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Abstract

Background: Executive functions (EFs) predict positive life outcomes and educational attainment. Consequently, it is imperative
that our measures of EF constructs are both reliable and valid, with advantages for research tools that offer efficiency and remote
capabilities.

Objective: The objective of this study was to evaluate reliability and validity evidence for a mobile, adaptive measure of EFs
called Adaptive Cognitive Evaluation-Explorer (ACE-X).

Methods: We collected data from 2 cohorts of participants: a test-retest sample (N=246, age: mean 35.75, SD 11.74 y) to assess
consistency of ACE-X task performance over repeated administrations and a validation sample involving child or adolescent
(5436/6052, 89.82%; age: mean 12.78, SD 1.60 years) and adult participants (484/6052, 8%; age: mean 38.11, SD 14.96 years)
to examine consistency of metrics, internal structures, and invariance of ACE-X task performance. A subset of participants
(132/6052, 2.18%; age: mean 37.04, SD 13.23 years) also completed a similar set of cognitive tasks using the Inquisit platform
to assess the concurrent validity of ACE-X.

Results: Intraclass correlation coefficients revealed most ACE-X tasks were moderately to very reliable across repeated
assessments (intraclass correlation coefficient=0.45-0.79; P<.001). Moreover, in comparisons of internal structures of ACE-X
task performance, model fit indices suggested that a network model based on partial correlations was the best fit to the data

(χ2
28=40.13; P=.06; comparative fit index=0.99; root mean square error of approximation=0.03, 90% CI 0.00-0.05; Bayesian

information criterion=5075.87; Akaike information criterion=4917.71) and that network edge weights are invariant across both
younger and older adult participants. A Spinglass community detection algorithm suggested ACE-X task performance can be
described by 3 communities (selected in 85% of replications): set reconfiguration, attentional control, and interference resolution.
On the other hand, Pearson correlation coefficients indicated mixed results for the concurrent validity comparisons between
ACE-X and Inquisit (r=–.05-.62, P<.001-.76).

Conclusions: These findings suggest that ACE-X is a reliable and valid research tool for understanding EFs and their relations
to outcome measures.

(J Med Internet Res 2025;27:e60041) doi: 10.2196/60041
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Introduction

Background
Executive functions (EFs) have been a fascination of researchers
and educators alike due to their association with positive life
outcomes and educational attainment. Understanding this
complex set of cognitive processes that enables control over
concentration and attention (the study by Diamond [1] presents
a review on EFs) and their measurement by proxy is essential
to furthering our collective knowledge of how they impact and
interact with other important health and cognitive outcomes
across the lifespan. To date, the field of EF research has largely
relied on traditional laboratory-based tests designed to measure
various aspects of EFs. However, these classic measures of EFs
have been burdened by measurement challenges, such as
in-person data collections, floor and ceiling effects, and
measurement impurity related to using only one task to index
an EF construct [2,3]. Moreover, in 2020, a global pandemic
drastically altered our commonplace practices of conducting
research and collecting data, forcing research endeavors out of
the controlled laboratory setting and into more familiar and
relaxed environments. This shift has pushed researchers to adopt
remote designs conducive to conducting research anywhere, at
any time. Furthermore, with remote data collection becoming
the norm rather than the exception, researchers are tasked with
developing innovative solutions to resolve discrepancies in
outcomes observed in the laboratory versus in the real world.

Attempts to measure EFs have presented considerable
challenges, with comparable difficulties experienced by those
attempting to model them. While there is general agreement
that the construct of EF is multidimensional [4-6], there has
been much debate regarding the number and organization of
these dimensions. For example, 1 study [7] indicated that as
many as 18 components of EF have been suggested. Moreover,
this organization is believed to shift over the course of
development, as the differentiation hypothesis posits that EF
represents a unitary construct during early childhood, eventually
differentiating to 2 or 3 components in later childhood and
adolescence [8,9]. Along with this, some have argued for the
presence of a common EF component, which reflects shared
commonality across all EF tasks [10,11]. In these models, EF
task performances are associated with not only their
hypothesized specific dimension of EF but also with common
EF. Once common EF is accounted for, what should be left in
theory are the dimension-specific associations within task
performances.

While the confirmatory factor analysis approach has been the
predominant method of understanding how latent EFs give rise
to EF task performance, recent explorations have questioned
whether these models are the best representation of EFs [12,13].
EF task performances tend to share a great deal of overlapping
variance, and this shared variance is seldom adequately
explained by correlating EF factors alone, as often significant
correlations between EF tasks can be found even after
correlating these factors. This would suggest reliable
associations at the task level that do not correspond with a
singular EF construct. Often, this shared task variance is reduced

to the shared variance related to the method of testing rather
than to the specific latent component of EF [5,14]. For example,
a set of tasks in which both require participants to perform the
same set of actions in reverse order are likely related due to the
similarities in how the measurement occurred rather than to an
underlying EF construct. In a factor analytic framework, this
could be problematic, as leaving such correlations unmodeled
could result in poor model fit due to misspecification, while
modeling the correlation could create problems with
identification and interpretation. Moreover, because of the
reliance of more than one 1 EF in successfully executing tasks
(eg, maintaining attention as a first requirement of executing a
working memory task), task performances tend to be associated
with more than one construct. While researchers have attempted
to negate this shortcoming of factor analysis through modeling
of a “common” or “general” EF construct [10], thereby
separating construct-specific variance from general EF variance,
in practice these models are often quite complex, and
convergence issues often emerge [14].

We believe that a perhaps better conceptualization of EFs
involves a network of task performances that directly relate to
one another and can be decomposed into subsets, or
“communities” of tasks. These task groupings can then provide
evidence for or against the idea of internal validity of task
organizations. When modeling EF task performance as a
network using a partial correlation matrix, the correlation
between each pair of task performances is represented as the
association after all other task performances have been
accounted for. In this way, each association of task performances
represents shared variance beyond what is shared with the full
set of tasks. Because the shared variance related across the entire
set of tasks is accounted for, not only is the variance related to
constructs accounted for (ie, common or general EF), but also
the shared method variance that can occur across constructs.
We also advocate for network analysis as it closely aligns with
the neural networks that give rise to these processes, as
meta-analytic results of functional magnetic resonance imaging
data suggest that superordinate cognitive control systems as
well as specific brain regions are engaged during execution of
EF tasks (a study by Niendam et al [15] presents a review on
the same). In theory, the network model would account for these
superordinate processes by allowing the unique relations
between task performances to be visualized. Moreover, using
network analysis, EF task performances can be mapped in such
a way so that the relative proximity to neighboring task
performances reflect the degree of similarity between sets of
tasks. This information can be helpful in establishing which EF
task performances are most central within a set of tasks. Having
this knowledge is potentially important in the context of
intervention, as isolating tasks with the most potential for
transfer to other EF performance could be particularly impactful
for treatments aimed at improving EF skills. Therefore, we
argue that this method, in combination with a community
detection algorithm, allows for a more novel approach to
answering the question of how EF tasks group together to form
constructs.
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Adaptive Cognitive Evaluation-Explorer
Adaptive Cognitive Evaluation-Explorer (ACE-X) is a research
tool developed at Neuroscape, a center in the Department of
Neurology at the University of California, San Francisco, to
assess the 3 facets of cognitive control (attention, working
memory, and cognitive flexibility) [16,17]. However, this
platform can also assess a breadth of EF dimensions, specifically
the 3 most identified components of EFs (working memory,
shifting, and inhibition), which aligns with the goal of being
able to test the aforementioned theories of EF. Each ACE-X
task is based on traditional EF measures but with key
modifications that include engaging dialogue to better explain
task instructions and features, high-level art, and music to create
a more immersive participant experience, and most importantly,
unique adaptive mechanisms for each module. These integrated
adaptive algorithms mitigate persistent measurement issues,
such as floor and ceiling effects, by adjusting the difficulty of
each module in real time to an appropriate level of difficulty
for the ability of the task taker. Moreover, these adaptive
mechanisms not only benefit performance comparisons across
groups but also facilitate comparisons of performance over time.
Note that ACE-X has been designed to be an open-access
technology that researchers, clinicians, teachers, or other
interested parties can use to answer research-based questions.

