
Original Paper

Prediction of Reactivation After Antivascular Endothelial Growth
Factor Monotherapy for Retinopathy of Prematurity: Multimodal
Machine Learning Model Study

Rong Wu1*, MD, PhD; Yu Zhang1*, MD, PhD; Peijie Huang2*, MD; Yiying Xie2, MD; Jianxun Wang3, MD, PhD;

Shuangyong Wang4, MD, PhD; Qiuxia Lin1, MD; Yichen Bai1, MD; Songfu Feng1, MD, PhD; Nian Cai2, MD, PhD;

Xiaohe Lu1, MD, PhD
1Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
2School of Information Engineering, Guangdong University of Technology, Guangzhou, China
3Department of Pediatric Ophthalmology, Guangzhou Children’s Hospital and Guangzhou Women and Children’s Medical Center, Guangzhou Medical
University, Guangzhou, China
4Department of Ophthalmology, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
*these authors contributed equally

Corresponding Author:
Xiaohe Lu, MD, PhD
Department of Ophthalmology
Zhujiang Hospital
Southern Medical University
No 253 Gongyedadao Middle Road
Guangzhou, 510260
China
Phone: 86 15002000613
Email: luxh63@163.com

Abstract

Background: Retinopathy of prematurity (ROP) is the leading preventable cause of childhood blindness. A timely intravitreal
injection of antivascular endothelial growth factor (anti-VEGF) is required to prevent retinal detachment with consequent vision
impairment and loss. However, anti-VEGF has been reported to be associated with ROP reactivation. Therefore, an accurate
prediction of reactivation after treatment is urgently needed.

Objective: To develop and validate prediction models for reactivation after anti-VEGF intravitreal injection in infants with
ROP using multimodal machine learning algorithms.

Methods: Infants with ROP undergoing anti-VEGF treatment were recruited from 3 hospitals, and conventional machine
learning, deep learning, and fusion models were constructed. The areas under the curve (AUCs), accuracy, sensitivity, and
specificity were used to show the performances of the prediction models.

Results: A total of 239 cases with anti-VEGF treatment were recruited, including 90 (37.66%) with reactivation and 149
(62.34%) nonreactivation cases. The AUCs for the conventional machine learning model were 0.806 and 0.805 in the internal
validation and test groups, respectively. The average AUC, sensitivity, and specificity in the test for the deep learning model
were 0.787, 0.800, and 0.570, respectively. The specificity, AUC, and sensitivity for the fusion model were 0.686, 0.822, and
0.800 in a test, separately.

Conclusions: We constructed 3 prediction models for ROP reactivation. The fusion model achieved the best performance. Using
this prediction model, we could optimize strategies for treating ROP in infants and develop better screening plans after treatment.

(J Med Internet Res 2025;27:e60367) doi: 10.2196/60367
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Introduction

Retinopathy of prematurity (ROP) is characterized by retinal
ischemia-hypoxia in preterm infants. Worldwide, it is a leading
cause of vision loss and blindness in childhood [1-3]. More than
20,000 infants experience blindness, and an estimated 12,300
infants have different levels of visual impairment due to ROP
[4]. A dysregulation of vascular endothelial growth factor
(VEGF) has been proven to play an important role in the
development of ROP [5,6]. Laser photocoagulation and
anti-VEGF agents are the mainstay treatments for ROP. The
clinical application of intravitreal injection (IVI) with anti-VEGF
agents has recently increased due to their fewer side effects and
more advantages, including a lower risk of future myopia, better
peripheral vision, and faster regression of acute-phase ROP
[7-10]. However, ROP reactivation after anti-VEGF therapy is
still a concern. Given the short half-life of these agents, the
beneficial effects of anti-VEGF might be transient, potentially
increasing the risk of ROP reactivation. Previous studies
evaluating the clinical outcomes of anti-VEGF agents for ROP
have reported reactivation rates between 6.8% and 64% after
treatment [8,9,11-13].

