both VR and AI segmentations for the EV and HV.

Results: We found that segmentation of both the EV and HV using AI took around a minute additionally, rating took another
minute, hence in total, volume measurement took 2 minutes per ultrasound dataset, while experienced raters needed 5-10 minutes
using a VR tool. For both the EV and HV, we found an ICC of 0.998 on the test set acquired before 2020 and an ICC of 0.996
(EV) and 0.997 (HV) for data acquired in 2020. During qualitative rating for the EV, a comparable proportion (AI: 42%, VR:
38%) were rated as excellent; however, we found that major errors were more common with the AI algorithm, as it more frequently
missed limbs. For the HV, the AI segmentations were rated as excellent in 79% of cases, compared with only 17% for VR.

Conclusions: We developed 2 fully automatic AI algorithms to accurately measure the EV and HV in the first trimester on 3D
ultrasound data. In depth qualitative analysis revealed that the quality of the measurement for AI and VR were similar. Since
automatic volumetric assessment now only takes a couple of minutes, the use of these measurements in pregnancy for monitoring
growth and development during this crucial period, becomes feasible, which may lead to better screening, diagnostics, and
treatment of developmental disorders in pregnancy.
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Introduction

The current standard for monitoring growth and development
during early pregnancy is the crown-rump length (CRL). Early
measurements of the CRL are used in standard clinical practice
to estimate gestational age. Moreover, CRL measurements can
be used to predict miscarriages and are associated with estimated
fetal weight, birth weight, and adverse pregnancy outcomes
[1-5].

Volumetric measurements of the human embryo during early
pregnancy are a novel way to assess growth and development.
Conventional manual tracing methods, such as Virtual Organ
Computer Added analysis (VOCAL), estimate the volume by
drawing contours around the embryo in rotational steps, without
including the limbs, resulting in an underestimation of the
volume [6,7]. More recently, within the Erasmus MC, University
Medical Center, in Rotterdam, the Netherlands, a Virtual Reality
(VR) system has been developed to visualize the 3D ultrasound
images and perform volumetric measurements [8,9]. Measuring
the embryonic volume (EV) and embryonic head volume (HV)
using VR is reliable and reproducible [10,11]. Reliable and
reproducible measurements are crucial for clinical
implementation, especially since several studies have shown
that the EV offers a better assessment of embryonic growth than
the CRL [8,12]. In addition, EV has also been associated with
miscarriage [2], small-for-gestational age (GA; birth weight
<10th percentile) [5], folic acid supplement use, maternal
smoking and inadequate fruit intake [13], maternal vitamin B12

and homocysteine concentrations [14,15], and maternal social
and medical risk factors [16]. On top of these associations, in
the case of structural congenital anomalies and aneuploidy, the
EV showed earlier signs of deviation, by being significantly
smaller, in contrast to CRL, which was within the normal range
[17,18]. HV has been associated with maternal age,

periconceptional smoking, conception via in vitro fertilization
(IVF) or intracytoplasmic sperm injection (ICSI) [11]. Hence,
volumetric measurements during the first trimester provide a
valuable screening and diagnostic tool for early detection of
adverse birth outcomes, congenital anomalies, and aneuploidy.
By enabling timely interventions and preventive measures, these
measurements complement conventional biometry and can
improve pregnancy outcomes and the lifelong health of the
developing fetus.

Measuring the EV takes from 5 to 10 minutes for an experienced
rater and is thus too time-consuming for implementation in daily
clinical practice [10]. Moreover, measuring volume
semiautomatically using VR, or manual using tracing methods
(eg, VOCAL) requires specific training and may lead to inter-
and intrarater measurement variability [8,19].

To enable clinical implementation of volumetric measurement
in a time-saving and reliable manner, we propose a fully
automatic artificial intelligence (AI) method to segment
(delineate) the complete embryo, starting at 7 weeks GA, and
the embryonic head, starting at 9 weeks GA. The key difference
between VR and AI, highlighted in Figure 1, is that VR
measurements are semiautomatically, whereas AI measurements
are fully automatic, eliminating the need for any interaction or
specialized expertise to obtain the measurements beyond quality
checking. In the literature, 3 other automatic AI-based methods
for segmentation of the embryo have been published [20-22].
However, in these methods, the algorithms were tailored for
data acquired starting at 10 weeks GA, and are therefore not
directly applicable to measurements starting at 7 weeks GA.
Only Ryou et al [21] segmented the head subsequently to the
segmentation of the embryonic volume. Hence, we are the first
to address automating volumetric measurements of the human
embryo and embryonic head, highlighting the novelty of our
study.
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Figure 1. Schematic illustration of virtual reality and artificial intelligence measurements. (A) Virtual reality measurements, where the operator manually
identifies specific embryonic regions within the image. (B) Illustration of artificial intelligence measurements, where the operator only visually has to
inspect the results. In this study, all reported results were recorded prior to quality checking.

In this study, we propose the use of nnU-Net, a state-of-the-art
publicly available segmentation method [23], to automatically
measure the EV and HV. nnU-Net has excelled in medical image
segmentation, achieving top performance with minimal manual
tuning across tasks like brain and liver tumor segmentation
(medical segmentation decathlon), abdominal organ
segmentation, and cardiac magnetic resonance imaging
segmentation [23]. For the embryo and fetus, so far published
studies successfully segmented brain structures [24], lungs, and
liver [25] in magnetic resonance imaging and cardiac structures
in echocardiography [26], both in the second and third trimester.
Given this success, we hypothesize that nnU-net can also be
successful in segmentation of the embryo and embryonic head
in first trimester ultrasonography.