ACE-X was adapted from its predecessor, Adaptive Cognitive
Evaluation-Classroom (ACE-C) [13,18], which transformed
standard EF measurement tools into an interactive and engaging
user experience but lacked specific features that would facilitate
self-administration in a remote setting. The primary
enhancement associated with ACE-X from its ACE-C
predecessor involved the incorporation of targeted gamification.
Our development team focused their efforts toward augmenting
trial-by-trial feedback, improving the in-game point system,
and enhancing the art and music components. These facets were
targeted to improve user motivation and engagement (the studies
by Lumsden et al [19] and Vermeir et al [20] present reviews
on the same). In a meta-analysis conducted by Lumsden et al
[19], tasks that included gamification were rated more
intrinsically motivating than similar tasks that did not. Moreover,
when applied in a training context, gamified tasks have been
shown to result in positive outcomes, such as improved cognitive
control [21], mitigation of working memory declines associated
with attention-deficit/hyperactivity disorder (ADHD) [22], and
greater trial engagement [23] for some populations. Furthermore,
these gamification elements may be more beneficial to certain
populations than others: for example, Gallen et al [24] found
that in their sample of adult participants, ADHD symptoms
were negatively related to reward responsiveness, as those who
reported having more ADHD symptoms were less responsive
to reward. Moreover, age was negatively related to attention,
such that younger participants tended to show greater
improvements to attention when gamified features were present.
Gamified tasks have also been shown to be valid representations
of more traditional cognitive tasks [25-28]. For example, Aalbers
et al [25] established good to very good convergent validity
evidence in the domains of working memory, visuospatial
short-term memory, and EF planning as demonstrated by
relations between their gamified set of tasks (Brain Aging

Monitor-Cognitive Assessment Battery) and other sets of tasks
meant to tap the same domains. Furthermore, using exploratory
factor analyses, McPherson and Burns [27] demonstrated that
their gamified cognitive task set, Space Code, loaded onto task
domains of working memory or fluid intelligence and processing
speed. Thus, there is evidence that gamification of traditional
tasks may improve participant engagement without negatively
impacting validity, resulting in better participant outcomes for
some populations.

It should be noted that other digital tools designed to assess EFs
have their own strengths and limitations, just like the ACE-X
battery. ACE-X is unique in that it specifically focuses on
assessing cognitive control abilities in depth, unlike other
commonly used batteries that aim to assess several different
abilities, including language, long-term memory, eye
movements, and logic, among others. Several aspects about
ACE-X make it distinct from other technologies, including the
aforementioned incorporation of adaptive mechanics and
gamification of the testing experience. One of the innovative
aspects of ACE-X is that it has been designed to be
self-administered for individuals across the lifespan, whereas
many of these other batteries need to be administered by a
trained researcher and are only appropriate for specific, narrow
age ranges. Another innovative aspect that makes ACE-X
distinct from other tools is the ability for it to be used on cellular
devices (iOS and Android), tablets (eg, iPad or Android
devices), or web browsers. To further extend the scalability of
ACE-X, data collection is possible when there is limited or no
Wi-Fi connection (after having loaded the ACE-X app before
testing), with any data collected uploaded to a secure
cloud-based server the moment said device reconnects to Wi-Fi.
Finally, one of the overarching goals for ACE-X was to have a
tool with known test-retest values (which are not reported for
many cognitive platforms) that could be used over multiple
sessions, as its value is not only for single characterization
efforts but also to act as an outcome measure for intervention
studies.

Overview of This Study
Here, we present reliability and validity evidence in support of
ACE-X as a research tool for understanding EFs and their
relations to external variables (eg, prediction of academic
prowess and workplace achievement). Across 2 separate cohorts
with >6000 participants, we first provide evidence of the
reliability of task performance across time using a longitudinal
sample of test takers. Second, using a cross-sectional sample
of age-diverse test takers, we contrast ACE-X performance
metrics against ranges observed in relevant literature. Next, we
evaluated the task reliability within a single measurement
session as well as the correspondence between ACE-X tasks
and theoretical EF constructs using a combination of factor and
network analyses (ie, validity of internal structures). Finally,
we present associations between ACE-X tasks and a similar set
of measures (ie, concurrent validity). We conclude with future
research opportunities for ACE-X, as well as implications and
recommendations regarding the use of ACE-X and its place in
the current landscape of EF research.
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Methods

Test-Retest (Longitudinal Study)

Study Design
Participants were recruited via Amazon Mechanical Turk
(MTurk) for the test-retest study. The following selection criteria
for MTurk participants were included: (1) must be located in
the United States, (2) must have completed ≥50 approved human
intelligence tasks, and (3) must have ≥95% of assignments
approved. Sample size for the test-retest study was determined
via power analysis, which suggested approximately 84
participants for each of 2 possible combinations of ACE-X
counterbalanced subsets were needed to achieve sufficient power
to detect a moderate effect size; therefore, we looked to enroll
200 participants (100 per task set) with at least 2 playthroughs
of the task set combinations. Recruitment and data collection
for the test-retest sample took place simultaneously between
January 2020 and July 2020. In total, 533 participants completed
the first playthrough of ACE-X. Of these, 47.6% (254/533)
went on to complete at least one additional playthrough of
ACE-X counterbalanced subsets, with the average duration
between assessments being 7.29 (SD 15.82) days. Participants
who completed the second assessment session later than 31 days
after the first session were excluded from analysis (8/533, 1.5%
participants excluded). After removing these participants, the
average duration between assessments was 4.90 (SD 6.31) days.
These data were also cleaned for anticipatory responses (reaction
time<200 ms; 39% of trials removed) and trials that were beyond
3 individual SDs of the individual mean response time (1.1%

of trials removed). Next, data were removed for having <5 trials
per task condition (average of 1.55% of scores removed per
task) and for performance less than chance accuracy (average
of 0.77% of scores removed per task). Finally, outliers beyond
±3 median absolute deviations of the median of scores for that
assessment session were removed on a task-by-task basis
(average of 4.06% of scores removed per task). The resulting
dataset included 46.2% (246/533) participants with at least 2
playthroughs of ACE-X subsets.

Ethical Considerations
All study procedures were conducted in accordance with
protocols approved by the institutional review board at the
University of California, San Francisco (IRB 19-28330). Written
informed consent was obtained before study participation. This
written documentation clearly stated that participants were
allowed to opt out of the study at any time and with no penalty
other than loss of study benefits. Participants were compensated
US $10 for their participation. No potentially identifying
information other than the MTurk user’s unique identification
number and participant age was collected; therefore, no other
deidentification procedures were required.

Measures

Adaptive Cognitive Evaluation-Explorer

ACE-X includes 1 task measuring general processing speed, 2
tasks meant to measure working memory or short-term memory,
6 tasks measuring inhibitory control, and 2 tasks measuring
cognitive flexibility. Example task schematics for ACE-X are
shown in Figure 1.

Figure 1. Example task schematics for Adaptive Cognitive Evaluation-Explorer (ACE-X). Panel (A) shows the Basic Response Time task, (B) shows
the spatial span task (forward span trial), (C) shows the Flanker task (congruent condition), (D) shows the continuous performance task (no-go trial),
(E) shows the Stroop task (incongruent condition), (F) shows the Boxed task (feature 4 condition), (G) shows the Compass task (neutral condition), (H)
shows the TaskSwitch task (incongruent condition), and (I) shows the Tap and Trace task (dual task condition).
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Adaptivity

Most ACE-X tasks adapt through a closed-loop mechanism on
a trial-by-trial basis, which modifies a participant’s adaptive
response window (subsequent sections present exceptions) by
either increasing or decreasing the length of time that a
participant has to make a response that is considered “correct
and on time.” The algorithm uses a “one-up-four-down”
approach [29], where the length of the response window
decreases by a step factor of 10ms when the response is correct
and increases by a step factor of 40 ms when the response is
incorrect or late. After each response, the response window is
adjusted by –(10 ms×2^ [previous consecutive correct trials])
for each successive correct and on-time response, or by +(40
ms×2^ [previous consecutive incorrect trials]) for each
successive incorrect or late response. This allows the response
window to rapidly adapt in real time to the individual test-taker’s
ability. This adaptive response window is paired with feedback
after each trial indicating whether the response was incorrect
(red), correct but late (yellow), or correct and on time (green)
to help participants monitor and adjust their rate of responding.
This design encourages participants to balance both speed and
accuracy in responding to EF task demands.

