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Abstract

Background: Electronic health record (EHR) data are anticipated to inform the development of health policy systems across
countries and furnish valuable insights for the advancement of health and medical technology. As the current paradigm of clinical
research is shifting toward data centricity, the utilization of health care data is increasingly emphasized.

Objective: We aimed to review the literature on clinical data quality management and define a process for ensuring the quality
management of clinical data, especially in the secondary utilization of data.

Methods: A systematic review of PubMed articles from 2010 to October 2023 was conducted. A total of 82,346 articles were
retrieved and screened based on the inclusion and exclusion criteria, narrowing the number of articles to 851 after title and abstract
review. Articles focusing on clinical data quality management life cycles, assessment methods, and tools were selected.

Results: We reviewed 105 papers describing the clinical data quality management process. This process is based on a 4-stage
life cycle: planning, construction, operation, and utilization. The most frequently used dimensions were completeness, plausibility,
concordance, security, currency, and interoperability.

Conclusions: Given the importance of the secondary use of EHR data, standardized quality control methods and automation
are necessary. This study proposes a process to standardize data quality management and develop a data quality assessment
system.

(J Med Internet Res 2025;27:e60709) doi: 10.2196/60709
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Introduction

As data continue to accumulate, the question of how to use
neglected data has received increasing attention. In particular,
the need for quality control in the use of electronic health record
(EHR) data has been emphasized. EHR data are expected to
facilitate the development of national health policy systems and
provide useful information for improving public health and
medical technology [1]. As the current clinical research
paradigm shifts to one of data centricity, the use of EHR data
has increasingly been emphasized [2].

The quality of EHR data research depends on the quality of the
generated data, which is a major research limitation. EHR data
are essential in preclinical research, which is conducted to study
the future of diseases and draft policies. Therefore, integrated
data must be used seamlessly and incorporate different types
of data. Currently, various methods for integrated data
management are being developed [3-9], but quality control
standards are set differently for each data type, and discussions
in this regard are challenging because of the nature of EHR data
[10-13].
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Although research into EHR data quality management is actively
underway, a gold standard for assessing data quality remains
absent. Inconsistencies in data formats and terminology, a lack
of standardization, security issues, and challenges in processing
large-scale data persist as major obstacles to establishing
standardized EHR data management practices [14,15]. Another
critical challenge in EHR data management is achieving
consistency across data sets from different hospitals and health
care systems [16]. The variability in data collection methods
and formats among institutions complicates the integration of
data sets, undermining the reproducibility and reliability of
research [17].

The consistent quality of EHR data is a critical factor in the
performance of data analytics. Meeting data quality standards
requires a management system that is appropriate for each stage
of the data life cycle [18,19]. However, no standardized
approach is available to assess the quality of EHR data [14].
For accurate and consistent research on EHR data, common
data models (CDMs) such as the Observational Medical
Outcomes Partnership CDM and Sentinel CDM are being built
[20,21]. However, CDMs are evaluated individually depending
on their type [22-24].

The quality of clinical data depends on the quality of the data
on which they are built, and such dependence is another major
research limitation. A data quality management process defines
the basic principles of data management and enables accurate,
consistent control of data quality [25]. High-quality data can
be defined as such when they are not built piecemeal but are
managed throughout the entire process of operation and use.

This study aimed to understand the importance of clinical data
quality management and the life cycle–based clinical data
quality management process. Accordingly, the existing literature
on EHRs and clinical data quality was reviewed, and the
guidelines for the predefined clinical data quality management
processes of planning, implementation, operation, and utilization
[26] were subsequently considered.

Methods

Definition of the Clinical Data Life Cycle
In the context of systematic data quality management, we
defined the life cycle of clinical data quality management [26]
as the quality management activities for health care data that
include a series of steps from data construction to operation and
use [26].

Literature Review on Data Quality
We aimed to identify articles that extensively discussed the
generation and quality of EHR data. In this study, an EHR refers
to all electronically stored records of patient health information,
encompassing both electronic medical records and personal
health records. To conduct the literature review, we followed
the methods of previous studies that closely reviewed previous
EHR data [14,27-29]. A PubMed literature search was conducted
by the first author in October 2023. The keywords for the search
were text words and Medical Subject Headings such as “data
quality,” “data accuracy,” “quality indicators,” “quality of health
care,” “quality control,” and combinations of these terms
(Textbox 1). The literature search was limited to articles
published in English.

Textbox 1. Search terms.