Our aim was to evaluate the accuracy and reliability of this
AI-based approach compared with the already validated VR
segmentation method. We assessed performance through both
quantitative and qualitative analyses. Quantitatively, we
compared volume differences between AI and VR segmentations
and examined factors influencing segmentation accuracy.
Qualitatively, expert raters visually evaluated the segmentations
using a newly developed protocol, which also enabled us to
estimate the time-saving potential of the AI approach. This dual
evaluation highlights the novelty of our work, offering insights
into the reliability and efficiency of AI-based segmentation in
clinical workflows.

Methods

Data
The data used for this study was collected within the Rotterdam
Periconception Cohort (Predict Study). The Rotterdam

Periconception Cohort is an ongoing prospective tertiary
hospital–based cohort conducted since November 2010 at the
Department of Obstetrics and Gynecology of the Erasmus MC,
University Medical Center, Rotterdam, The Netherlands [27,28].
The included women were at least 18 years old, with an ongoing
singleton pregnancy of less than 10 weeks GA.

The participating women received transvaginal 3D ultrasound
scans in gestational weeks 7, 9, and 11. Trained sonographers
performed the ultrasound examinations using a 6-12 MHz
transvaginal probe with GE Voluson E8 equipment (GE, Zipf
Austria). The scans were stored as Cartesian volumes using
specialized software for 3D ultrasound (4D View, GE Medical
Systems). No additional preprocessing, such as region-of-interest
selection or noise filtering, was performed.

Measurements Using VR
The volume measurements in VR were performed using a
semiautomatic region-growing segmentation algorithm [5]. To
perform VR measurements, either a fully immersive VR-room
or desktop VR system is needed. The interactive VR
visualization of the ultrasound image can be manipulated using
a virtual pointer controlled by a wireless joystick. The joystick
enables voxel inclusion or exclusion to perform segmentation
(Figure 1A). The algorithm is semiautomatic, since after manual
selection of the seed point for region growing a first rough
segmentation of the embryo is created, which subsequently is
refined by manual in- and exclusion of voxels using the virtual
pointer. The threshold used for region growing was calibrated
using a phantom with a known volume [29]. EV encompasses
the entire embryo and was mainly measured in gestational weeks
7, 9, and 11. EV measurements were followed by HV
measurements, where the embryonic head was isolated using a
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cutting plane between the lowest chin point and the fourth
ventricle’s lowest point in the midsagittal plane [11]. The
accuracy and reliability of both measurements were shown to
be excellent [10,11]. The measurements time for the EV ranges
between 5 and 10 minutes [10]. HV is measured after the EV
and therefore takes even longer. Finally, the quality of each
ultrasound images for EV measurement was rated as excellent,
good, or moderate. Rating was based on the following criteria:
(1) Excellent: high resolution image, little to no noise, embryo
mostly surrounded by amniotic fluid (>75% in midsagittal view),

brain ventricles and structures clearly visible. (2) Good:
moderate resolution image, little to moderate noise, embryo
partly lies against uterine wall with clear edges, brain ventricles
visible. (3) Moderate: low resolution image, noisy, shadowing
but occluded body parts can be estimated from surrounding
voxels, embryo lies against uterine wall with blurry edges, fourth
ventricle visible.

Figure 2 shows examples of images of an embryo at 9 weeks
gestational age for different quality ratings in midsagittal view.

Figure 2. Embryo at 9 weeks gestational age for different quality ratings in midsagittal view. (A) Excellent image quality: high resolution, embryo
surrounded by amniotic fluid, and clear brain ventricles. (B) Good image quality: moderate resolution, moderate noise, embryo touches uterine wall
with clear boundaries, and brain ventricles visible. (C) Low resolution: noisy image, blurry edge between embryo and uterine wall, and fourth ventricle
visible.

Measurements Using AI
We used nnU-net to measure the EV and HV, which is a
state-of-the-art publicly available segmentation method based
on deep learning [23]. nnU-net configures itself automatically
based on the available imaging data. The algorithm takes as
input the 3D ultrasound image and outputs the corresponding
predicted segmentation. During development, the algorithm
learned to set its internal parameters by minimizing the
difference between the predicted segmentation and the
segmentations obtained in VR. Two separate models were
developed: one for segmenting the embryo and another for the
embryonic head. We used nnU-net version 1.6.5 (Isensee) with
default settings on a Nvidia A40 48GB GPU with an AMD
EPYC 7742 CPU using 20 GB of RAM. Once the algorithm is
trained application to new data becomes fully automatic.
Multimedia Appendix 1 provides details on the configuration
of nnU-net.

Dataset Characteristics
We included participants for which the segmentation of volume
measurement performed in VR was saved. For the EV, this led
to a dataset consisting of 1016 ultrasound images of 539

participants. The ultrasound data was divided into three subsets:
(1) development set, (2) test set, and (3) future test set. The
development set contained 648 ultrasound scans of 341
participants acquired before 2020 and was used to develop the
AI model. The test set contained 163 ultrasound scans of 82
participants acquired before 2020 and was used to evaluate the
model’s performance on data not used during development. The
future test set contained 204 ultrasound scans of 116 participants
acquired in 2020, which was used to investigate how well the
model generalizes to data acquired later in time. Details of these
3 datasets are provided in Table 1; using the chi-Squared test
we evaluated whether the distributions of dataset characteristics
were comparable among the subsets. Although some ultrasound
images were not acquired in weeks 7, 9, or 11, we included
them in the study. GA in spontaneous pregnancies was
calculated from the first day of the last menstrual period. GA
in pregnancies achieved using IVF or ICSI after fresh embryo
transfer was calculated from the oocyte retrieval day plus 14
days, in case of IVF or ICSI after frozen-thawed embryo
transfer, GA was calculated from the oocyte retrieval day plus
19 days. In case of a cryopreserved embryo transfer, the
calculation depended on the number of days between oocyte
retrieval and embryonic cryopreservation.