The adaptive features of ACE-X provide a mechanism for
adjusting task difficulty based on the cognitive control abilities
of the test taker; thus, ACE-X scales on a trial-by-trial basis
based upon the performance of the test taker, regardless of
demographics. Tasks with similar adaptive mechanisms were
shown to be efficient and reliable embodiments of classic
cognitive tasks [21,30,31]. For example, Draheim et al [31]
compared adaptive versions of Flanker [32] and Stroop [33]
tasks to nonadaptive versions of these classic cognitive
assessments. In the adaptive versions of these tasks, participants
were given a “response deadline,” which allotted a maximum
time limit in which they could register a response to the trial.
This response deadline became longer when participants
responded incorrectly or too slowly with respect to the response
deadline and shorter when they responded correctly. Their
findings suggested that the adaptive versions performed better
than the classic assessments in terms of test-retest reliability,
average attention factor loading, and correlations with working
memory capacity and fluid intelligence. Therefore, at least in
some circumstances, adding adaptive algorithms to traditional
task designs appears to improve task psychometrics.

Processing Speed

General processing speed was measured via the Basic Response
Time task. In this task, participants were instructed to respond
by selecting a button as quickly as possible every time the target
symbol appeared in the center of the screen (Figure 1A).
Participants first completed the task using their right hand,
followed by their left hand. The overall mean response time
across performance for both hands was used as a control for
tasks requiring 2-hand responding, while mean response time
for the dominant hand was used as a control for tasks requiring
1-hand responses.

Working Memory

Forward and backwards spatial span (Gem Chaser and Gem
Chaser Backwards) were designed to measure visuospatial

short-term and working memory capacity, respectively. On the
basis of the Corsi block task [34], participants were shown an
array of diamonds, with each lighting up one at a time to show
the target sequence. Participants were asked to recall the
sequence in the same (forward spatial span) or reverse order
(backwards spatial span; Figure 1B). Sequence length started
at 3 objects, and length increased by 1 each time the participant
successfully recalled 2 sequences in a row, with possible
sequence length ranging from 3 to 9. When a participant was
unable to recall 3 sequences in a row, the task was terminated.
For these tasks, we used object span, or the length of the longest
sequence attempted in 2 consecutive trials by the participant,
as our measure of visuospatial short-term and working memory
capacity.

Inhibitory Control

The Flanker task (Flanker Arrow) is a measure of selective
attention and interference resolution. On the basis of the original
Flanker task [32], participants were shown a string of 5 arrows
and asked to identify the direction (left or right) of the center
(target) arrow (Figure 1C). In the congruent condition, the target
arrow appeared in the same direction as the flanking arrows,
whereas in the incongruent condition, the target arrow appeared
in the opposite direction. For this task, the overall rate correct
score (RCS) collapsed across conditions was used to index task
performance [35,36]. RCS is computed as the number of correct
responses divided by the product of the number of trials and
total response time. RCS represents the average number of
correct responses over 1 second.

Impulsive (Mars UFO) and sustained attention (Venus UFO)
were measured using the continuous performance task (CPT),
based on the test of variables of attention (TOVA) [37].
Participants were instructed to hit a button every time a symbol
was displayed at the top of the screen (target) and do nothing
when the symbol appeared at the bottom of the screen
(distractor; Figure 1D). In the impulsive condition, the target
appeared on the top portion of the screen in 80% of trials, while
in the sustained condition, the target only appeared in 20% of
trials. Because the CPT was meant to assess the ability to
maintain attention, this task did not include an adaptive response
window to avoid including elements that might inadvertently
impact attention-directing abilities. Because a response was not
required for every trial, performance was measured as the
average response time to correctly answered trials separately
for impulsive and sustained attention, rather than RCS as in
other tasks.

The Stroop task (Color Tricker) was designed to measure
response inhibition. In the Stroop task, as described by Stroop
[33] and adapted by Mead et al [38], participants were shown
a color spelled out in words and written in a particular ink color.
Participants were asked to indicate the color of the text while
ignoring the color the word spells (Figure 1E). For example, if
the participant was shown the word WHITE written in green
ink, the correct response would be green. There were a total of
4 response options for the Stroop task: pink, green, white, and
orange. In congruent trials, the color of the word and the written
word were the same, while in incongruent trials the color of the
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word and the word spelled by the text were different. Overall,
RCS was used to measure performance on the Stroop task.

Boxed is a visual search task based on the paradigm described
by Treisman and Gelade [39]. Participants were shown an array
of Landolt squares with openings on 1 of the 4 sides (Figure
1F). Participants were instructed to attend to the single green
square with a top or bottom opening (target) and ignore orange
squares and squares in which the opening was not on the top or
bottom (distractors). On each trial, participants were instructed
to select the location (top or bottom) of the opening of the target
square. In the feature conditions, the target and distractor boxes
differed by a singular feature (color), while in the conjunction
conditions they differed by a conjunction of features (color and
location of opening). There were 4 blocked conditions for this
task, starting with an array of 4 squares differing only in feature
up to 12 boxes differing in both color and location of opening.
Overall RCS was again used as the metric of interest for this
task.

The Compass task is a measure of selective attention based on
the Posner cueing task [40]. In the Compass task, participants
were shown 2 blank triangles on the right and left sides of the
display (Figure 1G). An arrow appeared in the center of the
display pointing toward either the right triangle, the left triangle,
or both triangles. After 500 ms, a symbol appeared in one of
the triangles, and participants were instructed to select the side
in which the symbol appeared, regardless of the direction the
arrow pointed. In neutral trials the arrows pointed at both
triangles, in congruent trials the arrow pointed at the triangle
where the symbol appears, and in incongruent trials the arrow
pointed at the opposite triangle of the one displaying the symbol.
Overall RCS was also used to measure performance on the
Compass task.

Cognitive Flexibility

TaskSwitch (Sun & Moon) is based on standard task-switching
paradigms (the study by Monsell [41] presents a review on the
same). In this task, participants were shown a cue indicating a
feature that the participant should attend to (either color or
shape), followed by a stimulus (eg, purple moon; Figure 1H).
Participants were instructed to select the cued feature of the
stimulus. For example, if the cue was “shape,” followed by an
orange sun, the participant should have selected “sun“ to make
a correct response. On stay trials, the cued aspect was the same
as the previous trial, whereas on “switch” trials the cued aspect
was different from the previous trial. For this task, overall RCS
was again used as the main performance measure.

Finally, the Tap and Trace (Triangle Trace) task was adapted
from the dual-task paradigm of Eversheim and Bock [42] and
Anguera et al [21]. In the first block of the task, participants
were instructed to press a button when the screen was bordered
by green triangles (target) while doing nothing in response to
all other colors or shapes (distractors; eg, brown rectangles;
Figure 1I). In the second block, participants were asked to
multitask; in addition to performing the shape detection task,
participants were instructed to simultaneously trace a figure
with the nondominant hand. Finally, in the third block,
participants were asked only to trace figures with their
nondominant hand. Multitasking ability was measured using

the mean response time to correct trials during the multitasking
block.

Data Analysis
We assessed test-retest reliability by examining intraclass
correlation coefficients (ICCs) between first and second ACE-X
assessment sessions. In assessing test-retest reliability, we
judged ICCs >0.75 as excellent, between 0.60 and 0.74 as good,
and between 0.40 and 0.59 as fair [43]. This analysis included
all 246 participants completing at least 2 sessions of ACE-X as
part of the test-retest cohort.

ACE-X Validation (Cross-Sectional Study)

Study Design
The sample size for the ACE-X validation study was determined
using a combination of 2 approaches to ensure findings were
both representative of the population at large and properly
powered for statistical purposes. The first approach focused on
ensuring sufficient representation across age groups, ethnicities,
and socioeconomic status. The second approach focused on
having sufficient power in computing correlations to assess
concurrent validity. For the first approach, our goal was to have
100 participants per target age bracket (each year from 7-18
years, 19-27 years, 28-36 years, 37-45 years, 46-54 years, 55-63
years, and ≥64 years). Within each age bracket, participants
were recruited according to nationally representative proportions
of poverty and ethnicity categorizations. For the second
approach, power analyses revealed that a minimum of 84
participants would be needed to establish 80% power for a
moderate correlation. Therefore, a goal of 100 participants was
established for assessing concurrent validity. However,
recruitment streams remained open during the duration of the
grant cycle, and ultimately, 9275 participants were recruited for
the ACE-X validation study. Of these, 89.88% (8336/9275)
completed only ACE-X as contributors to a normative database
of task performance, while a smaller number (939/9275,
10.12%) completed both ACE-X and a second set of tasks meant
to establish relationships with other variables (concurrent
validity). Study recruitment and data collection for the ACE-X
validation study took place simultaneously between May 2021
and January 2023. Adult participants were recruited via
advertising on various social media platforms (eg, Craigslist
[Craig Newmark] and Facebook [Meta Platforms]), MTurk
(Amazon, Inc), and a Qualtrics (Qualtrics International Inc)
recruitment panel. Child participants were primarily recruited
through partnerships with local schools and the Character Lab
Research Network, though some came through other social
media advertisements. For those who found the study via social
media, upon engaging with an advertisement by clicking on a
link, participants were directed to a web-based platform to
complete registration, consent, and eligibility screening. Eligible
participants then completed a questionnaire and ACE-X. A
subset of these participants also completed a second suite of
tasks measuring various aspects of EFs (Inquisit; refer to the
subsequent sections). Forced breaks were imposed during the
testing session to mitigate participant fatigue.