Early detection and timely treatment upon reactivation is critical
for infants with ROP who undergo anti-VEGF therapy. Previous
studies on ROP reactivation after anti-VEGF therapy have
mainly focused on the risk factors of reactivation. Factors related
to ocular conditions include zone I ROP, severe retinal
neovascularization, preretinal hemorrhage, and aggressive ROP
[12,14]. Neonatal factors include low gestational age, low birth
weight, early postmenstrual age (PMA) at initial treatment, and
low Apgar scores [12]. Maternal factors include multiple births
[12]. Other risk factors related to neonatal interventions include
oxygen requirement before or after treatment and a longer
duration of hospitalization [9]. Prediction models that can
identify infants with a high risk of ROP reactivation are needed
in clinical practice.

Artificial intelligence has recently optimized medical practice
[15-17]. Artificial intelligence has been mainly applied to ROP
diagnosis and prediction based on imaging [17-19]. To our
knowledge, studies on ROP reactivation after treatment are very
limited, and there is no successful prediction model for clinical
application. Machine learning is a subset of artificial intelligence
and includes conventional machine learning and deep learning
[20-22]. In this study, we developed prediction models for
reactivation after anti-VEGF treatment in infants with ROP
using machine learning algorithms based on clinical risk factors
and retinal images before treatment.

Methods

Ethical Considerations
This study was approved by the study hospitals’ institutional
ethics committees (2022-KY-143) and adhered to the tenets of
the Declaration of Helsinki. All parents or guardians of the
recruited infants provided written informed consent prior to
participation. Data were anonymized and deidentified before
analysis.

Study Population
We collected data retrospectively on infants who received
anti-VEGF monotherapy for ROP requiring treatment between
April 2016 and November 2022 at Hospital 1 (Zhujiang
Hospital, Southern Medical University), Hospital 2 (The Third
Affiliated Hospital, Guangzhou Medical University), and
Hospital 3 (Guangzhou Children’s Hospital and Guangzhou
Women and Children’s Medical Center), all in Guangzhou,
China. Infants with incomplete data or any other ocular diseases
besides ROP were excluded. Additionally, infants who
underwent anti-VEGF therapy as adjunctive treatment before
planned vitrectomy or received follow-up examinations for less
than 12 months were excluded.

Ocular Examinations
During each ROP screening examination, retinal photographs
were captured using the RetCam Ⅲ digital fundus camera
(Natus). The diagnosis of ROP and the indication for its
treatment were based on the International Classification of ROP
Revisited and the Early Treatment for ROP study, respectively.
Treatment-requiring ROP included threshold disease, stage 4
or 5 ROP, and type 1 or aggressive ROP. Ocular examinations
were conducted before and on days 1, 7, 14, and 28 after
anti-VEGF therapy, and either biweekly or monthly depending
on the ocular findings and systemic conditions. A reactivation
of ROP was defined as the recurrence of acute phase features
including a range of signs from a new demarcation line to
reactivated stage 3 with disease, vascular dilation, tortuosity,
or new/recurrent neovascularization that required further
treatment [13].

IVI of Anti-VEGF
All parents or guardians of the infants were fully informed of
the efficacy and possible complications prior to IVI of
conbercept, and they provided written informed consent. The
anti-VEGF treatment was performed as monotherapy for
treatment-naive patients. Anti-VEGF agents were injected
intravitreally at 1.5 mm posterior to the limbus with a 30-gauge
needle under topical aesthesia. Topical tobramycin
dexamethasone was administered for 3 days after the injection.
All operations were done by a trained pediatric ophthalmologist
(author SF).

