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Abstract

Background: Oura Ring is a wearable device that estimates ovulation dates using physiology data recorded from the finger.
Estimating the ovulation date can aid fertility management for conception or nonhormonal contraception and provides insights
into follicular and luteal phase lengths. Across the reproductive lifespan, changes in these phase lengths can serve as a biomarker
for reproductive health.

Objective: We assessed the strengths, weaknesses, and limitations of using physiology from the Oura Ring to estimate the
ovulation date. We compared performance across cycle length, cycle variability, and participant age. In each subgroup, we
compared the algorithm’s performance with the traditional calendar method, which estimates the ovulation date based on an
individual’s last period start date and average menstrual cycle length.

Methods: The study sample contained 1155 ovulatory menstrual cycles from 964 participants recruited from the Oura Ring
commercial database. Ovulation prediction kits served as a benchmark to evaluate the performance. The Fisher test was used to
determine an odds ratio to assess if ovulation detection rate significantly differed between methods or subgroups. The Mann-Whitney
U test was used to determine if the accuracy of the estimated ovulation date differed between the estimated and reference ovulation
dates.

Results: The physiology method detected 1113 (96.4%) of 1155 ovulations with an average error of 1.26 days, which was
significantly lower (U=904942.0, P<.001) than the calendar method’s average error of 3.44 days. The physiology method had
significantly better accuracy across all cycle lengths, cycle variability groups, and age groups compared with the calendar method
(P<.001). The physiology method detected fewer ovulations in short cycles (odds ratio 3.56, 95% CI 1.65-8.06; P=.008) but did
not differ between typical and long or abnormally long cycles. Abnormally long cycle lengths were associated with decreased
accuracy (U=22,383, P=.03), with a mean absolute error of 1.7 (SEM .09) days compared with 1.18 (SEM .02) days. The
physiology method was not associated with differences in accuracy across age or typical cycle variability, while the calendar
method performed significantly worse in participants with irregular cycles (U=21,643, P<.001).

Conclusions: The physiology method demonstrated superior accuracy over the calendar method, with approximately 3-fold
improvement. Calendar-based fertility tracking could be used as a backup in cases of insufficient physiology data but should be
used with caution, particularly for individuals with irregular menstrual cycles. Our analyses suggest the physiology method can
reliably estimate ovulation dates for adults aged 18-52 years, across a variety of cycle lengths, and in users with regular or irregular
cycles. This method may be used as a tool to improve fertile window estimation, which can aid in conceiving or preventing
pregnancies. This method also offers a low-effort solution for follicular and luteal phase length tracking, which are key biomarkers
for reproductive health.

(J Med Internet Res 2025;27:e60667) doi: 10.2196/60667
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Introduction

With advances in wearable technology, an increasing number
of women are leveraging continuous, automated sensor data to
track ovulation [1]. Ovulation tracking serves multiple purposes;
notably, it can be used to delineate the end of the fertile window
to optimize the timing of intercourse for conception or
contraception. Studies have shown that ovulation tracking can
increase the likelihood of conception by approximately 40%
for those trying to conceive [2-5]. Conversely, fertility
awareness–based methods for contraception, although less
effective than hormonal contraception methods [6-8], is
increasing popular as the use of hormonal contraception declines
[9-12]. Beyond fertility, the ovulation date, alongside period
start dates, can be used to measure a cycle’s follicular and luteal
lengths. These phase lengths have been identified as biomarkers
of menstrual health [13], with early research suggesting they
may provide insights into fecundity [14], systemic inflammation
[15], endometrial development [16], and ovarian aging [17].

Approximately 75% of individuals attempting to conceive use
some method to estimate their ovulation date; these methods
include cervical mucus monitoring, detecting a rise in basal
body temperature (BBT), and feeling for changes in the cervix
[18]. These methods vary in accuracy across subgroups
including cycle regularity, compliance, and interpretation [19].
Among these, cervical mucus tracking is associated with the
highest reported accuracy, with 48% to 76% of ovulations
correctly estimated within 1 day of the reference ovulation
[19,20]. Approximately 21% of women trying to conceive use
the BBT method [18], which, although less precise than cervical
mucus tracking at predicting imminent ovulation, has been
found to accurately detect that ovulation has occurred [21-23].
All these methods—cervical mucus tracking, feeling for changes
in the cervix, and BBT—require significant user knowledge
and active participation. In contrast, wearable-based ovulation
tracking may provide a more convenient alternative for those
seeking a less labor-intensive approach to monitoring ovulation
[1].