All data were cleaned for anticipatory responses (0.77% of trials
removed) and trials that were beyond 3 individual SDs of the
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individual mean response time (1.16% of trials removed). Next,
data were removed for having fewer than 5 trials per task
condition (average of 13.1% of scores removed per task) and
for performance less than chance accuracy (average of 3.28%
of scores removed per task).

Due to the fully remote data collection design of this study, data
originating from social media, MTurk, and Qualtrics recruitment
streams yielded a high proportion of suspicious or abnormal
responses and were, therefore, carefully screened for potential
bad actors. After extensive discussion among our research group
and observing that a large proportion of these abnormal
responses were completed from locations outside of the United
States, originated from the same IP addresses, or made use of
disposable email addresses, we labeled these as high risk
indicators of false responding and opted to automatically exclude
the participant if any of these were present (2887/9275, 31.13%
excluded). Other responses to demographic questions were
checked for consistency, and inconsistencies (eg, discrepancies
between reported age and birthdate or between location and zip
code information) were flagged as moderate risk but did not
necessarily result in the participant’s immediate exclusion.
However, after comparing the number and characteristics of the
participants with ≥4 moderate risk indicators, we also decided
to exclude these participants even in the absence of any high
risk indicators (66/9275, 0.71% excluded). All remaining records
were carefully screened by a team of researchers to determine
the authenticity of all data included. Data for participants
suspected of providing inauthentic responses were removed
before analysis (270/9275, 2.91% excluded; a study by
O’Laughlin [44] and Multimedia Appendix 1 presents more
information about participant removal criteria). After removing
these participants, outliers beyond –3 or +3 median absolute
deviations of the median of scores were removed on a
task-by-task basis (average of 3.79% of scores removed per
task). This cleaning process resulted in a final sample size of
6052 (616/6052, 10.18% adult participants and 5436/6052,
89.82% child participants), of which 132 (2.18%) adult
participants also completed Inquisit for concurrent validity
analyses.

Ethical Considerations
Participants were compensated via electronic gift cards for their
contribution. Initially, respondents were compensated US $5
upon completion of all study requirements; this amount was
later increased to US $10 to encourage a higher participation
rate. Data were deidentified before analysis.

Measures

Adaptive Cognitive Evaluation-Explorer

All 616 adult participants received the full set of 11 ACE-X
tasks (described in detail in the Test-Retest [Longitudinal Study]
section earlier), while all 5436 child participants received limited
subsets of between 3 to 4 ACE-X tasks. Due to time constraints
within classrooms, child or adolescent participants did not
receive the full set of ACE-X tasks but instead completed a
subset of tasks, including Basic Response Time and tasks
corresponding to 1 of 3 hypothesized EF constructs. To avoid
speeded responses on ACE-X tasks, we tested how long each

subset of tasks took to complete, as well as reduced the number
of surveys and moved remaining surveys to the end of the testing
session to allow ample time to complete ACE-X tasks. We also
ensured ≥2 orders for these task subsets of only 3 to 4 tasks to
avoid order effects as much as possible. Adult participants who
completed the study as part of the norming or concurrent validity
arms received the full set of ACE-X tasks in a counterbalanced
order.

Inquisit

One of the overarching goals of this study was to test for
concurrent validity against gold standard validated measures
of EF; however, the practical logistics of testing ACE-X in
person against validated instruments was not tenable, especially
during the COVID-19 pandemic. Thus, we opted to make
comparisons to a similar set of measures that could be remotely
administered, a suite of cognitive tasks known as Inquisit.
Inquisit and ACE-X are similar in that both are mobile versions
of traditional EF assessments. However, unlike ACE-X, Inquisit
tasks do not adapt via response window, with Inquisit tasks
more closely mirroring traditional “gold standard” measures of
EFs. For each corresponding task, the same metric was used
for both ACE-X and Inquisit tasks. ACE-X and Inquisit task
comparisons are shown in Table S1 in Multimedia Appendix
1.

In Inquisit, general processing speed was measured via the
Simple Visual Reaction Time task. Short-term memory and
working memory were measured via the forward and backwards
Corsi Block Tapping task [34,45]. Inhibitory control was
measured via the Letter Flanker task [32]; the TOVA [37,46];
the classic Stroop task [33]; the Visual search task [47]; and the
Cueing task [40]. Finally, cognitive flexibility was measured
by the Category Switch task [48,49] and the Trail Making task
[50,51].

For the Inquisit set of tasks, we completed the same cleaning
steps as described previously. Data were cleaned for anticipatory
responses (4.04% of trials removed) and trials that were beyond
3 individual SDs of the individual mean response time (0.87%
of trials removed). Next, data were removed for having fewer
than 5 trials per task condition (average of 11.09% of scores
removed per task) and for performance less than chance
accuracy (average of 5.71% of scores removed per task). After
removing suspicious participants, outliers beyond –3 or +3
median absolute deviations of the median of scores were
removed on a task-by-task basis (average of 8.28% of scores
removed per task).

Data Analysis

Data Preparation

General processing speed was controlled using residualized
scores after accounting for Basic Response Time. For tasks
where mean correct response time was the metric of interest
(CPT-TOVA; Tap and Trace-Trail Making), scores were
multiplied by –1 and divided by 100 so that higher scores
indicated better performance and to minimize extreme variance
estimates.
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Consistency of ACE-X Performance Metrics

To assess consistency between ACE-X performance metrics
and those reported in similar studies across the literature, for
each ACE-X task we examined a sampling of comparable
studies to determine ranges of reported metrics (Table S2 in
Multimedia Appendix 1 provides more information on selected
references). Here, we examined the metrics most reported for
each task, and where available, we provide minimum and
maximum response time, accuracy, and object span (forward
and backwards spatial span). This literature review was not
meant to be exhaustive but rather meant to encompass studies
reporting tasks most similar to ACE-X tasks and across similar
subsets of age ranges (discrepancies in age ranges reported in
the Results section). All ACE-X validation cohort data,
including both the children and adults (6052 participants), were
included in these comparisons.

Internal Structures

To understand the internal structure of ACE-X for adult
participants, we began by taking an exploratory approach by
fitting a network model using the psychonetrics package in R
(R Foundation for Statistical Computing). We fit the partial
correlation network model using full information maximum
likelihood estimation to handle missing values and then pruned
edge weights that failed to reach statistical significance (P>.05).
We then used the Spinglass community detection algorithm
[52] with 1000 replications to determine whether ACE-X tasks
tend to form communities of similar EF skills. The Spinglass
algorithm was selected over other common community detection
algorithms (such as Louvain or modularity) due to its ability to
handle negative edge weights (if any emerged).

After establishing the data-driven factor structure using network
analysis, we used the communities found in the network model
to guide confirmatory testing of ACE-X internal structures. We
compared the network model to both a correlated factor model

of EF and a bifactor model of EF. We used χ2 model fit
statistics, along with the comparative fit index (CFI), the root
mean square error of approximation (RMSEA), the Bayesian
information criterion (BIC), and the Akaike information criterion
(AIC) to assess how well the theoretical factor structures

corresponded with the observed data. Lower χ2 values suggest
a better fit to the data, with a nonsignificant result suggesting
equivalence between the predicted model and the data. Because

χ2 is known to be sensitive to sample size, we also evaluated
fit indices of RMSEA and CFI. RMSEA values ≤0.06 were
considered adequate model fit [53], with lower values indicative
of a better-fitting model. CFI values >0.90 were considered
excellent model fit, with values closer to 1 indicating better

model fit. For BIC and AIC, lower comparative values were
taken as indicative of better model fit. In analyses of internal
structure and invariance (described in the subsequent sections),
all adult participants’ data from the ACE-X validation cohort
(616/6052, 10.18% participants) were included.