Clinical Risk Factors
Based on previous studies and clinical experience, the potential
clinical risk factors of ROP reactivation extracted from
electronic medical records included maternal factors, neonatal
factors, ocular conditions, laboratory factors, and neonatal
interventions. Specifically, maternal factors of interest included
maternal age, gestational hypertension, gestational diabetes
mellitus, premature rupture of membranes, cesarean delivery,
and in vitro fertilization and embryo transfer. Neonatal factors
included gestational age, birth weight, PMA at initial ROP
treatment, fetal distress, sex, small for gestational age, Apgar
scores (1 and 5 min), multiple births, asphyxia, sepsis,
respiratory distress syndrome, bronchopulmonary dysplasia,
pneumonia, intraventricular hemorrhage, necrotizing
enterocolitis, hypoxic-ischemic encephalopathy, atrial septal
defect, patent foramen ovale, patent ductus arteriosus, and
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hyperbilirubinemia. Ocular conditions included zone I ROP,
preretinal hemorrhage, and aggressive ROP. The hemoglobin
concentration before treatment was included among the
laboratory factors. Finally, neonatal interventions included
mechanical ventilation and oxygen therapy (before treatment)
[9,11,12].

In the data processing stage, any missing data were handled
according to the type of variable. For continuous data, we
imputed missing values by calculating the mean within each
category based on the label (0 or 1). For discrete data, we used
the mode within each category to fill in missing values. This
approach ensured that the values imputed were representative
of their respective categories, thus minimizing bias in the
analysis.

Image Collection and Case Labeling
All retinal photographs were captured using the commercial
RetCam camera. Retinal photographs of poor photographic
quality were excluded by 2 experienced ophthalmologists
(Authors SF and RW). Since the prediction for ROP reactivation
would be performed independently on each infant rather than
each retinal photograph, retinal photographs of both eyes from
the same infant were labeled as a single case. All cases were
labeled independently by 2 clinical ophthalmologists (SF and
RW). Based on the ocular findings after anti-VEGF therapy,
each case was annotated reactivation or nonreactivation. If ROP
reactivation occurred in one of the eyes, the case would be
labeled as reactivation.

The κ was 0.81 for annotation of ROP reactivation, indicating
good agreement between the 2 ophthalmologists in labeling.
Moreover, the labels were further confirmed by a senior retinal
specialist (author XL) to generate a final annotation. These
annotations were used as ground-truth labels in the development
and validation of the prediction models for ROP reactivation.

Development and Validation of the Prediction Models

Conventional Machine Learning Model
An illustration of the conventional machine learning prediction
model is presented in Figure 1. The importance ranking of the
clinical risk factors for ROP reactivation was assessed, and
prediction models based on clinical risk factors were developed
using conventional machine learning algorithms. The process

was implemented with Python (version 3.9; Python Software
Foundation).

During the data preprocessing stage, we employed 2 filling
strategies. For discrete data, we used mean filling followed by
rounding; for continuous data, we used mean filling.
Subsequently, the continuous data underwent standardization,
transforming the data into a standard normal distribution with
a mean of 0 (SD 1), ensuring uniform scales across different
features. This helped mitigate potential model biases arising
from scale differences, enhancing overall model robustness and
performance.

In this study, we employed a comprehensive approach to assess
the feature importance in predictive models, utilizing 5 different
algorithms: random forest (RF), Adaptive Boosting (AdaBoost),
Extreme Gradient Boosting (XGBoost), Categorical Boosting
(CatBoost), and logistic regression (LR). Table S1 in Multimedia
Appendix 1 contains the parameter details. The method involves
ranking the feature importance or weights for each algorithm,
whereas for LR, feature importance was determined by the
absolute values of the weights. Subsequently, these rankings
were visualized using scatter plots, with each feature represented
along the x-axis and its importance rank along the y-axis. This
comprehensive visualization offered a comparative analysis of
feature contributions across different algorithms, providing
insights into the robustness and consistency of the feature
importance.

We conducted an in-depth investigation into the impact of
varying the number of selected features (N) on the predictive
model performance, employing 5 distinct algorithms. We
systematically varied the number of selected features, choosing
from the set (5, 10, 15, 20, 25, and 30), and assessed the
resulting model performance by calculating the area under the
curve (AUC) for each model across different feature subsets.