J Med Internet Res 2025 | vol. 27 | e60887 | p. 4https://www.jmir.org/2025/1/e60887
(page number not for citation purposes)

Bastiaansen et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Data characteristics of the 3 datasets for the embryonic volume and head volume measurement. P values for the chi-square test are given.

P valueFuture testTestDevelopment

EVa

—b11682341Participants, n

—204 (100)163 (100)648 (100)Ultrasound scans, n (%)

GAc (%)

.2028 (13.9)40 (25)141 (21.8)Week 7

.8673 (36.1)67 (40.9)248 (38.3)Week 9

.1681 (40.9)44 (26.8)184 (28.4)Week 11

—22 (9.1)12 (7.3)75 (11.5)Other

Outcome

.87196 (97)151 (92.1)582 (89.8)No adverse outcome

.156 (3)12 (7.9)66 (10.2)Adverse outcome

BMI (%)

<.001146 (72,2)141 (86))553 (85.8)Not obese (<30)

>.9929 (14.4)23 (14)93 (14.4)Obese (≥30)

—29 (13.4)0 (0)2 (0.2)Missing

Ultrasound quality (%)

.6578 (38.6)59 (36)200 (30.9)Excellent

.3355 (27.2)53 (32.3)254 (39.2)Good

.8764 (31.7)49 (30)179 (27.6)Moderate

—4 (2.5)3 (1.7)15 (2.3)Missing

HVd

—5865261Participants, n

—80 (100)92 (100)383 (100)Ultrasound scans, n (%)

GA (%)

.9837 (46.3)43 (46.7)185 (48.3)Week 9

.9539 (48.8)44 (47.8)175 (45.7)Week 11

.954 (4.9)5 (5.5)23 (6)Other

Outcome (%)

>.9980 (100)92 (100.0)381 (99.4)No adverse outcome

.550 (0)0 (0)2 (0.6)Adverse outcome

BMI (%)

.9164 (80)78 (84,8)326 (85.1)Not obese (<30)

.538 (10)14 (15.2)57 (14.9)Obese (≥30)

—8 (10)0 (0)0 (0)Missing

aEV: embryonic volume.
bNot applicable.
cGA: gestational age.
dHV: head volume.

For the HV, a total of 475 ultrasound scans of 326 participants
were included. The data were divided over similar subsets. The
development set contained 383 ultrasound scans of 261
participants acquired before 2020. The test set contained 92

ultrasound scans of 65 participants acquired before 2020. The
future test set contained 80 ultrasound scans of 58 participants
acquired in 2020. The characteristics of these 3 datasets can be
found in Table 1.
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Quantitative Analysis
We evaluated the AI algorithm’s performance for EV and HV
quantitatively, comparing AI and VR segmentations in the test
and future test sets. We reported the intraclass correlation
coefficient (ICC), Dice score, absolute volume error, and
absolute relative volume error. ICC measures interobserver
reliability, and a score of 0.90 or higher indicates good
agreement. The dice score indicates segmentation overlap, with
a score of 1 indicating perfect overlap and 0 indicating no
overlap [30]. Absolute volume error is the difference between
AI and VR volumes, while absolute relative volume error is
absolute volume error divided by the volume obtained in VR.

For the Dice score and volume errors, we report the mean and
SD over the test and future test set. We used Bland-Altman
plots to assess agreement based on the relative volume error
[31]. We also investigated the factors that may influence the
model’s performance: GA, adverse outcomes (miscarriage,
termination of pregnancy, intrauterine fetal death, stillbirth,
postpartum death, and congenital malformations identified at
birth), maternal BMI, image quality, and the number of available
training samples. This was done by statistical comparison of
the evaluation metrics for: datasets within a gestational age
versus the rest, participants with adverse outcome versus no
adverse outcome, participants with maternal obesity versus not
obesity, datasets with excellent ultrasound quality versus good
quality, and moderate quality versus good quality. For HV image
quality was not available, and the influence of pregnancy
outcome was not tested since adverse outcomes were not present
in the test set. To investigate the influence of the number of
available samples for development, we created smaller
development sets while preserving the ratios of the
characteristics given in Table 1. Details on the subsets can be
found Table S2.1 in Multimedia Appendix 2.

Finally, we evaluated the precision of the AI measurements
compared with the VR measurements. To this end, we analyzed
the association between birth weight (exposure) and longitudinal
embryonic volumetric measurements (outcome) using a linear
mixed model. As a reference, also the association with CRL
was analyzed, which was found to be significant in previous
research [3]. This analysis was performed within the test set
and future test set. CRL measurements were repeated 3 times,
and the average of these measurements was used [10]. The birth
weight was retrieved from medical records and z scores were
calculated based on Dutch reference growth curves adjusted for
GA and fetal sex [32].