Invariance

We selected the best-fitting model based on the criteria described
earlier to then examine invariance between younger (aged
between 18 and 39 years) and older (aged ≥40 years) adults.
We examined whether applying equality constraints to loadings
(weak invariance), intercepts (strong invariance), and residual
variances (strict invariance) resulted in detriments to model fit
such that models are found to vary between groups. We

compared nested models using χ2 likelihood ratio tests with df
equal to the difference in the number of free parameters between
the comparison and nested models.

Relations to Other Variables

Finally, we assessed relationships with other variables by
examining Pearson correlations between ACE-X and Inquisit
for the subset of adult participants completing both sets of tasks
(132/6052, 2.18%). We used correlation sizes of 0.10, 0.30, and
0.50 to indicate small, moderate, and large effects, respectively
[54]. These values were then used as indicators of weak,
moderate, and strong concurrent associations between pairs of
EF tasks. For this analysis, all 132 participants completing both
ACE-X and Inquisit as part of the ACE-X validation cohort
were included.

Results

Test-Retest (Longitudinal Study)
The mean age of participants meeting the selection criteria for
the test-retest study was 35.75 (SD 11.74) years. Test-retest
reliability as ascertained by ICCs for the test-retest sample of
participants suggests good to excellent reliability for most
ACE-X tasks (Table 1). Boxed and Compass were considered
exceptionally reliable, while good reliability was also achieved
for Basic Response Time, Flanker, both CPTs, Stroop,
TaskSwitch, and Tap and Trace. The only tasks to fall below
this threshold were forward and backwards spatial span, perhaps
due to the restricted range of the outcome metric for this set of
tasks (this is described in detail in the Discussion section),
though reliability would still be considered fair for these tasks.
Overall, these findings suggested that ACE-X tasks can be
considered consistent across testing sessions that take place
about a week apart.
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Table 1. Intraclass correlation coefficients for test-retest reliability of Adaptive Cognitive Evaluation-Explorer (ACE-X) tasks.

P valueICCaTask

<.0010.70Basic response time

<.0010.45Forward spatial span

<.0010.54Backwards spatial span

<.0010.62Flanker

<.0010.66Continuous performance (impulsive)

<.0010.63Continuous performance (sustained)

<.0010.71Stroop

<.0010.79Boxed

<.0010.77Compass

<.0010.66TaskSwitch

<.0010.70Tap and trace

aICC: intraclass correlation coefficient.

ACE-X Validation (Cross-Sectional Study)

Participant Characteristics
Participant demographics for each arm of the ACE-X validation
study are shown in Table 2.
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Table 2. Demographics for normative databases and concurrent validity samples.

Concurrent validity sample (ACE-X+Inquisit)Normative data sample (ACE-Xa only)Demographic

AdultAdultChild

Gender, n (%)

68 (51.5)236 (58.9)2415 (45.85)Woman

62 (47)155 (38.7)2573 (48.85)Man

2 (1.5)9 (2.2)139 (2.64)Nonbinary or other

0 (0)1 (0.3)140 (2.66)Prefer not to answer

132 (100)401 (100)5267 (100)Total reporting gender

Origin, n (%)

45 (34.1)68 (14.1)2392 (44.26)Hispanic

87 (65.9)412 (85.1)2919 (54.01)Non-Hispanic

0 (0)4 (0.8)94 (1.74)Prefer not to answer

132 (100)484 (100)5405 (100)Total reporting origin

Ethnicity, n (%)

21 (15.9)76 (15.7)495 (9.11)Asian or Pacific Islander

31 (23.5)59 (12.2)1036 (19.06)Black or African American

2 (1.5)6 (1.2)29 (0.53)Native American

47 (35.6)278 (57.4)3527 (64.88)White

7 (5.3)25 (5.2)138 (2.54)≥2 ethnicities

0 (0)0 (0)2 (0.04)Not listed

24 (18.2)40 (8.3)209 (3.84)Prefer not to answer

132 (100)484 (100)5436 (100)Total reporting ethnicity

Free or reduced price lunch, n (%)

——b2447 (46.63)Yes

——2801 (53.37)No

——5248 (100)Total reporting free or reduced price lunch

37.04 (13.23)38.11 (14.96)12.78 (1.6)Age (y), mean (SD)

58,429 (90,911)78,220 (77,865)148,799 (116,773)Income (US $), mean (SD)

132 (100)484 (100)5436 (100)Total, n (%)

aACE-X: Adaptive Cognitive Evaluation-Explorer.
bNot applicable.

Consistency of ACE-X Performance Metrics
Tables S3-S11 in Multimedia Appendix 1 present ACE-X mean
performance metrics by age group, while Table 3 provides
minimum and maximum mean values as reported in a selection
of EF literature (Table S1 in Multimedia Appendix 1 provides
more information on selected references). The majority of
ACE-X tasks show mean values that fall within observed ranges,
with a few exceptions. Notably, for the Flanker task, mean
response times were slower than those observed in the selection
of relevant literature for ages ≤17 years and ≥40 years. However,
these age groups were absent from our literature review, making
it unclear whether these response times are typical for the
youngest and oldest participants in our sample. Moreover, these

values were not extremely different from those observed in the
literature (2%-11% slower than the literature reported maximum
value); therefore, while outside of the observed ranges with
other age groups, differences were mostly negligible when
compared to ranges for those ages. Two tasks also showed
consistent differences in accuracy. Accuracy for TaskSwitch
was consistently lower for all reported age groups. However,
the accuracy was higher on the Tap and Trace task for all but
the ≤12 years age group. These differences may be due in part
to ACE-X’s adaptive mechanisms, which are meant to balance
speed and accuracy. Furthermore, the unique task design of Tap
and Trace may have made this task less comparable to other
tasks in the selected literature, thus yielding differences in
accuracy.
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Table 3. Minimum and maximum values of similar tasks performance metrics reported in the selected literature.

Values, rangeTasks and metrics

Basic response time

231-518Response time

Forward spatial span

4.80-9.61Object span

Backwards spatial span

4.20-9.05Object span

Flanker

350-569Response time

89-100Accuracy (%)

Continuous performance (impulsive)

294-460Response time

Continuous performance (sustained)

346-626Response time

Stroop

594-818Response time

84-98Accuracy (%)

Boxed

422-2250Response time

89-99Accuracy (%)

Compass

267-1075Response time

TaskSwitch

500-1440Response time

92-100Accuracy (%)

Tap and trace

360-1280Response time

92-95Accuracy (%)

Internal Structures
After establishing the reliability and consistency of performance
metrics with relevant literature, we found support for 3
communities of ACE-X task performances using network
analysis. Results of this analysis and community detection
performed using adult participants from the ACE-X validation
cohort are shown in Figure 2 (Table S12 in Multimedia
Appendix 1 gives estimates and SEs of edge weights). After
pruning nonsignificant partial correlations, 37 parameters (17
edge weights, 10 means, and 10 scalings) were estimated in this
model, leaving 28 df. From these results, we suggest that the 3
communities corresponded to “set reconfiguration” comprised
forward and backwards spatial span and TaskSwitch;
“attentional control” comprised the 2 CPTs; and “interference
resolution” was associated with Tap and Trace, Compass,
Stroop, Boxed, and Flanker. This community configuration was

selected in 85% of replications of the Spinglass algorithm. The
strongest associations, as indicated by line thickness in the
network graph, were observed between the 2 CPTs, between
forward and backwards spatial span, between Stroop and Boxed,
and between Boxed and Flanker. While these tasks were more
strongly connected, other tasks, such as TaskSwitch, Tap and
Trace, Compass, Boxed, and Stroop, were more distally related
but shared connections with multiple communities of tasks. Of
these tasks, TaskSwitch was the only one to share connections
with all 3 communities, suggesting that switching abilities may
be important for set reconfiguration as well as for attentional
control and interference resolution (Figure S1 in Multimedia
Appendix 1 depicts network centrality measures). Results of
bootstrapped CIs suggested stability of edge weights across
2500 resamples and are presented in Table S13 in Multimedia
Appendix 1.
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Figure 2. A network graph of Adaptive Cognitive Evaluation-Explorer (ACE-X) task performance. Network configuration was selected in 85% of
Spinglass algorithm replications. B. Span: backwards spatial span; CPT: continuous performance task; F. Span: forward spatial span; Imp Attn: continuous
performance task—impulsive; Sust Attn: continuous performance task—sustained.