'quality[ti]' AND (‘data quality’ OR ‘data accuracy’ OR ‘Quality of Health Care’ OR ‘Quality Indicators’ OR ‘quality control’) AND (EHR OR
electronic medical record OR computerized medical record OR medical records systems, computerized [mh]) AND English[lang] NOT (review OR
Clinical Trial OR Documents OR Books)

A total of 82,346 articles were retrieved from PubMed. To select
articles suitable for our research purpose, we referred to previous
studies and applied the inclusion and exclusion criteria listed
in Textbox 2 [14,27-29]. The studies were evaluated based on
their relevance to the assessment and management of data
quality of EHR data. This was done by applying inclusion and
exclusion criteria to the titles and abstracts of the studies. This
process was conducted by an author with a degree in public
health (DA) and cross-checked by another author specializing

in health informatics (MS) to minimize bias. In cases of
disagreement in study selection, final decisions were made
through thorough discussion. A total of 851 articles were
selected after the first review. In the second review, all articles
were manually reviewed by the first author to ensure they met
the criteria. Subsequently, all papers related to data quality were
selected and classified based on the following 4 keywords: “data
quality,” “EHR assessment,” “treatment quality,” and “hospital
quality.”
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Textbox 2. Inclusion and exclusion criteria.

Inclusion criteria

• Original research using data quality assessment methods

• Focus on data derived from electronic health records or related systems

Exclusion criteria

• Guidelines limited to one medical area (eg, cardiology) without generalization to other areas

• Review papers

• Guidance aimed at governing bodies

• Published before 2010

• Papers not in the English language

• No full text available

• Not a paper on data quality issues

To focus on data quality management for clinical data analysis,
we reviewed the full text of each article containing 2 of the 4
keywords, that is, “data quality” and “EHR assessment.” In this
process, we reviewed medical data quality and 13 relevant
guidelines. Ultimately, 105 studies were included.

For each article, we described the category, definition of data
quality, data quality management methods, and quality control
procedures. The literature categories included the main
perspectives, research methods, and research findings. For
efficiency, we reviewed the articles by classifying them into
the following 4 topics: “framework,” “quality measures,”
“quality tool,” and “interview.” Framework papers included
articles addressing general procedures for data quality, while
papers on quality measures included those involving data
evaluation. Articles on quality tools included those that
developed data evaluation tools, while interview articles
included those that evaluated data based on the opinions of
experts in actual hospital settings.

We abstracted the general methods and procedures for data
quality management based on data life cycle and evaluation
methods in each paper. To establish standards for the data life
cycle, we analyzed the literature related to data frameworks and
identified ways to construct data quality management
procedures. The data quality evaluation criteria, quality
evaluation methods, data types, and vocabulary used in each
article were also collected. The content of the articles was then
repeatedly reviewed to define their quality control dimensions.

To organize the overall data quality assessment methodology,
we reviewed the literature that mentioned the data life cycle;
however, finding articles offering a clear definition was difficult.

Data quality must be consistently defined [30]. The literature
shows how clinical data are constructed and evaluated according
to different processes. Studies have been conducted to define
methods for evaluating data; however, the series of processes
through which data are generated and used has not been
considered. We realized that consistent data quality management
could be implemented by identifying and defining the data
characteristics highlighted in the literature. Our study attempted
to define a set of processes through which data are constructed,
operated, and used through a literature review and to include
all commonly occurring concepts. We then reviewed all articles
to collect data on the use of the newly defined processes and
dimensions.

Results

Data Quality Assessment Framework Based on the
Clinical Data Life Cycle
Data quality can be defined as “the level that can continuously
meet the various activity purposes or satisfaction of users using
data” [31]. Data quality management refers to a set of activities
that ensure data quality. With the goal of developing and
implementing high-quality data, data quality management
encompasses all data-related management activities, from data
creation to use [26].

Figure 1 illustrates the life cycle of clinical data and defines the
data quality management methods according to the life cycle
stage. We used the clinical data life cycle, which consists of the
planning, construction, operation, and utilization stages [26].
In producing high-quality data, data must be managed according
to the data life cycle and governance principles [26].
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Figure 1. Life cycle of clinical data quality management (DQM). CDW: common data warehouse; DB: database.

We established the definitions for each clinical data life cycle
stage by reviewing the literature (Table 1). The literature
included in the review often described the data life cycle for

improving hospital EHR quality, quality measurement, and
clinical decision support [32-36].

