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Abstract

Background: Despite the rapid growth of research in artificial intelligence/machine learning (AI/ML), little is known about
how often study results are disclosed years after study completion.

Objective: We aimed to estimate the proportion of AI/ML research that reported results through ClinicalTrials.gov or
peer-reviewed publications indexed in PubMed or Scopus.

Methods: Using data from the Clinical Trials Transformation Initiative Aggregate Analysis of ClinicalTrials.gov, we identified
studies initiated and completed between January 2010 and December 2023 that contained AI/ML-specific terms in the official
title, brief summary, interventions, conditions, detailed descriptions, primary outcomes, or keywords. For 842 completed studies,
we searched PubMed and Scopus for publications containing study identifiers and AI/ML-specific terms in relevant fields, such
as the title, abstract, and keywords. We calculated disclosure rates within 3 years of study completion and median times to
disclosure—from the “primary completion date” to the “results first posted date” on ClinicalTrials.gov or the earliest date of
journal publication.

Results: Of 842 completed studies (n=357 interventional; n=485 observational), 5.5% (46/842) disclosed results on
ClinicalTrials.gov, 13.9% (117/842) in journal publications, and 17.7% (149/842) through either route within 3 years of completion.
Higher disclosure rates were observed for trials: 10.4% (37/357) on ClinicalTrials.gov, 19.3% (69/357) in journal publications,
and 26.1% (93/357) through either route. Randomized controlled trials had even higher disclosure rates: 11.3% (23/203) on
ClinicalTrials.gov, 24.6% (50/203) in journal publications, and 32% (65/203) through either route. Nevertheless, most study
findings (82.3%; 693/842) remained undisclosed 3 years after study completion. Trials using randomization (vs nonrandomized)
or masking (vs open label) had higher disclosure rates and shorter times to disclosure. Most trials (85%; 305/357) had sample
sizes of ≤1000, yet larger trials (n>1000) had higher publication rates (30.8%; 16/52) than smaller trials (n≤1000) (17.4%; 53/305).
Hospitals (12.4%; 42/340), academia (15.1%; 39/259), and industry (13.7%; 20/146) published the most. High-income countries
accounted for 82.4% (89/108) of all published studies. Of studies with disclosed results, the median times to report through
ClinicalTrials.gov and in journal publications were 505 days (IQR 399-676) and 407 days (IQR 257-674), respectively. Open-label
trials were common (60%; 214/357). Single-center designs were prevalent in both trials (83.3%; 290/348) and observational
studies (82.3%; 377/458).

Conclusions: For over 80% of AI/ML studies completed during 2010-2023, study findings remained undisclosed even 3 years
after study completion, raising questions about the representativeness of publicly available evidence. While methodological rigor
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was generally associated with higher publication rates, the predominance of single-center designs and high-income countries may
limit the generalizability of the results currently accessible.

(J Med Internet Res 2025;27:e60148) doi: 10.2196/60148
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Introduction

The number of studies on artificial intelligence/machine learning
(AI/ML) has surged in recent years, exceeding prior expectations
[1]. The growth of AI/ML research in health care continues to
gain momentum, driven by its potential to enable early detection
of serious conditions in resource-constrained settings or facilitate
timely identification of patient deterioration that might otherwise
go unnoticed, to name a few. However, publicly available data
are highly heterogeneous, including promotional claims,
forward-looking statements, white papers, and preprints. It is
often unclear what data underpin the claims made for AI/ML
tools, whether regulated, nonregulated, or nonproprietary.

Weak publication records in AI/ML research have been
highlighted [2,3], and even when AI/ML research results are
available in peer-reviewed journals, they were found to be
poorly reported [4,5]; lacking transparency, hindering
replicability [6]; involving “spin” and hype by overinflating
models’ predictive abilities [7]; or being at high risk of bias
[8,9]. These challenges complicate the interpretation of
published results and make it difficult to determine whether
new findings ultimately provide tangible benefits to patients.