On the basis of the results of the network analysis and
community detection, we fit correlated 3-factor and bifactor
models of EF to reflect factors of set reconfiguration, attentional
control, and interference resolution. This approach revealed that
while a correlated 3-factor model suggested ACE-X tasks are
strong indicators of the underlying factors, the bifactor model
may be overly complex in describing this set of data, as
indicated by issues with convergence. Table 4 provides factor
loadings for the correlated 3-factor and bifactor models of EF
(factor models shown in Figures 3 and 4). Beginning with the
correlated 3-factor model, factor loadings suggest ACE-X task
performance is associated with the 3 factors of set
reconfiguration, attentional control, and interference resolution.
For each of these 3 factors, the strongest indicator for set
reconfiguration was TaskSwitch, while the strongest indicators
for attentional control and interference resolution were
CPT—sustained and Boxed, respectively. Moreover, factor
correlations suggested moderate to strong relations between the
3 constructs. The most closely aligned constructs were set
reconfiguration and interference resolution (r=0.84), followed
by attentional control and interference resolution (r=0.46), and

finally the least aligned constructs were set reconfiguration and
attentional control (r=0.37). The bifactor model, on the other
hand, converged with warnings of a negative variance. Upon
inspection of results, a negative residual variance associated
with the CPT—impulsive task was the source of the warning.
Negative variance estimates can occur for many possible
reasons, including outliers [55], underidentification [56,57],
model misspecification [56,58-60], and sampling fluctuations
[56,61,62]. In the current case, we can reasonably assume that
this is caused by a model misspecification; specifically, the
attentional control factor is likely underidentified due to only
2 associated indications (CPT-sustained and CPT-impulsive).
Because the bifactor model requires estimates of 2 factor
loadings per indicator, the model likely fails because we cannot
estimate so many parameters with so little information provided.
Therefore, we reason that the bifactor model is likely too
complex a representation for this set of cognitive data and that
associated estimates should be considered unstable. Due to this
likely instability of factor loadings associated with these results,
we do not interpret factor loadings for the bifactor model here.
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Table 4. Standardized factor loadings for correlated 3-factor and bifactor models of executive function.

BifactoraCorrelated 3-factorTask

IRACSREFeIRdACcSRb

——0.3910.435——f0.515Forward spatial span

——0.6290.341——0.455Backwards spatial span

–0.444——0.5150.56——Flanker

—1.014—0.161—0.782—Continuous performance (impulsive)

—0.841—0.176—0.798—Continuous performance (sustained)

0.114——0.7780.714——Stroop

–0.151——0.8090.829——Boxed

–0.284——0.5930.641——Compass

——0.1170.603——0.678TaskSwitch

–0.046——0.5180.525——Tap and trace

aModel converged with warnings (negative variance).
bSR: set reconfiguration.
cAC: attentional control.
dIR: interference resolution.
eEF: executive function.
fNot available.

Figure 3. Path diagram of the correlated 3-factor model of Adaptive Cognitive Evaluation-Explorer (ACE-X) task performance. B Span: backwards
spatial span; F Span: forward spatial span; Imp Attn: continuous performance task—impulsive; Sust Attn: continuous performance task—sustained.
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Figure 4. Path diagram of the bifactor model of Adaptive Cognitive Evaluation-Explorer (ACE-X) task performance. B Span: backwards spatial span;
F Span: forward spatial span; Imp Attn: continuous performance task—impulsive; Sust Attn: continuous performance task—sustained.

Finally, measures of fit for the network, correlated 3-factor, and
bifactor models of EF indicate that the network model provided
the best explanation of ACE-X task data (Table 5). The network
model provided the best fit to the data according to all measures
of fit considered, suggesting that ACE-X task performance can

be well described as an interconnected network of EF abilities.
Therefore, in the next set of analyses, the network model was
used when considering the invariance of parameters across
younger and older participants.

Table 5. Fit indices for network, correlated 3-factor, and bifactor models of executive function.

BifactoraCorrelated 3-factorNetworkFit index

345.9 (30)117.03 (32)40.1 (28)Chi-square (df)

<.001<.001.06P value

0.730.930.99CFIb

0.141 (0.128-0.154)0.071 (0.057-0.085)0.029 (0.000-0.047)RMSEAc (low-high)

5369.075127.685075.87BICd

5257.974986.614917.71AICe

aModel converged with warnings (negative variance).
bCFI: comparative fit index.
cRMSEA: root mean square error of approximation.
dBIC: Bayesian information criterion.
eAIC: Akaike information criterion.

Invariance
We next considered the invariance of the network model of EF
and found evidence that edge weights for younger and older

adults can be considered equivalent (Table 6). We began by
fitting the unconstrained model, followed by a model where the
edge weights were constrained to be equal, a model where means
and edge weights were constrained, and a model where all model
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parameters were constrained. We first found that the configural
model for younger and older participants fit the data well

(χ2
67=122.7; P<.001; CFI=0.95; RMSEA=0.056, 0.040-0.071;

BIC=5135.38; AIC=4866.074). However, examining the results

of the χ2 likelihood ratio tests suggests that constraining any of
the 3 parameters (edge weights, means, or scaling) resulted in
significant detriments to model fit, indicating that younger and
older participants differ in their structural organizations of EF.

However, when considering information criteria fit indices,
which also take model complexity into account, the best-fitting
model was the one where edge weights were constrained to
equality between younger and older adults. This would suggest
that while there may be differences in terms of means and
variances between younger and older adults (Table S13 in
Multimedia Appendix 1), partial associations among ACE-X
task performances can be considered consistent across
participants.

Table 6. Network invariance fit indices for younger versus older participants.

Equal edge weights+equal means+equal
scaling

Equal edge weights+equal meansEqual edge weightsUnconstrained modelFit index

267.78 (96)192.65 (84)102.08 (74)122.67 (67)Chi-square (df)

75.13 (12)90.57 (10)20.58 (7)—aΔchi-square (Δdf)

<.001<.001.004—P value

4953.184902.054831.494866.07AICb

51.1370.5634.58—ΔAIC

5098.525098.695070.875135.38BICc

0.1727.8264.51—ΔBIC

aNot available.
bAIC: Akaike information criterion.
cBIC: Bayesian information criterion.

Relations to Other Variables
Finally, Pearson correlation coefficients between ACE-X and
Inquisit tasks suggest mixed evidence in support of concurrent
validity for ACE-X tasks (Table 7). Most ACE-X tasks (forward
spatial span, Flanker, CPT, Stroop, Boxed, Compass, and
TaskSwitch) were only moderately related to the respective
Inquisit task. Somewhat unexpectedly, Tap and Trace of ACE-X
and the Trail Making task of Inquisit showed the highest degree
of task overlap (Table S1 in Multimedia Appendix 1), as these
2 tasks were one of the more divergent task sets. Two sets of
tasks, backwards spatial span with backwards Corsi block and
Basic Response Time with Simple Visual Response Time,
revealed unexpected null associations. Technical issues with

the Inquisit backwards Corsi block task could be to blame for
the null correlation with its ACE-X counterpart, as 18.9%
(25/132) of participants reported to the research team that they
were unable to complete this task. This issue also explains the
low sample size for this pair of tasks. While technical issues
could be responsible for the observed null association between
backwards spatial span and the backwards Corsi block task, the
low correlation between Basic Response Time and Simple
Visual Response Time could potentially be due to various
factors, including global platform differences between ACE-X
and Inquisit, differences in the handling of dominant versus
nondominant hand responding, or elapsed time between trials
(refer to subsequent sections for further discussion).
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Table 7. Pearson correlations between Adaptive Cognitive Evaluation-Explorer and Inquisit tasks.

P valueValues, n (%)rTask pair

.0558 (43.9)0.26Basic response time–simple visual response time

<.00167 (50.8)0.42Forward spatial span–forward Corsi block

.7642 (31.8)−0.05Backwards spatial span–backwards Corsi block

.00163 (47.7)0.42Arrow flanker–letter flanker

.0159 (44.7)0.33CPTa impulsive–TOVAb frequent

.00358 (43.9)0.39CPT sustained–TOVA infrequent

<.00174 (56.1)0.49Color-word Stroop–classic Stroop

<.00161 (46.2)0.46Boxed–visual search

<.00160 (45.5)0.44Compass–Posner cueing

.0169 (52.3)0.31TaskSwitch–category switch

<.00155 (41.7)0.62Tap and trace–trail making

aCPT: continuous performance task.
bTOVA: tests of variables of attention.