Qualitative Analysis
Experienced raters conducted a qualitative analysis of the
segmentations through visual inspection. All raters followed
standardized training to perform these measurements [28]. The
EV was rated by MR (gynecologist, > 10 years of experience
in VR measurements, rater (1) and BH (biomedical Ph.D.
student, >3 years of experience in VR measurements, rater (2).
The HV was rated by MR and ER (biomedical Ph.D. student,
>3 years of experience in VR measurements, rater (3). A total
of 60 segmentations for the EV and 40 for the HV were
analyzed. The ultrasound images were selected randomly for
the future test set but were evenly distributed over gestational

weeks and image quality. The HV images were selected from
gestational weeks 9 and 11. All selected images were from
unique participants.

Each rater performed 2 rounds, with half of the segmentations
obtained using AI within each round. In addition, rater 1
performed the first round twice to assess intrarater reliability.
For each image, the segmentation shown in the first round, AI
or VR, was determined at random. The images were always
shown in the same order, and rounds or repetitions were
conducted at least 2 weeks apart to prevent a recall bias. During
the experiment, the raters were blinded to the method used, their
rating in the other round, and the results of the other rater.

The rating was performed using the same VR set-up as for
acquiring the VR segmentations. The following score was
assigned: (1) Excellent: Only voxels part of the embryo or
embryonic head are included in the segmentation, segmentation
is complete. (2) Minor adjustments required:
Undersegmentation: excluding voxels part of embryo or
embryonic head, oversegmentation: including voxels part of
amniotic fluid, yolk sac, placenta, or uterine wall, holes within
the interior, and exclusion of part of the limbs. (3) Major
adjustments required: Limbs not included in the segmentation,
estimated cutting plane for HV superior (undersegmentation)
over inferior (oversegmentation).

For scores 2 and 3 a description was noted of the necessary
adjustment. Finally, the time needed to rate the segmentations
was noted as well. We calculated Cohen to evaluate the
agreement among raters [33]. Finally, all given scores were
summarized in confusion matrices, which is a table showing
the scores of both raters.

Statistical Analysis
Data characteristics were compared using the chi-squared test.
The Mann-Whitney U test was used to compare unpaired data,
and the Wilcoxon signed-rank test was used for paired data. P
values of <.05 were considered significant. Absolute volume
error was not statistically analyzed due to positive correlation
with GA. The association between birth weight and first
trimester longitudinal CRL and EV measurements was studied
using linear mixed models. With a linear mixed model, repeated
measurements of the same participant can be included, by
including the GA as time descriptor. To model the individual
growth trajectories, a random intercept term was used, and the
EV was log transformed to linearize the relationship between
GA and EV (Figure S3.1 in Multimedia Appendix 3). All
analyses were performed using Python 3.7 (Python Software
Foundation).

Ethical Considerations
This study was approved by the local medical ethical and
institutional review board of the Erasmus MC, University
Medical Center, Rotterdam, The Netherlands (MEC-2004-227).
Prior to participation, all participants provided written informed
consent.
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Results

Quantitative Analysis
We found an average runtime of 57 seconds for the EV and 41
seconds for the HV. We found excellent agreement between
the volume measured using AI and VR, for both the test set and
future test set: for the EV we obtained respectively an ICC of
0.998 and 0.996, and for the HV 0.998 and 0.997. However,

when comparing the Dice score and absolute relative volume
error for the test set and future test set in Tables 2 and 3, we
found small, but statistically significant, differences. The
Bland-Altman plots for both EV and HV in Figure 3 explain
these significant differences: the mean relative differences were
respectively for test and future test set 0.01% and –2.74% for
the EV and 0.22% and –1.56% for the HV. Hence, on the future
test set, the models slightly underestimated the volume compared
with the test set.

Table 2. Quantitative performance measures for the embryonic volume.

P value absolute rel-
ative volume error

Absolute relative volume
error (%), mean (SD)

Absolute volume error

(cm3), mean (SD)

P value Dice
score

Dice score,
mean (SD)

Number

—4.99 (5.13)0.160 (0.296)—a0.941
(0.044)

163Test set

GAb

<.0017.51 (5.78)0.021 (0.015)<.0010.907
(0.060)

40Week 7

.034.05 (3.96)0.099 (0.102).0020.954
(0.022)

67Week 9

.034.10 (5.35)0.389 (0.362).0050.954
(0.028)

44Week 11

—5.12 (4.69)0.132 (0.169)—0.931
(0.050)

12Other

Outcome

—4.77 (4.99)0.167 (0.258)—0.943 (0.04)151No adverse outcome

.0057.70 (5.77)0.079 (0.062).040.912
(0.067)

12Adverse outcome

BMI

—4.86 (4.90)0.166 (0.256)—0.941
(0.045)

140Not obese (<30)

.055.80 (6.18)0.126 (0.200).130.940
(0.031)

23Obese (≥30)

Ultrasound quality

.0023.89 (3.92)0.114 (0.145)<.0010.960
(0.023)

59Excellent

—3.98 (4.24)0.120 (0.155)—0.947
(0.027)

53Good

<.0017.28 (6.32)0.267 (0.378)<.0010.911
(0.059)

48Moderate

<.0016.62 (6.69)0.370 (0.574).0040.935
(0.041)

204Future test set

aNot applicable.
bGA: gestational age.
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Table 3. Quantitative performance measures for the head volume.