As AI/ML research continues to proliferate, so do systematic
reviews and meta-analyses, which presuppose “all relevant
evidence” as their foundation. However, this principle is
undermined when underreporting is pervasive. Underreporting
can lead to biased effect estimates and compromise the
diagnostic or prognostic performance of AI/ML, on which
clinical decision-making depends. After all, systematic reviews
can only reflect the results accessible—a portion of the total
research conducted. Lock and Wells [10] have deemed
underreporting of research a form of both scientific and ethical
misconduct, as it not only leads to biased and imprecise effect
estimates but also breaches implied contracts with study
participants, who contribute with the expectation of advancing
knowledge [11].

The underreporting of clinical trial results has been well
documented, long before the emergence of AI/ML. For example,
a 2003 study in Spain revealed that fewer than one-third (31%;
38/123) of clinical trials approved by an ethics committee at a
major hospital had results published in peer-reviewed journals
within 3 years of study completion [12]. Numerous studies using
the ClinicalTrials.gov database have provided further evidence
since [13-19]. This enables us to compare the disclosure rates
of AI/ML trials with those previously reported for non-AI/ML
trials registered on ClinicalTrials.gov.

Finally, AI’s impact on health equity is also extensively debated.
Some argue that access to the very factors driving AI in health
care, such as electronic health records and computing power,
may exacerbate existing health care disparities and perpetuate
inequities in who benefits most from AI [20]. Certain population
groups—demographic, geographic, or economic —can be
disproportionately overrepresented in clinical AI/ML research.

This study examines (1) the proportion and patterns of public
disclosure of AI/ML research results through ClinicalTrials.gov
and peer-reviewed publications indexed in PubMed or Scopus,
and (2) whether disclosure rates vary according to key study
characteristics, including those related to population
representation, such as geographic region and gross national
income.

Methods

Data Source
We used ClinicalTrials.gov, a trial registry and results database,
and sourced data from the Clinical Trials Transformation
Initiative Aggregate Analysis of ClinicalTrials.gov (CTTI
AACT) [21], which allows open access to the complete set of
studies registered in ClinicalTrials.gov, including additional
fields that are not readily available in direct exports from
ClinicalTrials.gov. The CTTI AACT data dictionary is publicly
accessible [22]. A static version of the CTTI AACT database
was downloaded for analysis on February 6, 2024, via
PostgreSQL, as previously described [23]. We identified studies
that initiated and completed between January 2010 and
December 2023 and contained AI/ML-specific terms in the
official title, detailed description, brief summary, interventions,
conditions, primary outcomes, and keywords. These terms could
have appeared in studies where AI/ML was used either as an
intervention or a method. A total of 842 AI/ML studies were
completed by the end of 2023. The search strategies are provided
in Multimedia Appendix 1, Table S1. The study flow diagram
is provided in Multimedia Appendix 2, Figure S1. Detailed
methods on data extraction, including SQL codes, are available
in Multimedia Appendix 3.

AI/ML Publications Linked to ClinicalTrials.gov
Identifiers (NCT Numbers)
NCT numbers are unique study identifiers assigned by
ClinicalTrials.gov. To identify studies with corresponding
journal publications, we searched PubMed and Scopus for these
identifiers using each database’s application programming
interface (API). In PubMed, we searched for NCT numbers in
the titles, abstracts, and “trial registration” fields, while in
Scopus, we searched the titles and abstracts. Additionally, we
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accessed “publication” data on ClinicalTrials.gov using the
“reference_type” field in the AACT database. Details on the
APIs used for PubMed and Scopus are provided in Multimedia
Appendix 3.

Since multiple publications may exist under the same NCT, and
not all are related to AI/ML, we included only those that
contained AI/ML-specific terms in the title, abstract, keywords,
or Medical Subject Headings (MeSH) fields in PubMed. In
Scopus, AI/ML terms were searched in the titles and abstracts.