We conducted a comprehensive evaluation of the 5 different
predictive models, with a specific focus on their receiver
operating characteristic (ROC) curves. The models were trained
and evaluated using all features on a standardized data set. The
emphasis of this research lies in presenting the performance of
different models through ROC curves, offering crucial insights
into their predictive capabilities. Furthermore, we conducted
10 iterations of training for each of the 5 distinct predictive
models and computed their average AUC values on the
corresponding validation sets, along with their respective SDs.
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Figure 1. Illustration of the proposed algorithmic pipeline. CatBoost: Categorical Boosting.

Deep Learning Model
Figure 1 presents an illustration of the deep learning prediction
model. Retinal photographs captured before anti-VEGF therapy
of infants with ROP were obtained to develop a prediction model
using deep learning algorithms. ResNet-50, a deep convolutional
neural network classifier pretrained on the ImageNet database,
was fine-tuned with our data set to predict ROP reactivation.
The process was implemented with Python (version 3.9) and
PyTorch (version 1.11.0).

We designed a series of image preprocessing methods beginning
with feature enhancement and noise suppression using median
filtering. This technique was chosen for its effectiveness in
removing isolated noise pixels while maintaining the clarity of
important features such as blood vessel edges. Subsequently,
the images were converted to grayscale for processing to reduce
computational complexity.

For the training set, we employed a series of preprocessing
steps. These included resizing the images to 224 × 224 pixels,
introducing RandAugment for random data augmentation, and
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applying both random horizontal and vertical flips. These
measures aimed to increase the diversity of the data, enhancing
the model's robustness. For the internal validation and test sets,
we consistently resized the images to 224 × 224 pixels and
transformed them into tensors. This ensured uniformity in the
model's input during the validation process. This diversified
preprocessing approach helped the model adapt to the distinct
characteristics of each data set, ultimately improving its
generalization performance.

We employed a pretrained ResNet-50 model and iteratively
trained it on the image training set, incorporating image
preprocessing and data augmentation techniques to enhance the
model's generalization performance. We adopted the
cross-entropy loss function, whereby the model learned to adjust
its parameters by minimizing the cross-entropy loss, enabling
it to more accurately predict the samples’ categories. During
the training process, we utilized the Adam optimizer and a
cosine annealing learning rate scheduler, conducting a total of
100 epochs. At the end of each epoch, we evaluated the model's
performance on both an internal validation set and an external
test set. Throughout the training, we also applied the Exponential
Moving Average (EMA) technique to stabilize the model
parameters and improve the overall model generalization.

We constructed a data set in which each case consisted of
multiple medical images and randomly selected 5 images per
patient for the experiment. When performing case-level
predictions, we treated the model's output as the probability
score for the entire case. By averaging the probability scores
from multiple images within each case, we computed the final
case-level prediction results.

To enhance the visualization and interpretability of the ROP
reactivation prediction, we applied the Gradient-Weighted Class
Activation Mapping (Grad-CAM) technique to generate heat
maps of key regions. This technique highlights areas crucial to
ROP reactivation prediction by analyzing feature weights in
specific network layers, such as layer 4 of ResNet50. This
approach allows us to intuitively identify retinal features that
significantly contribute to the prediction outcome.

Fusion Model
An illustration of the prediction model combining the
conventional machine learning model and the deep learning
model is presented in Figure 1. Among the 5 conventional
machine learning prediction models, the model based on the
CatBoost algorithm exhibited the best predictive performance.
We weighed and averaged the probability outputs of the optimal
conventional machine learning model and the deep learning
model to obtain the final prediction result. The process was
implemented with Python (version 3.9) and PyTorch (version
1.11.0).

First, we modeled the basic clinical features of patients using
a risk factor model, considering traditional risk factors such as
maternal age and infant weight. Subsequently, we employed a
deep learning model (ResNet-50) to process retinal images of
newborns, capturing more comprehensive information. The
deep learning model, by learning features from images, can
capture complex patterns that traditional models find
challenging.