P value absolute rela-
tive volume error

Absolute relative volume
error, mean (SD)

Absolute volume error

(cm3), mean (SD)

P value dice
score

Dice score,
mean (SD)

Number

—3.23 (2.85)0.088 (0.131)—a0.955 (0.016)92Test set

GAb

.403.52 (3.43)0.036 (0.033).060.952 (0.018)43Week 9

.142.80 (2.12)0.135 (0.113).090.960 (0.013)44Week 11

—4.53 (1.61)0.127 (0.069)—0.960 (0.014)5Other

BMI

—3.04 (2.65)0.085 (0.091)—0.955 (0.016)78Not obese
(<30)

.124.34 (3.50)0.107 (0.121).420.954 (0.016)14Obese (≥30)

.493.96 (4.13)0.108 (0.167).0010.946 (0.019)80Future test set

aNot applicable.
bGA: gestational age.
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Figure 3. Bland-Altman plots for the embryonic volume (EV) and head volume (HV). The relative difference between the volume obtained using
virtual reality (VR) and using artificial intelligence (AI) was plotted against the volume obtained using VR. The solid line represents the mean relative
difference and the dotted lines represent the limits of agreement (mean relative difference SD 1.96). The colors indicate the week GA. (A) EV for the
test set, (B) EV for the future test set, (C) HV for the test set, and (D) HV for the future test set.

We statistically compared the performance measures between
the test set and the future test set and for the test set: every
gestational week group separately to the rest, adverse outcome
to no adverse outcome, obese to not obese, excellent ultrasound
quality to good quality, and moderate quality to good quality.

We statistically compared the performance measures between
the test set and the future test set, and for the test set: every
gestational week group separately to the rest, and obese to not
obese.

In Figure 4 which shows a visualization of the segmentations,
the AI segmentations appear smoother than the VR ones. This
can be explained by the fact that, in VR, the segmentations are
corrected manually with a spherical brush, which causes the
nonsmooth edges. Finally, in the fourth row of Figure 4, an
example is shown where part of the head and limbs are missing,
caused by low ultrasound image quality.
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Figure 4. Visualization of the segmentations obtained using artificial intelligence (AI) and virtual reality (VR). For both the AI and VR segmentations
on the left the outline is given, and on the right the 3D rending. Rows 1-3 show successful examples for embryonic volume (EV) measurement and
column 4 shows an example where the quality of the ultrasound hampered the AI segmentation, caused by shadow near the fetal head. Rows 5 and 6
show successful examples of head volume measurement.

The data characteristics for development, test, and future test
set were only significantly different for the not obese participants
in the EV datasets (Table 1), which can be explained by the
high number of missing BMI measurements in the future test
set. Regarding the influence of GA on the performances, we
observed in Table 2 that for gestational week 7 the Dice score
and absolute relative volume error were significantly worse,

and for weeks 9 and 11 these were significantly better. No
significant difference was found between the results for the
other surrounding weeks GA and the results for weeks 7, 9, and
11. For pregnancy outcome, the absolute relative volume error
was significantly worse in case of an adverse outcome. However,
the group with an adverse outcome was relatively small, and 7
out of the 12 images were taken before gestational week 11,
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which led to worse performances as well. For maternal BMI,
we found no significant influence on the performance of the AI
algorithm in terms of Dice score. However, for maternal BMI,
we found a small, but significant, decrease in performance for
the absolute relative volume error. For ultrasound image quality
we found, as expected, that excellent quality gives significantly
better results, and moderate quality gives significantly worse
results. Data characteristics (eg, distribution of image quality
per gestational week) in the compared subgroups can be found
Table 4.1 in Multimedia Appendix 4.

Similarly, for the HV segmentations, we evaluated the influence
of GA and maternal BMI. In Table 3 we observed that maternal
BMI has no significant influence on HV measurements.
Regarding GA, we observed that images not acquired in weeks

9 and 11 had significantly higher relative volume errors (weeks
8, 10, and 12). Data characteristics (eg, distribution of cases
with obesity per gestational week) in the compared subgroups
can be found Table 4.2 in Multimedia Appendix 4.

Regarding the number of samples needed for development, in
Table 4 we observed for both EV and HV, that the Dice score
and absolute relative volume error deteriorated slightly as the
number of data samples used decreased. For both measurements,
when 40% or less of the development dataset was used, we
observed that the results deteriorated significantly. On the
smallest development dataset of around 20 ultrasound images,
we observed a mean Dice score of 0.888 and 0.946 for the EV
and HV respectively, which for the EV led to relative deviations
in the volume of around 20%.

Table 4. Results for evaluating the influence of the number of samples used for development.

P valueAbsolute relative volume
error (%), mean (SD)

P valueDice score, mean (SD)

EVa (%)

—4.99 (5.13)—b0.941 (0.044)100

.145.12 (5.18).090.934 (0.086)80

.394.99 (5.04).330.934 (0.086)60

.026.04 (7.40)<.0010.933 (0.077)40

<.0016.72 (9.30)<.0010.925 (0.105)20

<.0017.48 (9.26)<.0010.922 (0.101)10

<.00112.8 (64.7)<.0010.916 (0.120)5

<.00121.4 (133.5)<.0010.888 (0.109)2.5

HVc (%)

—3.23 (2.85)—0.955 (0.016)100

.373.27 (2.77).210.955 (0.016)80

.593.38 (2.96).070.954 (0.017)60

.323.36 (2.93)<.0010.953 (0.017)40

.043.62 (3.20)<.0010.951 (0.018)20

.023.94 (3.60)<.0010.949 (0.019)10

.0064.13 (3.66)<.0010.946 (0.019)5

aEV: embryonic volume.
bNot applicable.
cHV: head volume.