To capture articles likely to be the direct study output, we
excluded nonrelevant article types (eg, protocols, reviews,
meta-analyses) and those published before primary completion
dates. ClinicalTrials.gov defines the primary completion date
as the date on which data collection is completed for all primary
outcomes [24].

Main Outcomes and Measures
After identifying eligible articles, we determined the proportion
of AI/ML studies that disclosed results within 3 years of the
primary completion date, either on ClinicalTrials.gov or in
journal publications (the number of studies with disclosed results
divided by the number of completed studies). We focused on
disclosures via ClinicalTrials.gov or peer-reviewed publications
(not preprints), as these are typically searched for systematic
reviews and meta-analyses.

For studies with disclosed results, we also calculated the median
time from the primary completion date to the disclosure date
along with the IQR. The disclosure date was defined as either
the “results first posted date” recorded on ClinicalTrials.gov or
the date of the earliest journal publication linked to the NCT.
If a study had multiple publications, only the earliest publication
date was used. Each NCT with at least one publication was
counted as disclosed.

All variables were derived from ClinicalTrials.gov. The variable
on countries (study location) was categorized according to the
World Bank’s gross national income–based classification: low
income (≤US $1135), lower-middle income (US $1136 to
$4465), upper-middle income (US $4466 to $13,845), or high
income (≥US $13,846) [25]. On lead sponsor, those labeled
“other” were reassigned into hospital/clinic, academia, industry,

government, and nonprofit organization based on lead sponsor
names.

Details on the data extraction are provided in Multimedia
Appendix 3.

Statistical Analysis
Data were summarized descriptively: count, percentage, and
the median with the IQR. Categorical variables are presented
as counts and percentages within 3 years of the primary
completion date. Tabulations exclude missing values (ie, n=842
if a variable had no missing values).

Ethics Approval and Reporting Guidelines
Ethics approval was not required for this study because only
publicly available data were analyzed. This study followed the
Strengthening the Reporting of Observational Studies in
Epidemiology (STROBE) reporting guidelines [26].

Results

Overview of Completed Studies on AI/ML
Of 842 completed studies (n=357 interventional; n=485
observational), only 5.5% (46/842) disclosed results on
ClinicalTrials.gov, 13.9% (117/842) in journal publications,
and 17.7% (149/842) through either route within 3 years of
completion (Multimedia Appendix 2, Figure S1).

The disclosure rates were higher among trials only: 10.4%
(37/357) on ClinicalTrials.gov, 19.3% (69/357) in journal
publications, and 26.1% (93/357) through either route. Rates
among randomized controlled trials (RCTs) were even higher:
11.3% (23/203) on ClinicalTrials.gov, 24.6% (50/203) in journal
publications, and 32% (65/203) through either route.

Among studies with disclosed results, the median reporting
times were 505 days (IQR 399-676) on ClinicalTrials.gov and
407 days (IQR 257-674) in journal publications.

Figure 1 shows the trend in studies started each year, completed
studies, and studies that reported results within 3 years of study
completion. Despite a surge in new studies each year, studies
that disclosed results through either route remained scarce.
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Figure 1. Studies initiated (“started”), studies completed (“completed”), and completed studies with results reported either on ClinicalTrials.gov or in
journal publications within 3 years of completion (“disclosed within 3 years”). Despite a surge in new studies each year, the number of studies reporting
results through either route remained scarce.

Result Disclosure Rates and Time to Disclosure by
Study Characteristics
Table 1 shows reporting rates stratified by the primary
completion year. The reporting rates on ClinicalTrials.gov
remained low over time. However, from 2018 to 2020, there
was a modest increase in publication rates within 3 years of
completion, and the median time to publication decreased from
approximately 2 years (723 days) to 1 year (385 days). The IQR
also decreased from 1166 days in 2018 to 279 in 2020. Before

2018, there were too few AI/ML publications to allow
meaningful interpretation, and 2021-2023 was not assessable
because the 3-year grace period had not passed as of our data
cutoff on December 31, 2023.

Table 2 presents disclosure rates and times stratified by various
study characteristics.