To fully leverage the strengths of both models, we treated the
5 probability scores generated by the deep learning model for
each image as equal in weight and assigned the output of the
risk factor model a weight equivalent to that of 4 images, thereby
producing a more accurate and robust prediction result. We
obtained the deep learning probability scores for each sample
through independent training on the training set, simultaneously
predicting risk factor probabilities using the risk factor model.
Finally, we linearly combined the probability scores from both
models to derive the ultimate fusion result.

Statistical Analysis
Statistical analyses were performed using R software (version
3.0.2; R Core Team). Categorical variables were expressed as
numbers and percentages and analyzed using chi-square tests.
If any cell number was less than 5, the Fisher exact test was
applied. Continuous variables conforming to normal distribution
were expressed as mean and SD and compared using the
independent 2-sample t test. If a normal distribution was not
confirmed, the median and interquartile ranges were used, and
the Mann-Whitney U test was performed. Breakdowns of the
predictive labels with reference to the ground-truth labels were
depicted as confusion matrices, which were used to calculate
the accuracy, sensitivity, and specificity of the prediction models
with the 3 training schemes using Python (version 3.7.0). P＜.05
was considered statistically significant.

Results

Demographics of the Study Groups
The study group finally included 239 infants. The infant
recruitment flow is presented in Figure 2. The detailed
demographic characteristics of the enrolled infants are
summarized in Table 1. Among the 179 included infants of
Hospital 1, the mean gestational age was 28.87 (SD 2.46) weeks,
and the mean birth weight was 1.18 (SD 0.35) kg. Among the
60 infants enrolled from Hospital 2 and Hospital 3, the mean
gestational age was 28.30 (SD 1.90) weeks, and the mean birth
weight was 1.09 (SD 0.28) kg. There was no significant
difference between the demographic characteristics of the 2
cohorts (all P>.05).
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Figure 2. The flow chart of patient cohorts. ROP: retinopathy of prematurity.
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Table 1. Demographic characteristics of all the enrolled infants.

P valueTest

(n=60)

Training

(n=179)

All infants

(N=239)

Variables

Maternal factors

.7330.95 (6.03)30.65 (5.08)30.72 (5.32)Maternal age (years), mean (SD)

.9110 (16.67)31 (17.32)41 (17.15)In vitro fertilization and embryo transfer, n (%)

.496 (10)24(13.41)30 (12.55)Gestational hypertension, n (%)

.849 (15)25 (13.97)34 (14.23)Gestational diabetes mellitus, n (%)

.9126 (43.34)79 (44.13)105 (43.93)Cesarean delivery, n (%)

.4811 (17.74)26 (14.53)37 (15.48)Premature rupture of membranes, n (%)

Neonatal factors

.0728.30 (1.90)28.87 (2.46)28.66 (2.38)Gestational age (weeks), mean (SD)

.051.09 (0.28)1.18 (0.351.15 (0.34)Birth weight (kg), mean (SD)

.3712 (20)46 (25.70)58 (24.27)Multiple gestations, n (%)

.759 (15)30 (16.76)39 (16.32)Small for gestational age, n (%)

.434 (6.67)18 (10.06)22 (9.20)Intrauterine distress, n (%)

.7836.38 (2.25)36.29 (2.31)36.31 (2.29)Postmenstrual age at initial ROPa treatment (weeks),
mean (SD)

.2237 (61.67)94 (52.51)131 (54.81)Male sex, n (%)

.677.25 (2.01)7.38 (2.07)7.35 (2.05)Apgar scores at 1 minute, mean (SD)

.988.58 (1.29)8.62 (1.43)8.58 (1.39)Apgar scores at 5 minutes, mean (SD)

.6726 (43.33)72 (40.2)98 (41)Asphyxia, n (%)

.1649 (81.67)130 (72.63)179 (75.24)Respiratory distress syndrome, n (%)

.4739 (65)107 (59.78)146 (61.09)Bronchopulmonary dysplasia, n (%)

.5718 (30)47 (26.26)65 (27.20)Sepsis, n (%)