Table 1. Defining the life cycle of clinical data quality management.

ReferencesDefinitionLife cycle stage

[6,32,33,37]Defining data standards based on the direction of data and creating a clear strategy for
establishing quality management activities

Planning stage

[32,37-43]Considering the characteristics among data sets, collecting data, and proceeding with
overall data construction and management that reflect clinical attributes

Construction stage

[32,33,37,44,45]Conducting data quality assessments on the constructed data and reviewing them from
various angles and perspectives

Operation stage

[32,33,37,46]Sharing the outcomes of data quality validation, implementing data quality enhancement
activities, and recalibrating the overall data quality

Utilization stage

Planning Stage
In the planning stage of data quality management, key issues
such as the data to be generated and their documentation and
organization, storage and security, stewardship, and accessibility
for reuse and sharing are considered [47]. Developing a data
management plan should involve describing how data will be
handled throughout the life of the project and after completion
and establishing principles that are easy to implement [48].

Construction Stage
The construction stage involves quality control. It is also called
the big data life cycle stage [25] (Figure 1). This data life cycle
stage consists of 4 stages: data collection, data cleaning, data
labeling, and data learning. At each stage of the life cycle, the
tasks to be performed vary. For example, data quality control
standards must be established and reflected in the data collection
stage.

Operation Stage
Managing constructed data is the most active phase of data
quality management. When building quality data, quality control
must be implemented starting from the planning stage. However,
not all data are built with quality control in mind from the
planning stage. In data quality management, the operational
stage involves activities to diagnose and improve the quality of
the data loaded in data construction projects.

Utilization Stage
The main users of public medical data are public institutions
and research institutes. Data quality management organizations
must continuously implement improvements to provide
high-quality data by adhering to the requirements of both data
providers and consumers. Moreover, data must be continuously
and accurately managed to provide high-quality medical services
[9]. Accordingly, a support system must be institutionalized to
continuously communicate with researchers on the use of
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medical data, and a foundation such as medical data standards
must be established to ensure the uninterrupted provision of
high-quality data.

Proposed Data Framework Based on the Clinical Data
Life Cycle
In our literature review, we found one commonality: All stages
are interrelated and emphasize the need to manage data from a
holistic, life cycle perspective [26]. The plan-do-study-act
(PDSA) cycle, which was frequently mentioned in most of the
articles we reviewed, is primarily used for short-term processes,
such as data construction or operation [33,38,46]. Therefore,
the PDSA cycle, which is mainly used in the data construction
stage, could not be applied in our study. The clinical data life
cycle proposed in this study is designed to manage data
comprehensively from a governance perspective. It is structured
in a mutually organic manner, allowing for the reapplication of
improvements after EHR data planning, construction, and
secondary use. A set of procedures, such as the data framework,
provides an environment for researchers to understand data,
identify quality issues, and address them effectively [49]. As

data significantly influence research outcomes, they must
meaningfully be evaluated and managed throughout their life
cycle [30]. Some studies did not consider data from a life cycle
perspective [34,35,50-52]. Nevertheless, they considered the
ecological use of data. They also considered the impact of data
on hospital treatment processes [34,35]. Thus, data operations
are organically linked, reflecting the interplay between different
stages.

Dimensions of the Data Life Cycle and Clinical Data
Quality Management
The set of reviewed papers comprised 44 papers on data
framework, 32 papers on quality measures, 20 papers on quality
tools, and 9 papers on interviews (Figures 2 and 3; Multimedia
Appendix 1). Completeness was identified as the most
commonly used indicator, particularly in 94 papers (Table 2
and Table 3). Research using data quality dimensions can be
classified according to the stage of the clinical data life cycle,
with the greatest amount of research occurring in the planning
and implementation phase (Table 3).

Figure 2. Diagram of the literature review process for clinical data quality management.
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Figure 3. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) 2020 flow diagram.

Table 2. Definitions of the life cycle of clinical data quality management and dimensions of data quality.

SynonymsDefinitionDimension

Completeness, correctness, conformance, incom-
pleteness, consistency

Assessing the extent to which data have been fully constructed in ac-
cordance with their characteristics and intended design

Completeness

Accuracy, consistency, relevanceDegree of reliability in data values and the significance of the associated
information

Plausibility

Structure, standardizationThe extent to which data can be stored in accordance with their charac-
teristics based on standards

Concordance

Security, availability, confidentiality, representa-
tion, confidentiality, trustworthiness

The extent to which data are trustworthy and accessible only to autho-
rized users

Security

Currency, timeliness, currentnessThe extent to which data can be provided promptly when neededCurrency

Availability, manageability, variabilityThe degree to which data operation is flexible, providing a sufficient
and useful level of information that satisfies users

Interoperability
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Table 3. Life cycle of clinical data quality management and dimensions of data quality.