Disclosure rates and their timing varied by study design and
setting (Table 2), as summarized below.
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Table 1. Results disclosure rates and the time to disclosure, stratified by primary completion year.

Time to journal publicationb (days),
median (IQR)

Time to CTG postingb (days),
median (IQR)

Journal publication
≤3 years, n (%)

CTGa posting
≤3 years, n (%)

Completed
studies, n

Primary completion
year

——c1 (100)0 (0)12010

——0 (0)0 (0)22011

——1 (33)0 (0)32012

——0 (0)0 (0)32013

——0 (0)0 (0)72014

1611 (1100-2122)—1 (11)0 (0)92015

487 (415-1049)1026 (938-1113)2 (10)1 (5)202016

820 (586-1077)917 (806-953)4 (16)4 (16)252017

723 (366-1532)538 (512-586)5 (9)4 (7)552018

681 (339-954)611 (433-821)14 (17)6 (7)822019

385 (274-553)427 (288-526)24 (22)8 (7)1092020

aCTG: ClinicalTrials.gov.
bReflects all studies that reported results (including those disclosed after 3 years of completion).
cNot applicable.
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Table 2. Disclosure rates and the time to disclosure by study characteristics. Tabulations exclude missing values (ie, n=842 if no missing values).

Time to journal publicationb

(days), median (IQR)
Time to CTG postingb

(days), median (IQR)

Journal publication
≤3 years, n (%)

CTGa posting
≤3 years, n (%)

Completed
studies, n

Study characteristics

407 (257-674)505 (399-676)117 (13.9)46 (5.5)842All completed

Study type (n=842)

368 (272-624)485 (397-574)69 (19.3)37 (10.4)357Inverventional

429 (253-701)722 (526-871)48 (9.9)9 (1.9)485Observational

Randomization (interventional; n=357)

357 (273-565)485 (399-565)50 (24.6)23 (11.3)203Randomized

549 (262-780)466 (398-593)19 (12.3)37 (24)154Nonrandomized

Masking (interventional; n=357)

474 (297-672)485 (397-575)37 (17.3)23 (10.7)214Open label

303 (261-405)562 (455-734)16 (21.1)4 (5.3)76Single blind

335 (215-658)486 (363-548)16 (23.9)10 (14.9)67Double, triple, quadruple
blind

Study center (interventional; n=348)

373 (274-616)495 (399-641)55 (19)28 (9.7)290Single center

308 (218-698)443 (404-494)10 (17.2)8 (13.8)58Multicenter

Study center (observational; n=458)

427 (252-681)690 (506-834)35 (9.3)8 (2.1)377Single center

426 (327-529)—c10 (12.3)0 (0)81Multicenter

Enrollment (interventional; n=357)

343 (272-624)427 (397-648)28 (15.5)19 (10.5)181≤100

373 (252-560)490 (418-583)25 (20.2)11 (8.9)124101-1000

594 (334-743)462 (442-465)10 (32.3)3 (9.7)311001-5000

413 (279-597)479 (358-537)6 (28.6)4 (19)21>5000

Enrollment (observational; n=485)

289 (231-423)794 (627-863)17 (11.7)4 (2.8)145≤100

542 (386-777)638 (526-835)21 (10.2)5 (2.4)206101-1000

392 (246-459)—9 (11)0 (0)821001-5000

1282 (944-1745)—1 (1.9)0 (0)52>5000

Time perspective (observationald; n=468)

386 (246-628)754 (546-892)25 (10.7)6 (2.6)233Prospective

457 (362-714)690 (527-787)14 (8.5)3 (1.8)164Retrospective

427 (333-532)—9 (12.7)0 (0)71Cross-sectional

Primary purpose: top 4 (n=221)

349 (309-521)505 (467-634)11 (15.9)9 (13)69Treatment

430 (282-747)555 (454-671)24 (25.3)7 (7.4)95Diagnostic

188 (94-411)433 (322-550)5 (17.2)7 (24.1)29Prevention

293 (215-565)400 (189-424)8 (28.6)5 (17.9)28Health services research

Lead sponsor: top 5 (n=807)