Table 5 shows the association between birth weight and CRL,
birth weight and EV obtained using VR, and birth weight and
EV obtained using AI. The flowchart of the study population
can be found (Figure S3.2 in Multimedia Appendix 3), along
with the baseline characteristics (Table S3.4 in Multimedia
Appendix 3). For the EV measured using VR and AI the effect
estimates () are comparable and the 95% CIs are overlapping,

indicating that despite the difference in measurement method,
growth trajectories are comparable estimated. All effect estimate
() were positive and therefore give the increase of the growth
trajectory during the first trimester per unit increase in birth
weight (in grams). We found no significant associations between
birth weight and CRL or EV.
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Table 5. Associations between first trimester growth trajectories, quantified by Crown-Rump Length, embryonic volume obtained using virtual reality,

and embryonic volume obtained using artificial intelligence, and birthweighta.

P value95% CIβ

.21–0.169 to 0.7760.304CRLb

.24–0.018 to 0.0700.026EVc (VRd)

.22–0.016 to 0.0700.027EV (AIe)

aEffect estimate β, P value, and the 95% CI are given for a linear mixed model with gestational age as the time predictor.
bCRL: crown-rump length.
cEV: embryonic volume. The EV was log-transformed to linearize the relationship between GA and EV.
dVR: virtual reality.
eAI: artificial intelligence.

Qualitative Analysis
Qualitative rating of the EV segmentations took on average 45
(SD 12) seconds per image for rater 1 and 1 minute 3 seconds
(SD 24 s) for rater 2. Rating of the HV segmentations took on
average 42 (SD 7) seconds for rater 1 and 1 minute 6 seconds
(SD 20 s) for rater 3. Hence, we found that the total
measurement time (run-time algorithm and rating) took on
average less than 2 minutes per ultrasound image. Figure 5
shows the confusion matrices for both the EV and HV
addressing interrater variability. Figure S5.1 in Multimedia
Appendix 5 shows confusion matrices for intrarater variability.
For the EV, we found an interrater Cohen κ of 0.65 when using

AI (intrarater Cohen κ=0.73), and an interrater Cohen κ of 0.37
when using VR (intrarater Cohen κ=0.47). Similarly, for the
HV, we found an interrater Cohen κ of 0.56 when using AI
(intrarater Cohen κ=0.71), and an interrater Cohen κ of 0.333
when using VR (intrarater Cohen κ=0.83). For interrater
agreement, when both raters agreed, we observed that for EV,
no adjustments were needed in 42% of cases with AI compared
with 38% with VR. For HV, this percentage was 72% with AI
versus 18% with VR. In addition, for EV, 23% of cases required
major adjustments with AI, while none did with VR. Conversely,
with VR, more minor adjustments (27% vs 13%) were needed.
Similar numbers were observed for intrarater agreement.
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Figure 5. Confusion matrices for the qualitative rating, showing the scores given by both raters. The percentages on the diagonal show where the raters
agreed. Score 1 indicates that no adjustments were needed, score 2 indicate that only minor adjustments were needed (filling holes, adding part of limb,
under- or oversegmentation at the border), and score 3 indicates that major adjustments were needed (missing limbs and wrongly estimated cutting
plane). Cohen κ is indicated by κ, where κ between 0.21 to 0.4 indicates fair agreement and κ between 0.61 to 0.8 substantial agreement.

Table 6 summarizes minor (score 2) and major (score 3)
adjustments for EV and HV, which were needed per gestational
week by both raters. Using AI, limbs were more frequently
missing (AI 32 cases versus VR 15 cases). Missing limbs
occurred more frequently in gestational week 9, where the limbs
are still relatively small and not always clearly visible (Figure
6A). On the other hand, using VR, segmentations with holes
were observed (AI 0 cases versus VR 17 cases, Figure 6B). We

found that both methods sometimes wrongly included parts of
the umbilical cord or yolk sac (Figures 6C and 6D). For the HV,
using AI, ears were more frequently missing (AI 5 cases, VR
1 case). For both AI and VR, segmentations were sometimes
underestimating the boarder of the head (Figures 6D and 6E).
Using AI, the cutting plane was more often estimated correctly
(AI 2 cases, VR 6 cases, Figure 6F).
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Table 6. Description of the minor and major adjustments denoted during the rating of both artificial intelligence and virtual reality segmentations, per
gestational week for both raters.

VRbAIa

EVc

Week 7

Minor • Undersegmented at border: 1• Oversegmented: 3

• Holes: 7• Umbilical cord: 2
• Yolk sac: 1

Major • Limb missing: 3• Limb missing: 8

• Arm: 2• Arm: 2
• Leg: 1• Leg: 6

Week 9

Minor • (Part of) limb missing: 1• Part of limb missing: 4

• Hand: 1• Hand: 1
• Feed: 3

• Oversegmented: 4
• Oversegmented: 1

• Umblical cord: 2
• Umblical cord: 1 • Yolk sac: 2

• Holes: 4

Major • (Part of) limb missing: 4• Limb missing: 10

• Arm: 1• Leg: 10
• Leg: 3

Week 11

Minor • Part of limb missing: 7• Part of limb missing: 5

• Leg: 2• Feed: 2
• Hand: 5• Hand: 3

• Holes: 6• Oversegmented: 1

• Yolk sac: 1

Major • Limb missing: 2• Limb missing: 5

• Leg: 2• Leg: 2
• Arm: 3

HVd

Week 9

Minor • Undersegmented at border: 5• Undersegmented at border: 3
• Oversegmented: 3