Discussion

Principal Findings
As EFs have been shown to predict positive life outcomes and
academic success, understanding how to measure them
efficiently and accurately is exceedingly important to the field.
Here, we presented evidence supporting the reliability and
validity of an adaptive, mobile measure of EFs using a large,
diverse sample. As previously demonstrated, the incorporation
of gamification elements can enhance the sensitivity of a given
testing experience through greater participant engagement [32].
While the impact of such gamification directly on task
performance and EF measurement has been debated [19], the
ability to raise engagement, especially in populations with
known elevated performance variability, is a valuable approach
to increase testing sensitivity. For adults, ACE-X tasks showed
consistency in performance across repeated administrations, as
well as a hypothesized network structure, which supported 3
communities of tasks representing set reconfiguration,
attentional control, and interference resolution. Moreover, the
associations in EF performance suggested by the network model
appeared to be consistent across younger and older adults,
indicating that the internal structure of ACE-X remained
invariant across different ages. Evidence of consistency of
performance metrics suggested validity was also supported by
comparisons to similar values reported in the literature for both
adults and children or adolescents, with future research needed
to close the gap in validity evidence for children or adolescents
related to test-retest consistency and consistency in internal
structures during these developmental periods. While we found
strong evidence to support reliability, consistency of
performance metrics, and internal structures of ACE-X, evidence
related to concurrent validity of ACE-X task performance was
mixed. In the subsequent sections, we describe implications of
these findings and address concomitant limitations in greater
detail.

Correspondence Between ACE-X Tasks and EF
Constructs
Here we found evidence for 3 EF constructs, which we labeled
set reconfiguration, attentional control, and interference
resolution. While researchers largely agree that EFs can be
organized into 3 core constructs, these typically are thought to
correspond to inhibitory control, working memory, and cognitive
flexibility (the study by Diamond [1] presents a review on EFs).
While the correlated 3-factor model was not ultimately selected
as the best-fitting model, it does provide some insights into how
well these 3 theoretical EF constructs were measured.
Examinations of factor loadings suggest that constructs of
working memory and inhibitory control were well measured,
as indexed by strong associations with the respective EF
constructs. Specifically, tasks of forward and backwards spatial
span, which are typically used to index aspects of working
memory, both showed factor loadings of >0.40, while all other
tasks showed strong associations with aspects of inhibitory
control constructs with all loadings >0.50 (except for
TaskSwitch, which was strongly associated with working
memory). While these observations are gathered from the
correlated 3-factor model, evidence suggests that the network
model fits the data better. More specifically, the network model
may provide a better representation of EF task performances as
an interconnected network. In such a network, task performance
would be directly related to other task performances, as opposed
to correlations between task performances and associated EF
constructs (as suggested by the correlated 3-factor model).
Indeed, examinations of internal structures with a prior iteration
of ACE-X, ACE-C, suggest that not only does the network
structure well describe associations between task performances
but also aligns with developmental theories supporting
differentiation of EF constructs over time [13].

On the basis of the results of the network analysis of EFs, the
constructs measured by ACE-X do indeed reflect cognitive
processes associated with working memory and aspects of
inhibitory control, with the engaged cognitive flexibility
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processes calling upon each of these 2 dominant constructs. The
involvement of working memory and inhibitory control in
cognitive flexibility abilities has been well documented [63-70],
with the present findings replicating such work. For example,
forward and backwards spatial span revealed a specific relation
with the TaskSwitch paradigm, one of ACE-X’s measures of
set reconfiguration. This result is aligned with the literature
[63,64,68-70], as working memory is required to recall the cued
mappings and enable the constant reconfiguration of a given
informational set to successfully complete the TaskSwitch
paradigm. A similar pattern emerged regarding the ACE-X tasks
indexing interference resolution and the Tap and Trace cognitive
flexibility measure [65-67]. Unlike TaskSwitch, the Tap and
Trace task design intentionally has an aspect of interference
embedded in the task (eg, a visuomotor tracking task while
trying to perform the perceptual discrimination task) in addition
to the engagement of attentional control through the CPT aspects
of the task. Thus, these task design features potentially explain
the reason that Tap and Trace was predominantly associated
with the interference resolution community, unlike TaskSwitch.
Such interpretations are supported by inspection of the network
graph: TaskSwitch is centrally located among other tasks but
shares relatively weak connections, while Tap and Trace lies
on the outskirts of the graph, sharing connections within
interference resolution measures.

Using such a mutualistic network model of EFs to examine
correspondence between younger and older adults, we found
evidence that each set of associations between EF task

performances can be considered equivalent. While results of χ2

likelihood ratio tests suggested no invariant parameters, when
considering comparative fit indices, which account for not only
the fit of the model to the data but also the complexity of the
model, the best-fitting model included equivalent edge weights
with all other parameters free to vary. This suggests that for
younger and older adults, the association between each set of
EF task performances is fundamentally equivalent, but there
are differences in the mean and scaling structures of the network
model of EFs. This noninvariance of means and scaling is
interesting, although perhaps not surprising, as EF has been
shown to evolve across the lifespan [71]. Inspection of the
unconstrained results for means and scaling suggests that
younger adults’performance levels were better than older adults
and that younger adults also tended to be more variable than
older adults on average. This is in line with research suggesting
that EFs of inhibitory control and working memory capacity
tend to follow a U-shaped pattern, where EF performance tends
to improve across adolescence into early adulthood, with an
eventual leveling and gradual decline across middle and old
age.

Consistent with a growing body of literature [10,11,13], our
findings suggest support for a hierarchical or mutualistic
structure of EF task performance. While hierarchical models
express lower-level EF constructs (ie, working memory,
inhibition, and cognitive flexibility) as organized under a
unifying common EF factor [72,73], mutualistic models (such
as the network model here) instead account for, or partial out,
what is common among EF task performance to model unique
associations (eg, by using partial correlations as presented in

the study by Younger et al [13]). Alternatively, in a seminal
paper investigating EF development, Friedman et al [10]
introduced a nested factor model of EFs, where all tasks instead
load onto a common EF factor (inhibition), while updating- and
switching-specific tasks were allowed to separately load onto
unique factors. This model emphasizes the connected nature of
EF tasks while also acknowledging specific task contributions
beyond the unifying common EF factor. While the bifactor
model examined here is the most similar to this model, we
encountered problems in the estimation process, suggesting that
this model may be too complex a representation for the EF task
performances captured by ACE-X. Instead, this and recent work
by our group that examined EF development and network
connectedness across middle childhood [13] supports the
mutualistic network model, demonstrating performance on the
ACE-C software as an interconnected network of EF
components. Thus, the present findings provide further support
for this growing body of evidence for a hierarchical or
mutualistic model of EF task performance, rather than EFs being
separate but related constructs. As demonstrated here, the
network model performed better than either the correlated
3-factor model or the bifactor model, indicating that a
mutualistic structure may be ideal to describe EF task
performances.

While agreement on the most appropriate factor structure of EF
has not been unanimous, what is clear is that EF task
performances share a great deal of communality not fully
explained by lower-level constructs. In other words, successful
performance on EF tasks will almost always engage more than
1 EF. For example, to hold and manipulate information in mind
(working memory), you must first attend to the relevant
information while avoiding interference from distractions
(interference resolution). Moreover, shifting from one cognitive
demand to another (cognitive flexibility) requires updating
information related to the new demand (working memory) while
suppressing information related to the prior demand (inhibitory
control). Therefore, it is imperative that this communality is
considered, whether by directly modeling it (eg, in a hierarchical
factor structure) or by controlling for it (eg, by using partial
correlations in a network model). Here, we have found
supporting evidence that the underlying structure of ACE-X
follows this same pattern, with a network model that controls
for the shared commonality of other EF tasks providing the best
fit to the data. Moreover, this network structure remains
invariant across younger and older adults, suggesting
consistency in the measurement of these EFs.