407 (274-674)463 (323-540)42 (12.4)4 (1.2)340Hospital

402 (273-624)485 (412-618)39 (15.1)22 (8.5)259Academia

398 (224-681)651 (318-808)20 (13.7)10 (6.8)146Industry
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Time to journal publicationb

(days), median (IQR)
Time to CTG postingb

(days), median (IQR)

Journal publication
≤3 years, n (%)

CTGa posting
≤3 years, n (%)

Completed
studies, n

Study characteristics

280 (233-555)720 (605-835)3 (16.7)2 (11.1)18Government

435 (338-522)536 (458-551)8 (18.2)6 (13.6)44Nonprofit organization

Regulation status (n=842)

467 (233-608)547 (403-707)14 (23.7)14 (23.7)59FDAe regulated

397 (272-678)490 (400-662)103 (13.2)32 (4.1)783Not FDA regulated

US study site (n=842)

440 (296-624)490 (400-611)34 (14.9)35 (15.4)228US site

375 (248-677)571 (374-814)83 (13.5)13 (2.1)614No US site

Study location: region (n=806)

375 (251-515)821 (666-966)42 (14)3 (1)299Europe

411 (264-732)571 (507-612)24 (12.5)4 (2.1)192Asia and Pacific

430 (282-638)490 (400-611)37 (15.7)33 (14)235North America

200 (158-338)246 (170-540)4 (12.1)3 (9.1)33Middle East

577 (577-577)424 (424-424)1 (10)1 (10)10Africa

——0 (0)0 (0)6Central and South America

Study location: gross national incomef (n=775)

389 (255-616)505 (399-676)89 (14.5)42 (6.9)613High-income countries

391 (236-718)—16 (11.5)0 (0)139Upper-middle-income
countries

430 (375-504)490 (457-522)3 (13)2 (8.7)23Lower-middle-income
countries

——0 (0)0 (0)0Low-income countries

aCTG: ClinicalTrials.gov.
bTime to results reporting (posting on CTG or in journal publications) also includes those reported after 3 years.
cNot applicable.
dTime perspective: data available only for observational studies.
eFDA: Food and Drug Administration.
fGross national income–based classification as per the World Bank.

Interventional Studies (vs Observational)
Trials accounted for 42.4% (357/842) of completed studies;
they had higher publication rates (19.3% vs 9.9%) and posted
results on ClinicalTrials.gov more often (10.4% vs 1.9%), with
shorter times to disclosure than observational studies.

Randomization
RCTs accounted for 56.9% (203/357) of completed trials and
had higher publication rates than non-RCTs (24.6% vs 12.3%).
However, non-RCTs posted results on ClinicalTrials.gov more
often than RCTs (24% vs 11.3%). RCTs reached publication
sooner than non-RCTs (357 vs 549 days).

Masking
Open-label trials were the most common (59.9%; 214/357),
followed by single-blind (21.3%; 76/357) and double-blind or
higher (18.8%; 67/357) designs. Single-blind trials (21.1%;
16/76), as well as double-, triple-, or quadruple-blinded trials
combined (23.9%; 16/67) had higher publication rates and

reached publication sooner than open-label trials (17.3%;
37/214).

Single Center (vs Multicenter)
Single-center designs dominated both trials (83.3%; 290/348)
and observational studies (82.3%; 377/458). The disclosure
rates did not vary substantially between single-center and
multicenter studies.

Enrollment
Most trials (85%; 305/357) had sample sizes of ≤1000, yet larger
trials (n>1000) had higher publication rates (30.8%; 16/52) than
smaller trials (n≤1000) (17.4%; 53/305). However, among
observational studies, larger studies (n>1000) had slightly lower
publication rates (7.5%; 10/134) than smaller studies (10.8%;
38/351).