• Uterine wall: 1
• Yolk sac: 2

• Part of head missing: 1

• Nose: 1

Holes: 7

—eMajor • Wrong cutting plane: 3

Week 11
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VRbAIa

• Oversegmented: 2

• Hand: 1
• Uterine wall: 1

• Part of head missing: 1

• Ears: 1

• Holes: 13

• Undersegmented at border: 1
• Part of head missing: 5

• Ears: 5

Minor

• Wrong cutting plane: 6• Wrong cutting plane: 2Major

aAI: artificial intelligence.
bVR: virtual reality.
cEV: embryonic volume.
dHV: head volume.
eNot applicable.

Figure 6. Visualization of minor and major adjustments denoted during the rating of artificial intelligence (AI) and virtual reality (VR) segmentations.
(A) AI segmentation at gestational week 9 with part of the leg missing. (B) VR segmentation at gestational week 11 with holes in the segmentation
mask. (C) AI segmentation at gestational week 7, due to low image quality, the umbilical cord is partly included in the segmentation. (D) VR segmentation
at gestational week 11, where the mask oversegments the head by including part of the yolk sac. (E) VR segmentation at gestational week 11, where
the mask undersegments the head. (F) VR segmentation at gestational week 9, where part of the fourth ventricle is missing, which leads to underestimation
of the cutting plane.

Discussion

Principal Findings
Volume measurements of the human embryo in the first
trimester provide valuable insights into growth and development
during this crucial period. Currently, obtaining these

measurements is costly, laborious, and requires specialized
training due to the in-house developed VR setup. Automating
these measurements saves valuable time, and saves training and
equipment costs. Eventually, this will enable the introduction
of new, innovative volumetric parameters into clinical practice.
To achieve automatic measurements, we proposed a
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state-of-the-art automatic AI algorithm, based on nnU-net [23],
to segment the embryo and embryonic head, and subsequently
measure the volume.

Quantitatively, we found that we could accurately measure the
EV in gestational weeks 7 to 11 and the HV in weeks 9 to 11
GA on the test set, both with an ICC of 0.998 compared to
measurements performed using VR. In addition, our method
achieves a comparable ICC of 0.996 and 0.997 for EV and HV,
respectively, when tested on images acquired in 2020. With an
average combined measurement and rating time of less than 2
minutes, we can obtain accurate measurements of EV and HV
in a time-efficient manner. Note that for EV and HV intrarater
ICC is 0.999 and respectively >0.99, and interrater ICC is 0.999
and respectively >0.99, showing high reproducibility of VR
measurements, which is comparable to reproducibility using
AI [10,11].

We investigated the impact of GA, adverse outcomes, BMI,
and image quality on the performance of the developed
algorithm for EV measurements. We found that GA and image
quality significantly impacted performance. For GA, we found
that the EV measurements performed in gestational week 7
yielded significantly lower performance of the algorithm. This
can be attributed to the size of the embryo at this stage, which
makes volumetric measurements more challenging. In the case
of adverse outcomes, this led to significantly lower performance.
Given the small number of adverse outcomes in our dataset, we
did not look into specific cases and how there were handled by
the algorithm. Furthermore, we found that image quality
significantly affected the algorithm’s performance for EV, with
excellent quality leading to better performance and moderate
quality leading to significantly worse performance. For HV, we
investigated the influence of GA and BMI and found no
significant differences. Given that the gestational age and image
quality distribution between the test set and future test set were
similar, this analysis does not explain the slight underestimation
of the volume in the future test set.

Our qualitative analysis revealed important differences between
the AI and VR segmentations. For the HV, the AI segmentations
were rated as excellent in 79% of cases, compared with only
17% for VR. The main reason for this was the incorrect
estimation of the cutting plane and holes in the VR
segmentations. However, for the EV, we found that major errors
were more common with the AI algorithm, as it more frequently
missed limbs. In contrast, VR had relatively more minor errors,
such as holes and under- or oversegmentation. It is important
to note that any ultrasound images where segmentation of the
limbs was not possible in VR were excluded. As a result, the
VR measurements inherently lack cases with missing limbs,
introducing a positive bias since major errors were excluded
prior to the study. In addition, experienced raters were able to
extrapolate missing limb positions in low-quality images,
whereas the AI algorithm had difficulties correctly segmenting
those cases. To address this challenge, an interesting direction
of future research could be multiclass approaches, where rather
than segmenting the embryo as one class, different parts of the
body (eg, the head, trunk, and limbs) are segmented as separate
classes, which allow the AI algorithm to explicitly learn about
the shape and spatial ordering of these parts. Finally, the use of

AI led to higher agreement among raters, possibly because major
errors were more easily observable, especially at later gestational
ages (weeks 9 and 11), or because the AI segmentations
appeared smoother and simplified visual assessment.

The qualitative analysis was conducted using a fixed protocol
to ensure consistent quality checking, with the time required
for this process also recorded. Beyond evaluating our results
qualitatively, we demonstrate how quality checking could be
implemented in clinical practice and estimate the time it would
require. Future work will aim to enhance this approach by
incorporating failure-awareness into the automated measurement
through the assessment of AI-model uncertainty [34].