.5510 (16.67)27 (15.08)37 (15.48)Necrotizing enterocolitis, n (%)

.9727 (45)80 (44.69)107 (44.76)Intraventricular hemorrhage, n (%)

.7213 (21.67)35 (19.55)48 (20.08)Hypoxic-ischemic encephalopathy, n (%)

.4220 (33.33)70 (39.11)90 (37.66)Patent ductus arteriosus, n (%)

.3712 (20)27 (15.08)39 (16.32)Atrial septal defect, n (%)

.4944 (73.33)139 (77.65)183 (76.57)Patent foramen ovale, n (%)

.8038 (63.33)110 (61.45)148 (61.92)Hyperbilirubinemia, n (%)

.5837 (61.67)103 (57.54)140 (58.58)Pneumonia, n (%)

.85125.60 (29.38)124.85 (25.78)125.04 (26.67)Hemoglobin concentration (g/L), mean (SD)

.8954 (90)160 (89.39)214 (89.54)Mechanical ventilation, n (%)

.6458 (96.67)175 (97.77)234 (97.91)Oxygen therapy (before treatment), n (%)

Ocular conditions

.1221 (35)44 (24.58)65 (27.20)Zone 1 ROP, n (%)

.689 (15)31 (17.32)40 (16.74)Aggressive ROP, n (%)

.1722(36.67)49(27.37)71(29.71)Retinal hemorrhage, n (%)

aROP: retinopathy of prematurity.
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Predictive Performance of the Conventional Machine
Learning Models
Using all clinical risk factors, the ROC curves and AUC values
of the models with different algorithms are compared in Figure
S1 in Multimedia Appendix 1. CatBoost had the best
performance, with a mean AUC of 0.812 (SD 0.012), as shown

in Table 2. Through comprehensive visualization offered by a
comparative analysis of feature contributions across different
algorithms, the top 20 features were ranked. The top 5 predictors
were gestational age, birth weight, PMA at the initial IVI
treatment, pneumonia, and hemoglobin concentration (Figure
S2 in Multimedia Appendix 1).

Table 2. Predictive performances of the 5 models.

AUCa, mean (SD)Algorithm

0.808 (0.008)AdaBoost

0.803 (0.020)Random Forest

0.780 (0.005)XGBoostb

0.812 (0.012)CatBoostc

0.720 (0.005)Logistic regression

aAUC: area under the curve.
bXGBoost: Extreme Gradient Boosting.
cCatBoost: Categorical Boosting.

To evaluate the relationship between the number of variables
and predictive performance, the top 5, 10, 15, 20, 25, and 30
variables were introduced to 5 algorithms successively. The
performance of most models plateaued when 20 variables were
introduced. When more than 20 variables were introduced, the
performance of CatBoost continued to improve slightly with
the addition of variables, while the performance of RF and LR
began to deteriorate (Figure S3 in Multimedia Appendix 1).

Finally, the CatBoost prediction model with the top 20 variables
had the best performance. The AUCs, sensitivities, and
specificities of the CatBoost prediction model were 0.806, 0.800,
and 0.750 for the internal validation, respectively, and 0.805,
0.800, and 0.657 for the test, respectively (Table 3 and Figures
3 and 4). The confusion matrix is presented in Figure S4 in
Multimedia Appendix 1.

Table 3. Performance comparison of the different models.

AUCdSPEcSENbACCaModel

0.8060.7500.8000.771CMLMe_ valf

0.8050.6570.8000.716CMLM_ test

0.7670.8000.7330.771DLMg_ val

0.7870.5700.8000.667DLM_ test

0.8230.7000.8000.742FMh_ val

0.8220.6860.8000.733FM_ test

aACC: accuracy.
bSEN: sensitivity.
cSPE: specificity.
dAUC: area under the curve.
eCMLM: conventional machine learning model.
fVal: internal validation.
gDLM: deep learning model.
hFM: fusion model.
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Figure 3. Receiver operating characteristic (ROC) curves of 3 models in the internal validation cohort. CMLM: conventional machine learning model;
DLM: deep learning model; FM: fusion model.