Assessing Concurrent Validity Between ACE-X and
Similar Tasks
Comparisons between ACE-X and Inquisit revealed mostly
moderate and even some null associations within the task sets.
There are several reasons for these lower associations between
instruments that do not necessarily undermine the validity of
ACE-X efforts. First, although similar in design, some task
differences may have influenced the ability to detect concurrent
validity. For example, Inquisit uses the traditional Corsi-esque
approach on the spatial span tasks involving 2 consecutive
successful trials to advance and 2 consecutive misses to end a
given testing session. Alternatively, ACE-X uses a “3 correct
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rule” in place for advancement and allows participants to miss
1 trial and still advance so long as the total number of correct
responses sums to 3. As another example, while ACE-X’s Basic
Response Time task separately measures responding for
dominant and nondominant hands, the Simple Visual Reaction
Time task of Inquisit does not explicitly indicate which hand
the participant should use while responding. A more global
platform difference is that Inquisit tasks tend to include more
trials and more conditions and take longer to complete than
ACE-X tasks, leading to potential participant testing fatigue
when compared to ACE-X. Again, using Basic Response Time
and Simple Visual Reaction Time as an example, while the
number of trials is similar between ACE-X and Inquisit tasks,
the time between trials is significantly longer in Inquisit (ranging
between 2000 and 8000 ms vs between 800 and 1200 ms for
ACE-X). Second, ACE-X tasks were specifically designed to
adaptively challenge participants to respond as quickly and
accurately as possible, with task difficulty changing on a
trial-to-trial basis, unlike Inquisit tasks. The incorporation of
this adaptivity, along with the gamified elements, likely made
for a very different testing experience between the 2 platforms,
and previous work has demonstrated that nonadaptive,
nongamified assessments can lead to greater measurement
variability [30]. Thus, trying to establish concurrent validity
with any other instrument that did not use underlying adaptive
mechanics (including Inquisit) was going to lead to a very
different testing experience. The utility of ACE-X to assess EFs
in a meaningful fashion is demonstrated through the other data
presented here, which is warranted given that concurrent validity
is often regarded as a weak type of validity if presented on its
own [74,75].

Despite achieving mostly weak to moderate associations with
Inquisit task performances in our analyses of concurrent validity,
the accuracy of ACE-X tasks in measuring EFs is indeed
supported by the results of the network analysis. The network
model and community detection results presented here garner
support for the accuracy of ACE-X as task performances
grouped together in specific, predictable clusters consistent with
theoretical organizations of EFs. Hypothetically, the use of
partial correlations within the network framework helps to
account for common method variance, as network edge weights
represent commonality between pairs of tasks after variance
associated with the full set of ACE-X tasks has been accounted
for. What remains is the association specific to that set of task
performances, beyond what is shared with the full set of tasks.
It is unknown whether and how the task performances on
Inquisit measures would form similarly expected clusters. Here,
we have chronicled our efforts in understanding the various
facets of the validity of ACE-X, although further research is
needed to determine which of the sets of measures produce an
internal structure that is better aligned with theoretical
organizations of EF.

Limitations and Future Directions
Several limitations should be considered with the present
findings. Related to selection of metrics of interest, for many
tasks (Flanker, Stroop, Boxed, Compass, and TaskSwitch) we
have reported reliability and validity evidence for RCS, rather
than some of the more commonly reported metrics for these

tasks (eg, accuracy, mean response time, and cost score). We
made this decision based on several considerations. First, we
felt it important to report validity evidence for a metric that
incorporates both accuracy and response time since both are
important to a complete understanding of task performance for
the indicated tasks. Furthermore, the precedence for the use of
this metric has been established with ACE-X’s precursor,
ACE-C, as RCS performed well in terms of reliability and as a
metric in analyses of internal structure in a large sample of
children or adolescents [13,18]. Cost scores, which attempt to
capture discrepancies in performance associated with moving
from an easier to harder task condition, also present their own
set of challenges as they have shown questionable reliability in
previous examinations [76]. Here, we have taken a balanced
approach by reporting mean response times and accuracy in the
consistency of performance metrics section to contrast these
commonly reported metrics within the literature but used the
RCS metric in other reliability and validity analyses. Because
RCS performed well in terms of both reliability and validity for
all tasks where we used this metric, we found it unnecessary to
explore the validity of other possible metrics here.

Moreover, some of our statistical comparisons were limited by
the task metric of interest when it came to forward and
backwards spatial span tasks. Because these tasks are limited
by the number of items that can be stored in short-term memory,
we are limited to a standard range of about 7 (SD 2). This
restricted range results in limited variability, making it more
difficult to find significant relations. This restricted range also
creates a problem for test-retest correlations, as even relatively
minor improvements in task performance become exaggerated
by the narrow possible range of scores. While we acknowledge
this as a limitation here, it does not necessarily reflect a problem
with these tasks or their validity, though other metrics that
consider the number of trials needed to get to the final object
span may be better equipped to handle subtle variations in task
performance by capturing a more continuous measure of
performance and should be considered in the future.

One relevant concern of this work involves our reliance on
MTurk and other social media platforms in recruiting
participants. Consequently, aspects related to the
representativeness of the said participants should be considered
when evaluating the generalizability of the findings. Previous
work described the lack of heterogeneity in users that can arise
from such recruitment strategies, which can in turn foster a bias
in collected data and subsequent interpretations. Alternatively,
others have argued that such drawbacks do not warrant
precluding the use of said platforms [77], as recruiting biases
are often present in most research studies [78,79]. In either case,
the present findings should be considered with both perspectives
in mind.

While ACE-X was designed to measure EFs for individuals
aged ≥7 years, the addition of specific design facets may
facilitate the use of ACE-X in even younger populations. For
example, the incorporation of in-app tutorials that guide new
users through the user interface and key features can be
beneficial in demonstrating how to use a given feature even
with limited literacy. Similarly, there are many games whose
instructional design allows users to explore, without
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consequences, how to play a given game, especially for children
aged <7 years [80]. These types of mechanics warrant further
exploration not only for potentially enhancing the reach of
ACE-X but also for other digital tools that could benefit a
younger population.

It is true that digital health technologies, such as ACE-X, can
provide a potentially direct, cost-efficient, and convenient way
to allow researchers to gather data in a multitude of settings.
However, it should be noted that the effectiveness of EF
assessments can vary significantly across different cultural
contexts [81]. Future studies in this regard with ACE-X are
warranted, as rigorous studies of cultural adaptation in the digital
context are noted as being scarce [82], and the ACE-X software
architecture allows for the ability to easily change aspects,
including avatars and language.

Finally, a significant limitation here was the lack of validity
evidence collected for child or adolescent participants. Changes
brought about by the COVID-19 pandemic left us with limited
access to schools and, therefore, limited control in terms of task
administration and timing. We were often limited to
administering only 2 or 3 possible task orders with a very narrow
window of time for task administration. This meant that often
we were only able to collect task data for a specific
predetermined construct set. While we have made efforts to
overcome challenges brought about by the COVID-19 pandemic
and have acknowledged specific known impacts, it is always
possible that some other unknown influence may have affected
the reliability and validity of the results presented here. Because
of these limitations, while we did find support for reasonable
performance metrics contrasted to similar tasks in the literature,
future research will be needed to adequately assess other

evidence of reliability and validity for children and adolescents,
perhaps making use of planned missingness designs to keep
study demands reasonable for these young participants.

Conclusions
The evidence presented here supports the use of ACE-X as a
measure for understanding individual differences in EFs as well
as those EFs’ relations to external variables. The possibility of
using ACE-X performance as a diagnostic or screening tool for
understanding potential deficits in EF performance is still to be
determined. This would require careful selection of normative
and clinical samples of test takers to create comparison groups
and establish appropriate ranges for cut points.

The COVID-19 pandemic provided the initial push toward
ecological validity through assessing EFs in familiar home
environments and increased the need for valid and reliable
remote research tools. Here, with >6000 participants, we have
provided evidence in support of ACE-X, a mobile, adaptive set
of cognitive tasks with engaging language and immersive
graphics, as a reliable and valid measure of EFs. We expect that
as technology continues to progress, ACE-X and other similar
gamified versions of cognitive tasks will become integral in
understanding relational patterns between EFs and important
life outcomes. While we have made significant headway in
uncovering evidence in support of reliability and validity for
adult participants, there is still work to be done to recreate these
findings with children and adolescents. However, these
validation efforts provide evidence that this gamified research
tool could play a pivotal role in the world of remote data
collection while advancing the methods used to assess EFs in
real-world settings.
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