Utilization stage (n=72)Operation stage (n=95)Construction stage (n=99)Planning stage (n=69)Dimension

ArticlesMentions,

n (%)a
ArticlesMentions,

n (%)a
ArticlesMentions,

n (%)a
ArticlesMentions,

n (%)a

[7,16,18,19,22,25,32,43,49

,50,56,63,65-
67,75,78,84-87]

21 (19.6)[7,9,15

,19,25,32,34

,43,49,50,55-
57,59

,63,65,70,72

,75,76,78-85]

30 (28)[7,9,18

,19,25,32,39

,40,43

,45,53-77]

34 (31.8)[6,7,18,19,

25,32,33,43,45,53-
65]

22 (20.6)Complete-
ness
(n=107)

[7,11,16-19,25,32,43

,46,49,56,65,66,75,86,88,90]

19 (26.4)[7,9,11

,15,17,19,25,43,45

,46,49

,51,56,63,65,70,75

,76

,79-83,88,90,91]

26 (36.1)[7,9,11,17,19,22,25,43,45

,51,54-56,61,63-
66,68-70

,75,76,88,89]

25 (34.7)[6,7,11,17-19

,25,32,33,43

,45,51,54,56,61,63-
65,88]

19 (26.4)Plausibility
(n=72)

[7,16-19

,25,32,43,49,56,63

,65,67,75,85,86,90]

18 (22.2)[7,9,17,19,25

,32,43,44,49,51,56,57,59

,63,65,70

,75,76,79

,80,85,90]

23 (28.4)[7,9,17

,19,25,43-45

,51,55-57,59

,62,63,65,67

,70,75,76]

22 (27.2)[6,7,17-
19,25,32,33,43,45

,51,56,57,59,62,63,65]

18 (22.2)Concor-
dance
(n=81)

[16,17,19,25,32,63,86,87,90]9 (27.3)[17,19,25,51,63,79,90,91]7 (21.2)[17,19,25,45,51

,58,60,63,89,91]

9 (27.3)[17,19,25

,32,45,51,58

,60,63]

8 (24.2)Security
(n=33)

[11,16,17,32,43,57,63,67,85,86]9 (21.4)[11,15,17,43,55

,57,63,72,79,85,93]

10 (23.8)[11,15,17,43,52,55,57

,62,63,67,71,72,92,93]

14 (33.3)[33,43,45,52,54

,57,62,63,92]

9 (21.4)Currency
(n=42)

[17,32,35,36,46,63,75,86,90,94]10 (28.6)[17,35,36

,46,55

,63,74

,79

,80,94]

10 (28.6)[17,35,36,46,55

,63,74,79,80,94]

8 (22.9)[17,33,35,36,62,63,94]7 (20)Interoper-
ability
(n=35)

aDistribution of each dimension across the stages of the clinical data life cycle (planning, construction, operation, and utilization), calculated as a
proportion of each dimension’s total.

Completeness
Completeness was mainly used in the construction or operation
stage and was used as an indicator for EHR evaluation [66,67],
data quality system development [7,53,78], data recognition
[17], and comparative evaluation [50]. The related terms used
in the articles included correctness, conformance,
incompleteness, and consistency.

Plausibility
Plausibility was the second most frequently used indicator, with
72 references mentioning it. It was often used in data evaluation
during the operation phase of the data life cycle. It was mainly
mentioned in the literature on data tool development [54,55],
framework presentation [45,68], data measurement [69], and
data quality assessment [7,66,89].

Concordance
Similar to completeness and plausibility, concordance was
frequently mentioned in the construction and utilization stages.
Concordance can be considered an indicator that determines

whether the characteristics of different data are best expressed
and stored based on standards. Concordance was mentioned in
the studies that developed, experimented with, and evaluated
quality management tools [9,51,54,56,57,70,90]. The related
terms mentioned in the articles included structure and
standardization.