Figure 4. Receiver operating characteristic (ROC) curves of 3 models in the test cohort. CMLM: conventional machine learning model; DLM: deep
learning model; FM: fusion model.

Predictive Performance of the Deep Learning Model
The predictive performances of the deep learning model based
on retinal photographs captured before anti-VEGF therapy in
internal validation and test are summarized in Table 3 and
Figures 3 and 4. The AUCs, sensitivities, and specificities of
the deep learning prediction model were 0.767, 0.733, and 0.800

for the internal validation, respectively, and 0.787, 0.800, and
0.570 for the test, respectively. To improve the interpretability
of the model, we used Grad-CAM to visualize the key regions
in retinal photographs highly associated with ROP reactivation.
Several representative examples of retinal photographs with
accompanying saliency maps are shown in Figure 5. The optic
and the retinal vessels were mainly used to predict reactivation.
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The confusion matrix is presented in Figure S5 in Multimedia Appendix 1.

Figure 5. Original retinal photographs and saliency maps of reactivation and without reactivation cases from Grad-CAM.

Predictive Performance of the Fusion Model
Since the CatBoost model had the best predictive performance
among the 5 conventional machine learning models, it was
deployed to be combined with the deep learning model. The
AUCs of the fusion prediction model were 0.823 for the internal
validation and 0.822 for the test. The confusion matrix is
presented in Figure S6 in Multimedia Appendix 1.

Discussion

Principal Findings
Given the risk of ROP reactivation after anti-VEGF therapy
and the crucial need for timely intervention, this study
established prediction models for ROP reactivation after
anti-VEGF treatment using machine learning algorithms based
on pretreatment data, including clinical risk factors and retinal
images. The machine learning prediction models achieved
promising performance and were externally validated in a group
of infants from different hospitals.

The ROP reactivation prediction models can optimize
ophthalmologists’ clinical decision-making before anti-VEGF
therapy. Fluorescein angiography under anesthesia and, if
necessary, laser treatment for residual areas of nonperfusion
have been recommended for infants receiving anti-VEGF
treatment who are at high risk of reactivation [23,24]. In
addition, more frequent retinal examinations are needed after
anti-VEGF treatment. Meanwhile, a small number of infants
predicted to be at low risk of ROP reactivation experienced
reactivation, and treatment was repeated in this study. Since it
is not recommended to miss even one case of ROP reactivation
due to its devastating visual consequences, we do not
recommend discontinuing regular follow-up examinations after
treating infants at low risk of ROP reactivation.

We employed 5 different algorithms to select the machine
learning model with the best predictive performance. Most of
them achieved high performance, among which the CatBoost
model exhibited optimal performance in the internal validation

and test. CatBoost is a modification of the gradient-boosted
decision tree algorithm, which is compatible with categorical
features [25]. In previous studies, the CatBoost algorithm has
shown satisfactory performance in predicting malaria, Parkinson
disease, perioperative major adverse cardiovascular events, and
in-hospital mortality [26-29]. In our study, the CatBoost
algorithm was combined with the greedy algorithm to identify
the most predictive combination of clinical risk factors for ROP
reactivation. The greedy algorithm is an algorithmic paradigm
that follows a problem-solving approach to realize the locally
optimal choice at each stage. PMA at the initial IVI treatment
was significantly different between the non-ROP reactivation
and ROP reactivation groups in this study (non-ROP
reactivation: mean 36.93, SD 2.10 weeks versus ROP
reactivation: mean 35.15, SD 2.21 weeks; P<.05). Similarly,
Lyu et al [9] found that early PMA at the initial IVI treatment
was a significant independent risk factor for ROP reactivation
[12]. Infants with earlier PMA at initial treatment may
experience worse systemic conditions and severe ROP that
necessitate timely treatment. The presence of pneumonia implies
more severe systemic hypoxia that can exacerbate ocular
hypoxia and increase the risk of neovascularization [12]. Longer
oxygen treatment for pneumonia may also increase the risk of
ROP reactivation after treatment with IVI.