Previous research has shown that wearables can detect
ovulation-related physiological changes. These include
wrist-worn devices like Ava [24], an in-ear thermometer [25],
vaginal biosensors [26,27], and Oura Ring [28]. While
temperature remains the primary continuously measured
physiological metric for ovulation detection, other metrics such
as heart rate, breath rate, and heart rate variability have also
shown predictive value [1]. Studies indicate that intraoral and
ear-based temperature methods are generally less accurate for
ovulation detection compared with wrist and ring-based
wearables [29], which provide more stable temperature readings,
especially when measuring distal temperature during sleep
[6,24,30]. The primary objective of these wearable technologies,
thus far, has been to support conception or offer nonhormonal
contraception by using changes in ovulation-related physiology
to identify fertile days in a user’s cycle.

We assess the performance of the physiology method using
Oura Ring of ovulation estimation against the traditional
calendar method [31]. We hypothesized that the physiology

method would outperform the calendar method in participants
with high cycle variability, and the physiology method’s
ovulation detection rate would decrease with participant age,
reflecting age-related declines in progesterone levels and
consequently luteal temperature rise magnitude [32]. Ultimately,
we aim to review the strengths, weaknesses, and limitations of
using Oura Ring physiology for ovulation date estimation.

Methods

Reference Ovulation Dates
Oura Ring commercial users can choose to self-report the results
of home luteinizing hormone (LH) tests through the Oura Ring
app. Positive LH test results served as the benchmark reference
for algorithm performance testing. The reference ovulation date
was defined as the day after the last positive LH test in the
menstrual cycle [19,33].

Data Inclusion and Exclusion Criteria
Participants were selected for the study if they self-reported a
positive LH test result between January 1, 2019, and April 15,
2024. Inclusion criteria required the positive LH test date to be
logged within a complete menstrual cycle, such that menses
start and end dates were both logged. The self-reported menses
and reference LH test dates were required to demarcate
biologically plausible cycle phase lengths. Acceptable ranges
were 10-90 days for the follicular phase and 8-20 days for the
luteal phase [33]. If a single user had multiple complete
menstrual cycles containing an LH test reference, these were
included as long as the algorithm input window did not overlap.
These inclusion criteria resulted in 121 users with 2 or more
observations, for a total of 1209 ovulatory menstrual cycles
from 1051 unique users.

We excluded menstrual cycles from the analysis based on
insufficient physiology data, hormone use, or self-reported
pregnancy. Insufficient data were defined as more than 40% of
missing physiology data in the last 60 days. Hormone use was
self-reported by a questionnaire, where participants were asked
to report any hormone intake that could influence ovulation,
including hormonal birth control, hormone replacement therapy,
or fertility medications. Of these exclusion criteria, 47 cycles
were excluded due to insufficient physiology data, 6 due to
hormone use, and 1 due to pregnancy. The resulting dataset
contained 1155 ovulatory cycles from 1007 unique participants.

Ovulation Detection Algorithms

Calendar Method
We estimated each cycle’s ovulation date using the calendar
method as a comparison with the physiology method results.
The calendar method estimates the ovulation date by subtracting
the typical luteal length from the user’s typical cycle length.
The population mean is used as the typical luteal length, that
is, 12 days [33,34]. One additional day is subtracted because
we define the ovulation date as the last follicular day, which is
standard in the literature [33,34]. The user’s typical cycle length
is defined here as the median cycle length across the last 6
months, with outliers shorter than 12 days or greater than 90
days excluded.
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Physiology Method
The physiology method is an algorithm written in Python that
uses signal processing techniques to analyze continuously
recorded finger temperature from Oura Ring to estimate the
date of the most recent ovulation event. The ring contains
negative temperature coefficient thermistors, which are used to
measure skin temperature. Users are instructed to wear Oura
Ring on a finger where the ring feels tight but not
uncomfortable.