Time Perspective (Observational Studies Only)
Nearly half of observational studies used prospective designs
(49.8%; 233/468), followed by retrospective designs (35%;
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164/468). Prospective studies had slightly higher publication
rates (10.7%; 25/233) and reached publication sooner (386 days)
than retrospective studies (8.5%; 14/164; 457 days).

Lead Sponsor
The majority of studies were sponsored by hospitals (40.4%;
340/842) and academia (30.8%; 259/842). The most published
sponsors were hospitals (12.4%; 42/340), academia (15.1%;
39/259), and industry (13.7%; 20/146), but the percentages were
slightly higher for studies sponsored by governments (16.7%;
3/18) or nonprofit organizations (18.2%; 8/44), albeit with small
event numbers.

Primary Study Purpose
Diagnostic (31.9%; 95/298) and treatment (23.2%; 69/298) were
the most common study purposes. Publication rates were highest
for diagnostic (25.3%; 24/95) and health services research
(28.6%; 8/28). Prevention studies were more frequently reported
on ClinicalTrials.gov (24.1%; 7/29) than in journal publications
(17.2%; 5/29). Prevention studies reached publication sooner
(188 days) than health services research (293 days), treatment
research (349 days), and diagnostic studies (430 days).

Study Locations (Geographic and Economic)
The majority of completed studies were conducted in Europe
(37.1%; 299/806); North America (29.2%; 235/806); or the
Asia-Pacific (23.8%; 192/806). When categorized by national
income level, most studies were conducted in high-income
countries (79%; 613/775), followed by upper-middle-income
(18%; 139/775) and lower-middle-income (3%; 23/775)
countries, and none in low-income countries. Publication rates
were also highest in Europe, North America, Asia, and
high-income countries, followed by upper-middle-income
countries. Finally, 82.4% (89/108) of studies with corresponding
publications were conducted in high-income countries.

Regulatory Status
Only 7% (59/842) of completed studies were “FDA-regulated,”
while 72.9% (614/842) did not involve US sites. FDA-regulated
studies had higher publication rates than non-RCTs (23.7% vs
13.2%). FDA-regulated studies (vs nonregulated) and those
with a US site (vs no US site) were more likely to post results
on ClinicalTrials.gov.

Discussion

The proliferation of AI/ML research continues, accompanied
by a rise in systematic reviews. However, such reviews can
capture only the published portion of all relevant evidence. In
this cross-sectional analysis of 842 AI/ML studies completed
during 2010-2023, we quantified the extent of results that remain
undisclosed years after completion.

Principal Findings
First, despite a surge in new AI/ML studies each year, most
study findings remained undisclosed even 3 years after study
completion, which is more lenient than the 2-year grace period
used elsewhere [13,14]. Of 842 completed studies, only 17.7%
(149/842) disclosed results through either route within 3 years,

although rates were somewhat higher among trials (26.1%;
93/357) and RCTs (32%; 65/203).

Second, study features of greater methodological or logistical
rigor—such as interventional (vs observational), randomization
(vs nonrandomized), masking (vs open label), and larger sample
sizes (>1000 vs ≤1000) in trials—had higher disclosure rates
with shorter median reporting times through either dissemination
route. However, multicenter status had no discernible impact.
Less rigorous features, such as single-center designs (82.8%;
667/806) and open-label trials (60%; 214/357), were prevalent.

Finally, most published studies were from high-income countries
(82.4%; 89/108).