Security
As EHR data are sensitive, great attention must be paid to ethical
issues and data leakage. Therefore, the security of EHR data is
crucial. In contrast to the aforementioned 3 indicators, which
reflect the completeness of data, security was most frequently
mentioned in the construction and utilization stages. The related
terms mentioned in the articles included availability,
confidentiality, representation, and trustworthiness.

Currency
Currency was mentioned most often during the data construction
stage. In particular, the availability of data must be determined
during data construction. Having readily available data is critical
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for the research process. The terms representing currency
included timeliness.

Interoperability
The most cited limitation of EHR data is the difficulty with
linking data between hospitals. By combining and sharing data
already in use, more resources can be utilized. The indicator
representing this relation is interoperability. The literature
review in this study revealed a strong emphasis on
interoperability, but it was not mentioned in articles defining
other data quality indicators.

Discussion

Principal Findings
This study reviewed the existing literature, focusing on the
importance of quality management from the EHR data life cycle
perspective. Accordingly, an EHR data life cycle framework
was defined, and 6 quality indicators were identified.

Data quality ensures the validity of research findings and
provides information to demonstrate the appropriateness of
EHR data use [49]. In this study, we identified the requirements
for each stage of the data life cycle, including cycle-specific
objectives, tasks, and evaluation metrics, to determine the
validity of data. Data quality is a fundamental element for
determining whether data have been constructed for their
intended purpose [95]. Quality management must be applied at
every stage of data processing to ensure that all data are reliable
and appropriately handled [96].

The metrics identified in this study were frequently mentioned
in the literature. We mapped the categories proposed in this
study for currency and interoperability, which differ from the
indicators proposed in previous studies. An accurate definition
of these dimensions is essential for data quality. The definition
of completeness alone can vary the completeness ratio of data
depending on the type of data or the purpose for which quality
is defined [28,86]. Dimensions have been developed to clearly
define and automatically measure data [45]. Currency and
interoperability metrics are not entirely new. They were
mentioned repeatedly in various studies
[33,43,45,52,54,57,62,63,92]. Currency refers to information
about current data [63] and is primarily used for temporal
information when representing the lifetime of data [16].
Temporal factors exert a significant effect on research results.
In addition, currency should be considered when visualizing
data quality results [42].

This study proposes a total of 6 data quality dimensions based
on a comprehensive literature review. These indicators are not
universally applicable across all data sets; additional dimensions
may be warranted depending on specific conditions (Multimedia
Appendix 2). For instance, bias can emerge based on data
construction or the research environment. Addressing bias is
crucial and has been emphasized in numerous studies on data
quality [14,16,83]. In this regard, assessing task relevance is
vital to verify that the constructed data meet their intended
objectives and are effective for their purpose [45]. Furthermore,
if data are integrated from multiple sources rather than generated
from a single system, it is critical to evaluate consistency across

data sets using the variability dimension [57]. In clinical settings,
the validity and reliability of data are fundamental to the
development of safe and accurate predictive models [57]. It is
also necessary to assess usability to confirm that researchers in
clinical environments can use data both effectively and
efficiently [7,42] (Multimedia Appendix 3). Before using and
measuring any data quality dimension, the purpose and research
objectives of the data must be thoroughly understood, and the
indicators must be selected accordingly. Systematic data quality
assessments are essential at each phase of the data life cycle to
ensure comprehensive data utilization. Each dimension can play
a vital role in ensuring data accuracy, reliability, and efficiency,
thereby enhancing the reproducibility and validity of the
research. Developing a well-defined data quality plan minimizes
unnecessary processes and costs and directly enhances data
transparency and trustworthiness.

The majority of discussions on the quality of EHR data have
centered on 3 key areas: conformance, plausibility, and
completeness [6,42,49,70,86]. However, the actual quality of
data can vary significantly depending on the measurement
methods and management strategies used, due to factors such
as the type and volume of data, data construction environment,
characteristics of the disease, and type of system in which the
data are generated [75,94]. A substantial body of research has
proposed and developed a multitude of indicators. Through a
comprehensive review of the literature, we identified that
dimensions such as accuracy, consistency, completeness, and
currency are closely interrelated according to data
characteristics. Additionally, these indicators may vary in
relevance depending on the data life cycle stage. Many studies,
however, have overlooked these aspects. Recognizing the
interdependence between dimensions while accounting for the
unique characteristics of the data is crucial to establishing
high-quality data.