The algorithm was developed by assessing a separate training
dataset of 30,000 menstrual cycles, which contained no
overlapping users or menstrual cycles as the test set presented
here. The algorithm aims to identify a maintained rise in skin
temperature by around 0.3-0.7 °C, which has shown to be a
robust postovulatory change following the regression of the
dominant follicle [32]. The algorithm was tuned using a grid
search across a set of parameters on the training dataset to
optimize for detecting the rise in temperature following

ovulation, as determined based on visual inspection. The
physiology algorithm first normalizes the dataset by centering
it around 0. Then, outliers were rejected, defined as >2 SD from
the population average. Any missing or rejected data were then
imputed using a linear fill. A Butterworth bandpass filter was
then applied, with the low pass, high pass, and order set as
parameters to be tuned in the grid search. Finally, hysteresis
thresholding was used to determine the likely follicular and
luteal phase days of the cycle, the parameters of which were
also tuned in the grid search.

Algorithm postprocessing included combining the
temperature-estimated luteal phase with self-reported period
start logs. The algorithm rejects ovulation detections if they
resulted in biologically implausible phase lengths [33,35], that
is, luteal phases outside the range of 7-17 days or follicular
phases outside the range of 10-90 days. In these cases, the
physiology algorithm labels these cases as failures to detect
ovulation. For details, refer to Figure 1.

Figure 1. The physiology algorithm pipeline.

Statistical Analysis

Detection Rate
The ovulation detection rate was defined as the proportion of
ovulatory cycles in which the algorithm correctly identified an
ovulation. We calculated the 95% CI for the detection rate using
the z-score–based margin of error for proportions [36]. To assess
statistical differences in the ovulation detection rate across
subgroups, we used the Fisher exact test. This nonparametric
statistical method is well-suited for comparing proportion data,
especially in datasets where subgroups vary in sample size [37].
For each subgroup of interest, such as cycle variation, we
designated a reference group and used the Fisher exact test to
compare the detection rates between the reference group with
all other groups. For example, participants with irregular cycles
were compared with participants with regular cycles as a
reference group. Adjustments for multiple comparisons were
made using the Bonferroni correction [38].

Accuracy
The ovulation date error was defined as the number of days
between the algorithm’s estimated ovulation date and the
reference ovulation date. The reference ovulation date was

determined as the day following the last positive or peak LH
surge reported in that cycle. To quantify the typical accuracy,
we calculated the mean absolute error (MAE). The 95% CI on
this mean was estimated using 1.96 times the SEM [39]. To
evaluate statistical differences in ovulation date error across
various subgroups, we used the Mann-Whitney U test. This test
is preferred for providing a robust analysis with minimal
influence from outliers and nonnormal distributions, in contrast
to parametric methods. For each subgroup of interest, such as
cycle variation, one group is designated as the reference group
to be compared against all other groups. For example, we
compare participants with irregular cycles to participants with
regular cycles as a reference group. Adjustments for multiple
comparisons were made using a Bonferroni correction [38].

Subgroups

Cycle Length
Detection rate and accuracy were broken down by cycle length
to compare ovulation estimation performance in menstrual
cycles of various lengths. Cycle length was defined as the
number of days between 2 menses onsets. The cycle length was
classified as abnormal if it was shorter than 21 days or longer
than 35 days [40]. Of the remaining cycle lengths, we defined
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a “short” cycle as lasting between 21-26 days, a “typical” cycle
as lasting between 27-31 days, and a “long” cycle as lasting
between 32-35 days (Table 1). To statistically compare ovulation

detection performance metrics across groups, we compared
performance metrics in cycles of typical length with all other
cycle length groups.

Table 1. Cycle length.

Calendar methodPhysiology methodCycles
(n=1155), n
(%)

Days, nCycle length

Within 2 days
(%)

MAE, mean
(SEM)

Within 2 days
(%)

MAEa, mean
(SEM)

Detection rate (%),
mean (SEM)

—————b2 (<1)≤21Abnormally short

51.72.84 (0.21)84.81.34 (.09)93.2 (3.7)176 (15.2)22-26Short

513.02 (0.13)901.18 (.04)98.0 (1.1)662 (57.3)27-31Medium

55.63.57 (0.28)881.26 (.08)97.3 (2.1)223 (19.3)32-35Long

357.32 (1.07)771.70 (.18)90 (6)92 (8)≥36Abnormally long

aMAE: mean absolute error.
bNot applicable.

Cycle Variability
Detection rate and accuracy were broken down by a participant’s
cycle variability to compare performance in these groups. Cycle
variability was defined as the median of the absolute value of
cycle length differences between consecutive cycles, across the
past 6 months. Abnormal cycle variation is defined as cycle

variation larger than 7 days. Of the normal cycle variation, we
defined a “typical” cycle variation as between 0-3 days and a
“moderately irregular” cycle variation as between 4-7 days
(Table 2). To statistically compare ovulation detection
performance metrics across groups, we compared the typical
cycle variability group with all other groups.