Comparison With Previous Work

AI/ML Trials Versus Non-AI/ML Trials Registered on
ClinicalTrials.gov
To compare results with those of previous research on trials
registered on ClinicalTrials.gov, a trial-only subgroup was used.
Among the 357 trials, the disclosure rate through either route
within 3 years of completion was 26.1% (93/357). This rate was
notably lower than that for non-AI/ML settings: oncology trials
(60.7%; 7425/12,240 within 2 years) [13], pharmaceutical and
biopharmaceutical phase II-IV efficacy trials (25.2%;
3822/15,084 within 1 year) [18], National Institutes of
Health–funded trials (46.3%; 294/635 within 30 months) [15],
completed trials (45.9%; 311/677 within 2 years) [19], trials by
US-based academic medical centers (35.9%; 1560/4347 within
2 years) [14], phase III-IV RCTs of drug interventions (50%;
297/594) [16], and trials approved by a hospital ethics committee
in Spain (31%; 38/123 within 3 years). Our 3-year disclosure
rate (26.1%; 93/357), equivalent to roughly 8.7% per year, was
also lower than the 1-year rate for mobile health trials (18.5%;
25/135) [27].

Several factors could explain the lower publication rates. First,
for the non-AI/ML trials cited above, registration and result
disclosure may have been mandatory (eg, regulated, publicly
funded, efficacy trials), unlike much of digital health research
[28]. Second, the rarity of efficacy studies in AI/ML research
to date may play a role, as exploratory or formative research
may be deemed less publishable. Even so, however, summary
results (objective data) can still be posted on ClinicalTrials.gov,
making otherwise unpublishable results accessible. Third, the
lack of reporting standards for AI/ML studies is another factor.
However, a range of AI/ML-specific tools now exist, such as
the Checklist for Artificial Intelligence in Medical Imaging
(CLAIM) 2024 Update [29] and the Consolidated Reporting
Guidelines for Machine Learning Modeling Studies [30]. Fourth,
preprint servers are widely used in computer science, reflecting
the field’s emphasis on speed, openness, and adaptability. If
preprints are considered sufficient—particularly when validated
through reputable conferences—the urgency for peer-reviewed
publication may be lower within the AI community. As a form
of sensitivity analysis, we assessed the use of preprints in AI/ML
studies registered on ClinicalTrials.gov by searching arXiv,
bioRxiv, Research Square, medRxiv, SSRN, and PsyArXiv.
We identified only 14 preprints linked to NCT numbers; of
these, 6 were subsequently published in journals (already
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captured in our findings), while the remaining 8 were available
only as preprints. That is, among the 693 completed studies
with no disclosed results, just 1.2% (8/693) had NCT-matched
preprints. Thus, even if preprints were considered as an
additional dissemination route, the overall disclosure rate would
increase only marginally to 18.6% (157/842), compared to the
base case of 17.7% (149/842), which does little to explain the
low publication rates.

Trial Designs
Previous research in non-AI/ML settings (mostly drugs or
biomedical) indicated that trials using randomization, masking,
larger sample sizes, or multicenter designs were more likely to
be published [13,31,32]. Our findings align with these
patterns—except for multicenter status. Although
methodological rigor was generally associated with higher
publishability, less rigorous features—such as single-center
(83.3%; 290/348) or open-label designs (60%; 214/357)—were
common among the AI/ML trials. Notably, single-center designs
predominated in both trials (83.3%; 290/348) and observational
studies (82.3%; 377/458). This pattern was consistent with
recent systematic reviews of RCTs on AI, where single-center
designs accounted for 62.8% (54/86) [33,34] and 59% (23/39)
[34].

The Distribution of Studies by Economic Status
According to scoping reviews on AI publications in health care,
high-income countries accounted for 73.3% (33/45) of articles
published in 2011-2022 [35] as well as 94.5% (240/254) and
93.3% (235/251) of those published in 2019 [20]. In our data,
82.4% (89/108) of the studies with publications from 2010-2023
were from high-income countries, and 14.8% (16/108) were
from upper-middle-income countries, most of which were from
China (88%; 14/16). That is, high-income countries and China
accounted for 95.4% (103/108) of studies with published results.
Despite differences in data sources and methodologies,
high-income countries were consistently overrepresented across
studies.