Finally, we evaluated the precision of the AI measurements
compared to the VR measurements. To this end, we analyzed
the associations between birth weight and longitudinally
measured CRL, EV obtained using VR, and EV obtained using
AI. We found that the effect sizes (β) and 95% CIs were
comparable for the EV measured using VR and AI. This finding
shows that despite the difference in measurement method,
growth trajectories were comparable estimated. This analysis
showed no significant associations between birth weight and
CRL or EV, however, studying associations was not the aim of
this analysis due to the small sample size. For future work, we
suggest that a more in-depth analysis to study the predictive
value of EV compared with CRL should be performed using a
larger sample size. Such an analysis should not only include
the association with birth weight, but also the prediction of
adverse outcomes such as miscarriage (associated with EV
measured using VR [2]), congenital anomalies (associated with
EV measured using VR [16]), small-for-gestational age,
hypertensive disorders of pregnancy, and preterm birth.

Comparison With Previous Work
In the literature, 3 comparable automatic AI methods for the
segmentation of the embryo can be found [20-22]. All
approaches used a U-net like architecture for EV segmentation,
Looney et al [20] and Yang et al [22] combined this both with
transfer learning and either label refinement, or a 2-pathway
architecture. Ryou et al [21] subsequently segmented the HV
by using a multitask approach. Looney et al [20] achieved a
mean Dice score of 0.876 for the EV (tested on 60 3D volumes,
10-14 weeks GA using a GE Voluson 730 expert system), Yang
et al [22] achieved 0.880 for the EV (tested on 44 volumes,
10-14 weeks GA using a Mindray DC-8 machine with a 3D
23.8-8.2 MHz probe), and Ryou et al [21] achieved for the EV
a mean accuracy of 89.4% and for the HV 95.4% (tested on 21
3D volumes, 11-14 weeks GA using a Philips HD9 machine
with a 3D V7-3 probe) [20]. In contrast, our AI algorithm, tested
on hundreds of images, can measure EV from gestational week
7 and HV from gestational week 9, until week 11.

Limitations
A limitation of our model is that it was developed and tested
only on imaging data acquired within the same institute, using
one type of ultrasound system. Evaluation in other settings is
needed to investigate generalizability. Currently, only datasets
containing 2D scans of standard planes are publicly available,
which are not suitable for volume segmentation [35,36]. To
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expand the applicability of our model in different clinical
settings, training and validation on an extended dataset
containing data from multiple sources is needed. However, for
development, segmentations are needed, which are not always
available, and are time-consuming and costly to obtain. To
investigate the influence of having fewer segmentations
available, we subdivided the development dataset into smaller
partial development datasets. We found that for smaller
development datasets the spread in the performance gets wider,
but decreases only slightly for the Dice score. We found that
the smallest dataset, which used contained 18 (EV) and 21
images (HV), still achieved mean Dice scores of 0.888 and
0.946 respectively, compared with 0.935 and 0.955 on the full
dataset. This suggests that accurate results can still be achieved
even with a limited number of segmentations available. This
opens up opportunities for further research, such as exploring
the use of a similar approach for measuring the yolk sac,
gestational sac, brain ventricles, and the utero placental
(vascular) volume. All these measurements have been performed
before within the Rotterdam Periconception cohort, but to date
only limited or no segmentations are available [9,37].

A possible drawback of our study is that the second and third
rater in the qualitative experiments had no experience in
performing ultrasonography. However, the 3D VR visualization
of the ultrasound image simplifies the assessment of the image,
which reduces the need for experience in ultrasonography. This
is supported by the agreement with the first rater (gynecologist,
>10 years of experience in VR measurements), which was
substantial. Moreover, both the second and third rater followed
standardized training to perform these measurements [28].

Although EV provides a more accurate estimation of embryonic
growth than CRL, CRL remains the clinical gold standard [8,12].
A limitation of our study is that we focused on automating a
novel measurement rather than the clinical standard. However,
performing automatic biometric measurements like CRL or

head circumference from 3D volumes requires the identification
of corresponding standard planes. While EV and HV
segmentation could simplify some aspects of this process, they
do not directly address the plane detection needed for these
measurements. Automatic standard plane detection has been
successfully applied to 2D ultrasonography, primarily in the
second and third trimesters [36,38]. We have conducted
preliminary work on extracting the midsagittal plane via spatial
alignment for CRL measurement, which yielded promising
results [39].

Conclusions
We showed that we can accurately measure the EV in gestational
weeks 7 to 11 and the HV in gestational weeks 9 to 11 using a
fully automatic algorithm. We achieve this in a time-efficient
manner, saving significant time over current approaches. The
strength of our study was the combination of using a
state-of-the-art AI algorithm for medical image segmentation,
the availability of a large dataset, and thorough quantitative and
qualitative evaluation. Especially, the expert ratings revealed
important differences between AI and VR measurement. We
showed that beside being reliable, performing measurements
using AI is time-saving, even when taking the subsequent quality
checking into account. Ultimately, automating volumetric
measurements may save valuable time in clinical practice, as a
screening and diagnostic tool early in pregnancy for adverse
pregnancy outcomes, fetal growth restriction, and congenital
anomalies. Early diagnosis leaves room for treatment and
interventions leading to better pregnancy outcomes and the
lifelong health of the developing embryo and fetus. Moreover,
besides measuring the volume, segmentations provide important
spatial and morphological information that is crucial for other
image analysis tasks such as standard plane detection, anomaly
detection, and the development of data-driven spatiotemporal
growth models [39,40].
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