Table 2. Cycle variability.

Calendar methodPhysiology methodCycles (n=975),
n (%)

Variation (days)Cycle variability

Within 2
days (%)

MAE, mean
(SEM)

Within 2
days (%)

MAEa, mean
(SEM)

Detection rate (%),
mean (SEM)

55.92.51 (0.08)88.31.23 (0.05)97.5 (1.2)648 (67)0-3Typical

43.83.48 (0.22)90.71.23 (0.08)96.0 (2.7)210 (21)4-7Moderately Irregular

32.56.63 (0.65)81.81.48 (0.14)94.0 (4.3)117 (12)>7Abnormally Irregular

aMAE: mean absolute error.

Age
Age was binned into 4 groups. Specifically, our groups consisted
of 18-26 years, 27-34 years, 35-43 years, and ≥44 years (Table

3). Because the group with the most participants fell into “27-34
years” age group, this was designated as the reference group
for statistical analysis.

Table 3. Age.

Calendar methodPhysiology methodCycles (n=1155), n
(%)

Age group (years)

Within 2 days
(%)

MAE, mean (SEM)Within 2 days
(%)

MAEa, mean (SEM)Detection rate (%), mean
(SEM)

533.64 (0.48)86.91.35 (0.11)97.0 (2.8)134 (11.6)18-26

55.43.39 (0.48)87.11.29 (0.05)96.6 (1.5)592 (51.3)27-34

453.46 (0.21)89.11.17 (0.06)96.0 (2.0)373 (32.3)35-43

343.30 (0.31)911.19 (0.13)95 (6)56 (5)≥44

aMAE: mean absolute error.
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Ethical Considerations

Data from adult Oura Ring users were selected from the Oura
Ring commercial database. Oura Health Oy (Oulu, Finland)
collected the data in accordance with their terms of use and
privacy policy. By agreeing to the privacy policy, the Oura Ring
users had also agreed to the use of their data to perform analysis.
The data analysis study protocol was reviewed and approved
by ŌURA’s science and legal team, which is responsible for
ethics and regulatory adherence for studies. The study was
deemed exempt as the analysis used aggregate data without
individual identifiers. All data that were made available were
deidentified and are anonymous. Additional protections included
allowing data access only upon request for the purpose of
ensuring the analyses presented are accurate and complete.
Compensation for study participation was not provided.

Results

Participants
The study sample consisted of 964 female participants.
Participants had a mean age of 32.8 (SD 5.5) years and a mean
self-reported cycle length of 29.1 (SD 3.4) days.

Algorithm Performance
The physiology method from Oura Ring correctly detected 1113
(96.4%) of 1155 ovulatory cycles observed (95% CI
95.3-97.4%). The estimated ovulation date MAE was 1.26 (SEM
0.02) days. Of the total 1155 ovulatory cycles, 1097 (95%) of
ovulations were detected within 3 days, 1015 (87.9%) were
detected within 2 days, and 785 (68%) were detected within 1
day. By comparison, the calendar method’s ovulation MAE was
3.44 (SEM 0.07) days. In total, the calendar method detected
768 (66.5%) of ovulations within 3 days, 585 (50.7%) within
2 days, and 371 (32.2%) within 1 day. The physiology method
estimated ovulation with significantly improved accuracy
compared with the calendar method (U1154=904942, P<.001,
Cliff δ=0.46). Refer to Figure 2 for a breakdown of the
algorithm’s performance by cycle length, cycle variability, and
age.

Figure 2. Ovulation estimation performance metrics across subgroups.

Cycle Length
Ovulation detection rate was impacted by cycle length. The
Fisher test for detection rates suggests the odds of detecting
ovulation were 3.56 times higher in medium cycle lengths
compared with short cycle lengths (odds ratio 3.56, 95% CI
1.65-8.06, P=.008). Long (P=.99) and abnormally long (P=.59)
cycle lengths did not statistically differ relative to medium cycle
lengths. Accuracy did not significantly differ across regular
cycle lengths (short, medium, or long) when using the
physiology method (short vs medium: P=.41; long vs medium:
P=.99). However, abnormally long cycle lengths ≥36 days)
were associated with increased error (U=22,383, P=.03,

δ=−0.17) with an MAE of 1.7 (SEM .09) days compared with
1.18 (SEM .02) days. The calendar method also performed
significantly worse in abnormally long cycles (U=21,184,
P<.001, δ=−0.30), with an MAE of 7.32 (SEM .54) days
compared with 3.02 (SEM .07) days.