When ensuring effective data quality management, simplified
data guidelines that can be easily applied must be considered.
Data quality management frameworks and guidelines are being
developed in a data-specific manner [12,18,19,25,65]. From the
data life cycle perspective, data quality management must be
coordinated from a governance perspective throughout the entire
life cycle. Several different types of data exist. To actively
manage the quality of different data, more diverse data quality
management methodologies must be developed [97].
Meanwhile, ensuring that data are usable and consistent requires
clearly targeted and planned quality control procedures [48].
Regarding ensuring the scalability of data connections, quality
control for integrated data using standardized procedures should
be implemented from the planning stage [98].

In our study, we emphasized the importance of interoperability
in the use of EHR data. The use of EHR helps researchers
conduct their studies involving large amounts of data at a low
cost [99] and facilitates the analysis of health information from
thousands of individuals. Ideally, EHRs should be accurate and
complete because they contain all health records [100]; however,
EHR data face numerous quality issues [4,101]. In addition,
challenges arise from the use of different EHR systems across
hospitals and the heterogeneity of data, resulting in limited
interoperability. Limited interoperability and inconsistent data
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exchange across settings are significant barriers to quality
improvement [102]. The interoperability of EHRs with medical
data is becoming increasingly valuable because of its potential
to exponentially increase the availability of data or directly
impact the activation of research. EHR systems can efficiently
support data structuring and quality measurement results and
have a great impact on patients and their time [102].
Interoperability among EHR systems refers to the linking of
data, which improves data usability. Therefore, regulating the
data structure or transfer standards between systems is essential
to improve data quality and interoperability.

Considerable effort has been made to improve the quality of
EHRs. These efforts include the development of automated data
quality assessment systems [9,42,103], organization of quality
indicator events, and development of metrics. Data must be
sufficiently flexible to be used for multiple purposes. Moreover,
data must be managed according to user needs, and diagnoses
must be made based on the users’ purpose. When producing
high-quality data, the data must be thoroughly examined from
a data life cycle perspective, starting from data construction, to
ensure that data standards are well established and applied, data
are consistently secured, and errors are minimized [104].

Establishing criteria for data quality is critical because the data
sources for research questions represent a major determinant of
research outcomes. Several factors necessitate the establishment
of data quality standards. First, the types of data required vary
according to the research topic, and data types and structure are
significantly diverse. In addition, medical practices and health
care systems vary widely worldwide, and their differences can
affect the relevance of data to research questions [12]. Data
must be managed continuously and accurately to provide
high-quality medical services [9]. Consequently, the perspectives
for measuring the level of data quality must be defined, and the
criteria for what should be measured must be established [25].

Investing in EHR data quality management improves clinical
outcomes [34]. As hospital resources are limited, data
preprocessing and quality assessment must be automated to
avoid wasting resources. Many hospital researchers have focused
on automating data quality assessment [3,6,8,9,59,77,105].
However, automation across all data sets lacks a unified

standard, and different tools have been developed for different
data types and languages. Given the diverse criteria and forms
of EHR data, such approaches are not pragmatic [14]. Accurately
defining the domains and task ontologies for measuring data
quality in the automation process is critical [45,59]. Various
methodologies and quality criteria have been identified [29].
Nevertheless, flexible tools that consider interoperability must
be developed, and existing methodologies must be used to create
a unified automation tool [14].

Limitations
Our literature review has several limitations that need to be
considered. First, the literature selection was conducted solely
by the first author, which may introduce subjectivity to the
process and result in classifications that other reviewers might
not agree with. Although cross-review efforts were made, the
lack of a multireviewer approach may limit the generalizability
of the findings. Second, in this study, we conducted the literature
search using only one database. Due to the use of a single
source, there may be a risk of missing other relevant studies.
However, prior to conducting our study, we performed the same
search in other databases and observed similar results to those
obtained from PubMed, the database ultimately used in this
research. Third, the quality dimensions identified in this review,
derived solely from existing literature, have not been validated
by clinical experts. The absence of expert validation may limit
the practical applicability of these dimensions in clinical settings,
indicating a need for further expert review.

Conclusion
As the value of EHR data increases, the demand for high-quality
data also rises. Standardized quality management and
automation of data quality assessment are necessary to produce
high-quality data and improve their usability. This study focuses
on the secondary use of EHR data, reviews the existing
literature, and redefines quality management indicators from a
data life cycle perspective. As data quality assessment methods
based on the data life cycle perspective have not yet been
developed, future work should focus on developing data quality
assessment systems with an emphasis on standardized
frameworks and tools that consider the specific characteristics
of the data.
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