Broader Implications of the Study
AI/ML is increasingly being evaluated both as an intervention
and as a decision-support tool for clinicians. Yet, in our sample,
findings from over 80% of completed studies remained
undisclosed even after 3 years, raising concerns about
representativeness in systematic reviews or meta-analyses.
Reviews that rely on skewed samples of favorable
results—excluding null or negative findings, mostly from
single-center data—could risk overestimating the effects
attributed to AI/ML. This issue may be addressed, in part, by
leveraging public registries to improve access to unpublished
results. Searching trial registries, such as ClinicalTrials.gov,
has been strongly recommended for comprehensive systematic
reviews and is mandatory for best-practice Cochrane reviews
[36]. This may help reduce publication bias and research waste.
To this end, we advocate for broader use of the “results
database” feature of public registries and the posting of summary
results, even when submission is not mandatory.

The predominance of single-center data and studies from
high-income countries has further implications, potentially

contributing to existing health inequities. This underscores the
need for external validation in diverse populations, especially
for models built with single-center data [35]. However, the
predominance of single-center designs, along with the shortage
or inadequacy of external validation [23,37-39], could be a
reflection of what is known as the reproducibility crisis [40-45].
AI researchers face intense pressure to publish quickly, with
numerous papers posted daily on arXiv without peer review,
and many are reluctant to report failed replications [43].
Unpublished code and sensitivity to training conditions make
it difficult, if not impossible, to verify claimed performance
[42,46-48]. Notably, papers that fail to replicate are cited at the
same rate as those that are successfully replicated, leading to
future work being built upon irreproducible results [44,49]. A
2018 study found that only 6% of research presented at top AI
conferences explicitly identified research questions being
addressed, and just 5% specified hypotheses being tested [40].
Clearly, significant challenges exist even before introducing
the added complexities of multicenter studies, which involve
substantial clustering (eg, across multiple centers, regions, or
countries) and require more rigorous design, analysis, and
reporting methods compared to standard prediction model
studies [50].

Finally, publishability could improve through the wider adoption
of AI/ML-specific reporting guidelines and checklists [51],
including those that emphasize critical yet often undocumented
details, such as computational reproducibility, data
preprocessing, and mitigation of data leakage [41]. Although
improved transparency through standardized reporting is the
responsibility of authors, guidance such as the REFORMS:
Consensus-based Recommendations for Machine-learning-based
Science [41] is designed to inform all stakeholders, including
readers, about best practices. All the transparency in the field
will not suffice unless informed community members critically
engage with the key dimensions intrinsic to AI/ML that must
be addressed. As preprints gain wider visibility, the role of
community literacy will grow increasingly important.

Limitations
First, to identify relevant publications, we searched for study
identifiers (NCT numbers) in the title, abstract, and “trial
registration” fields in PubMed, while in Scopus, we searched
the title and abstract fields. Some publications may have been
missed if the NCT was mentioned outside these fields. However,
the International Committee of Medical Journal Editors [52]
recommends listing the trial registration number at the end of
the abstract, and we assumed compliance with this. We think
that this was a reasonable assumption, given that publications
mentioning NCTs outside abstracts tended to be cited by others
or related in some way rather than being direct research outputs.

Second, we searched for publications only for studies marked
“completed.” We may have missed studies with relevant
publications if there were delays by sponsors in updating the
study status on ClinicalTrials.gov. Nevertheless, this approach
also ensured that we captured publications that were likely to
be the direct study output. To mitigate this potential
misclassification, however, we delayed the data export until
February 6, 2024, despite the data cutoff being December 31,
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2023. As for publications, we searched PubMed and Scopus on
February 12, 2024, allowing 6 weeks after the data cutoff to
account for indexing lag time.

Third, information on the study phase may influence the extent
of public disclosure of results. However, it was mostly missing
(98%; 826/842), and we were unable to use it as a stratifying
variable.

Conclusion
For over 80% of AI/ML studies completed during 2010-2023,
study findings remained undisclosed even 3 years after study
completion, raising questions about the representativeness of
publicly available evidence.

While methodological rigor was generally associated with higher
publication rates, the predominance of single-center designs
and high-income countries may limit the generalizability of the
results that are currently accessible.
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