Cycle Variability
Neither detection rate nor accuracy differed significantly based
on cycle variability when using the physiology method (for
detection rate, moderate vs regular: P=.33 and irregular vs
regular: P=.07; for accuracy, moderate vs regular: P=.99 and
irregular vs regular: P=.15). However, the calendar method was
associated with significantly worse accuracy for moderately
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irregular cyclers (U=54,093.5, P<.001, δ=−0.17) and even worse
accuracy in irregular cycles (U=21,643, P<.001, δ=−0.43) when
compared with typical cycle variability.

Age
Neither the physiology method nor the calendar method was
associated with differences across age in ovulation detection
rate or estimated ovulation date error.

Discussion

Principal Findings
Finger temperature collected from Oura Ring was formulated
as a physiology-based method of estimating the ovulation date.
To assess the performance of this algorithm, we compare the
physiology method with the calendar method in 1155 ovulatory
cycles. The physiology method correctly detected ovulation in
1113 (96.4%) of 1155 cycles with an MAE of 1.26 days. This
method was significantly more precise than the calendar method,
which exhibited an MAE of 3.44 days, representing a 2.7-fold
increase in error. In practical applications, Oura Ring primarily
uses the physiology-based method to estimate a cycle’s
ovulation date. However, the calendar method is used as a
secondary approach when the physiology-based method cannot
estimate the ovulation date, for example, in instances of
excessive missing data. Thus, a thorough understanding of the
strengths and limitations of both methods is critical. We also
assessed if subgroups including age, cycle variation, and cycle
length impact the accuracy of ovulation date estimation.

Age did not influence the accuracy of estimated ovulation dates
within the assessed age range of 18-52 years, using either
physiology-based or calendar methods. This finding aligns with
the existing literature suggesting that age should not significantly
affect the performance of the calendar method, as the luteal
phase length remains consistent across age groups, and the
calendar method estimates ovulation day by subtracting the
luteal phase length from the user’s typical cycle length [31].
Although it was hypothesized that the physiology method may
be less accurate across age due to variations in the magnitude
of the postovulatory temperature rise [32,41], our analysis
indicates that age did not significantly impact performance.
However, ovulation estimation using Oura Ring has not yet
been tested in individuals younger than 18 years and thus
accuracy should not be assumed for adolescents.

Cycle variability significantly impacted the performance of the
calendar method, but not the physiology method. Specifically,
participants with irregular cycles experienced poorer
performance using the calendar method, with an MAE of 6.63
days. This is a 2.6-fold decrease in accuracy relative to regular
cyclers using the calendar method, and a 4.5-fold decrease in
accuracy relative to the physiology-based method in irregular
cyclers. When framing this as a window of days where the
ovulation is 95% likely to have occurred, in irregular cyclers,
that window is reduced from 14.2 days to 3.4 days. The superior
accuracy of the physiology method likely stems from its
independence from follicular phase length, which predominantly
drives cycle variability and thus increases error in the calendar
method [33,42].

Cycle length significantly influences ovulation estimation
performance. Using the calendar method, longer cycles were
associated with decreased accuracy, such that the MAE reaches
7.32 days in abnormally long cycles (ie, cycles exceeding 36
days in length). With the physiology method, statistical
differences are evident both in the ovulation detection rate and
the accuracy of the estimated ovulation date. Specifically, in
cycles shorter than 26 days, which constitute 15% of our sample,
the detection rate falls to 93%, compared with 98% in cycles
of typical length. Furthermore, accuracy diminishes in
abnormally long cycles with an MAE of 1.7 days versus 1.18
days in typical cycles. Consequently, users with shorter cycles
may experience fewer detected ovulations, while those with
abnormally long cycles may experience slightly worse accuracy
when using the physiology method. Nevertheless, across all
cycle categories, the physiology method significantly
outperforms the calendar method.