Recently, deep learning technology has been applied to
accurately diagnose and predict ROP and its severity based on
retinal photographs [18,19,30-32]. We previously described the
use of a deep learning system to predict ROP and its severity
before 45 weeks PMA [19]. Retinal status is important for
predicting ROP progression and reactivation. Previous studies
have demonstrated that early vascular dilation and tortuosity
are insufficient to predict ROP. In addition, the extent of
temporal retinal blood vessel immaturity at the first screening
has a prognostic significance in the early course of ROP [19].
The ROP vascular severity score derived from a deep learning
classifier based on retinal photographs captured within 4 weeks
before and after treatment and at the time of treatment could
consistently reflect disease progression and posttreatment
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regression of ROP. The ROP vascular severity score at the time
of initial treatment and progression rate after initial screening
were associated with ROP reactivation, indicating that the
features of retinal photographs before initial treatment may
predict ROP reactivation [10]. Although the ROP vascular
severity score can help monitor ROP over time, without
guidance on optimal cut points, clinicians might not be able to
use the vascular severity score for ROP management [10]. In
this study, retinal photographs captured before the initial
anti-VEGF therapy were analyzed using deep learning
algorithms and showed promising predictive value for ROP
reactivation. The optic disc and the areas around the optic disc
and retinal vessels may be the potential regions for ROP
reactivation,

Furthermore, we integrated the prediction model based on retinal
photographs and the optimal model based on clinical risk factors.
The fusion model achieved the best performance for predicting
ROP reactivation, suggesting that clinical information and
biomarkers from retinal photographs play important roles in
ROP reactivation modeling. With the development of artificial
intelligence, more studies are combining image features with
clinical information. Coyner et al [33] successfully improved
the specificity of the ROP prediction model by adding retinal
photograph features. The model combining gestational age with
vascular severity score was the best-performing model. The
breast cancer recurrence model using hematoxylin–eosin-stained
images and clinical information accurately assessed the risk of
recurrence [34]. Eilts et al [10] reported that retinal photographs
before and after treatment were predictive for ROP reactivation
after ranibizumab injection. Their study evaluated the potential
role of an artificial intelligence–derived screening method in
predicting ROP reactivation after anti-VEGF treatment.
However, their study had some limitations, the main one being
the small sample size, as only 19 infants were included.
Moreover, only posterior retinal photographs captured from

RetCam were analyzed, potentially missing the value from
peripheral retinal photographs. On the other hand, in this study,
we collected more cases and captured retinal photographs from
different angles.

Study Limitations
Our study had several limitations. First, the sample size was
relatively small. Machine learning models perform better when
trained using large-scale data sets. In addition, the
generalizability of the prediction models needs to be validated
in prospective multiple-center data sets. Second, this study was
conducted in infants receiving IVI of conbercept, whereas
reactivation rates may vary with different anti-VEGF agents
and laser photocoagulation. Infants treated with other anti-VEGF
agents and laser photocoagulation as the initial treatment for
ROP should be included in future studies. Third, due to this
study’s retrospective design, we could not obtain other potential
predictive factors, such as posttreatment risk factors. Fourth,
the retrospective design may limit the amount and quality of
the collected data. A limitation of this model architecture is that
it does not have an end-to-end design, which can lead to error
accumulation. The errors in the output of each model may be
amplified during the weighted averaging, affecting the final
prediction results. One potential improvement could be to
optimize the model through end-to-end joint training, using an
ensemble learning framework or neural network to automatically
adjust the weights and reduce error accumulation.

Conclusion
In conclusion, we successfully developed and validated machine
learning prediction models based on clinical risk factors and
pretreatment retinal photographs for ROP reactivation. The
promising results of the prediction models might aid in the early
detection of ROP reactivation and decision-making processes
in clinical practice.
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