Comparison With Previous Work
Compared with wrist-worn devices with reported ovulation
detection rates between 54% to 86% [43,44], Oura Ring
exhibited superior performance, detecting 96.4% of ovulations.
Oura Ring accuracy was similar to that of cervical mucus
tracking, with 68% of estimations within 1 day of the reference
ovulation date compared with 48% to 76% [19,20]. Oura Ring
achieved favorable accuracy to BBT, which has a reported 20%
detection rate [19,23], with an accuracy of 22% of ovulations
correctly falling within 1 day of the reference ovulation [22,23].
Notably, BBT shows a marked decrease in performance in
irregular cycles with a 34% drop in accuracy compared with
regular cycles [45], while Oura Ring accuracy remained stable.
Direct comparisons between studies should be approached with
caution, as they are based on datasets with varying compositions
of participant subgroups known to influence accuracy; notably,
most studies exclude irregular cycles and cycles of abnormal
length for performance analysis. The primary objective of this
study is to identify conditions that may hinder the performance
of Oura Ring ovulation estimation, rather than directly
comparing it with other devices.

Limitations
The primary limitation of this study is that our dataset consisted
solely of ovulatory cycles and thus we cannot address ovulation
estimation performance in anovulatory cycles. Without an
estimate of the false alarm rate, a lack of detected ovulation by
the algorithm should not be interpreted as indicative of an
anovulatory cycle. The algorithm is not intended for use in
individuals who frequently experience anovulatory cycles or
who do not ovulate due to factors such as hormonal
contraceptives.

Another limitation of this study is that our reference ovulation
date is based on self-reported positive LH surge from
participants using ovulation predictor kits (OPKs). While OPKs
impose a lower participant burden, the gold standard for
ovulation reference is a transvaginal ultrasound, which offers
higher accuracy [19]. Given that our approach for collecting
LH test results relied on self-report, the ovulation reference
labels used here are susceptible to inaccuracies introduced by
human error and subjective reporting biases. This approach also
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limits our sample to individuals who both use an Oura Ring and
opt to take OPKs, and thus our cohort may not be representative
of the broader population with menstrual cycles. Furthermore,
the absence of data on negative OPK results precludes our ability
to assess anovulatory cycles. In addition, it is not uncommon
for an OPK to return a positive LH surge across multiple days;
therefore, if participants logged only 1 positive LH surge and
did not test on subsequent days, our reference ovulation day
might be prematurely assigned.

A further limitation is that we did not collect data on whether
participants had a history of menstrual cycle disorders. This is
of particular concern in the 12% of participants with irregular
cycles, who may have various underlying causes. A potential
factor that could impact the accuracy of Oura Ring ovulation
estimation is luteal phase deficiency (LPD), characterized by
insufficient progesterone exposure [46]. LPD could influence
the magnitude of the postovulatory temperature rise and thus
impair the algorithm’s ability to estimate ovulation dates. Until
future research is conducted, the estimated ovulation dates
provided by the Oura Ring should be interpreted with caution
in individuals with menstrual cycle disorders, particularly
conditions associated with LPD, such as polycystic ovary
syndrome [47,48], thyroid and prolactin disorders [49], and
during in vitro fertilization cycles [50].

Conclusions
Overall, the results suggest that Oura Ring offers significantly
improved accuracy over the traditional calendar method for
estimating ovulation date. Furthermore, the physiology method
is associated with relatively robust accuracy across various ages,
cycle variability, and cycle lengths, with only small drops in
detecting rate for shorter cycles (<26 days) and slight drops in
accuracy in abnormally long cycles (>36 days). This is
significantly improved compared with the calendar method,
which was associated with large accuracy decreases in users
with long cycles and irregular cycles. Based on previous reports,
Oura Ring ovulation estimation appears to be outperforming
other wearables and BBT-based ovulation estimation methods
and on par with the cervical-mucus tracking method, although
those results should be compared cautiously given that the
performance was measured on different datasets. Furthermore,
we posit that widespread ovulation tracking could have broad
use beyond its use in conception and nonhormonal
contraception. Specifically, continuous monitoring of follicular
and luteal phase lengths throughout the reproductive lifespan
could benefit a wider demographic interested in menstrual
cycle–related biomarkers. These biomarkers hold promise for
the early detection of disorders related to the menstrual cycle
and fertility.

Data Availability
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Abbreviations
BBT: basal body temperature
LH: luteinizing hormone
LPD: luteal phase deficiency
MAE: mean absolute error
OPK: ovulation predictor kit
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