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Abstract

Background: Clinical decision support systems leveraging artificial intelligence (AI) are increasingly integrated into health
care practices, including pharmacy medication verification. Communicating uncertainty in an AI prediction is viewed as an
important mechanism for boosting human collaboration and trust. Yet, little is known about the effects on human cognition as a
result of interacting with such types of AI advice.

Objective: This study aimed to evaluate the cognitive interaction patterns of pharmacists during medication product verification
when using an AI prototype. Moreover, we examine the impact of AI’s assistance, both helpful and unhelpful, and the
communication of uncertainty of AI-generated results on pharmacists’ cognitive interaction with the prototype.

Methods: In a randomized controlled trial, 30 pharmacists from professional networks each performed 200 medication verification
tasks while their eye movements were recorded using an online eye tracker. Participants completed 100 verifications without AI
assistance and 100 with AI assistance (either with black box help without uncertainty information or uncertainty-aware help,
which displays AI uncertainty). Fixation patterns (first and last areas fixated, number of fixations, fixation duration, and dwell
times) were analyzed in relation to AI help type and helpfulness.

Results: Pharmacists shifted 19%-26% of their total fixations to AI-generated regions when these were available, suggesting
the integration of AI advice in decision-making. AI assistance did not reduce the number of fixations on fill images, which
remained the primary focus area. Unhelpful AI advice led to longer dwell times on reference and fill images, indicating increased
cognitive processing. Displaying AI uncertainty led to longer cognitive processing times as measured by dwell times in original
images.

Conclusions: Unhelpful AI increases cognitive processing time in the original images. Transparency in AI is needed in “black
box” systems, but showing more information can add a cognitive burden. Therefore, the communication of uncertainty should
be optimized and integrated into clinical workflows using user-centered design to avoid increasing cognitive load or impeding
clinicians’ original workflow.

Trial Registration: ClinicalTrials.gov NCT06795477; https://clinicaltrials.gov/study/NCT06795477

(J Med Internet Res 2025;27:e59946) doi: 10.2196/59946
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Introduction

Clinical decision support systems (CDSS) are tools that use
medical knowledge and health information to aid clinicians’
decision-making to provide enhanced patient care [1,2]. CDSS
can be classified into 2 types: knowledge-based and
non–knowledge-based [2]. In knowledge-based CDSS, relevant
information is evaluated by a set of IF-THEN rules, and
recommendations are generated. Non–knowledge-based CDSS
use artificial intelligence (AI) and machine learning (ML)
methods rather than rules to evaluate information and generate
recommendations [3]. Various CDSS have been designed to
aid pharmacists’clinical work, including checking for drug-drug
interactions [4], antibiotics stewardship [5], and drug utilization
review [6].

Pharmacists’ medication product verification is an example of
a pivotal yet time-consuming and vigilant process. During
medication product verification, pharmacists compare the
contents of a filled medication bottle to professional, close-up
images of medication that are integrated into the dispensing
platform. Although most pharmacists are checking a physical
bottle with the pills inside, the industry is moving toward
verification using images of filled medication bottles.
Pharmacists spend 30%-48% of their time verifying and
dispensing medications [7,8]. Multiplying the time by the mean
salary of a pharmacist [9], this equals US $38,823-US $62,117
per pharmacist per year. While some states in the United States
have implemented a technician final product verification
(tech-check-tech), the cost is still significant as the mean annual
wage for a pharmacy technician in 2023 was US $43,330.[10]
Furthermore, the tech-check-tech workflow does not eliminate
the potential for human error.

Product verification is not only time-consuming and costly, but
it also requires pharmacists to be vigilant, which can cause
fatigue, cognitive overload, and even result in verification and
dispensing errors. Medication dispensing error can be defined
as “any deviations of the prescription order,” including but not
limited to dispensing the wrong dosage, strength, dose form, or
pharmaceutical ingredient [11]. The estimated rate of medication
dispensing errors is 2.4 in 100 prescriptions [12] in community
pharmacies, with the most common types being wrong
ingredients, wrong strength, and labeling errors [12,13]. These
errors can result in unfavorable therapeutic outcomes, which
can have adverse effects on patient safety and outcomes.

Leveraging its capability to process large amounts of data,
AI-based CDSS can help pharmacists reduce cognitive load and
maintain vigilance. The term vigilance is used to describe the
level of maintaining focus and alertness over a prolonged period
of time [14]. Human vigilance tends to decrease over time, and
multiple theories explain the phenomenon, including the
overload theory (reduction of information-processing abilities),
underload theory (mindlessness due to repetitive nature), and

fatigue [15-17]. Since AI has the power to process large amounts
of information, it can reduce humans’ cognitive load and
maintain their information-processing ability. However,
balancing transparency and information load is necessary to
avoid cognitive overload. Providing too much information can
come at the expense of making the task more cognitively
demanding. Marusich et al [18] found increasing information
in safety-critical situations decreased users’ situational
awareness and performance. Similarly, Wu et al [19]
examination of high, moderate, and low-complexity user
interfaces found significant differences between high- and
low-complexity interfaces. Low-complexity interfaces
significantly increased users’ attention and decreased cognitive
load compared with high-complexity interfaces (P<.05).
Furthermore, cognitive load is not static. Experts and novices
at a given task have different levels of cognitive overload; expert
users have significantly less cognitive load than novices when
using an interface of the same level of complexity [19].
Therefore, it is critical to meet the information needs of users
in the design of AI advice.

AI and ML–based CDSS are often “black box” systems, where
there is a lack of insight into the AI and ML prediction. As a
result, there is an increasing call for greater AI transparency
among medical professionals, emphasizing the need to display
the uncertainty of AI-generated results [20,21]. While presenting
this uncertainty may initially confuse users and require more
cognitive effort to make decisions [22], it has significant
benefits. Displaying uncertainty helps mitigate issues with AI
and ML like overreliance and bias, which fosters better
human-AI collaboration and trust [22,23]. This transparency
enables users to recognize that AI and ML predictions are not
definitive, encouraging them to incorporate their judgment into
decision-making. In addition, showing uncertainty serves as a
new stimulus that maintains user vigilance, preventing boredom
or mindlessness as suggested by the underload theory [17].

AI and ML–based CDSS have the potential to improve medical
care if the systems perform well and are appropriately
implemented [24]. However, when the AI provides inaccurate,
unreliable, and biased results, it can lead users to decision errors
due to mechanisms such as automation bias and algorithmic
aversion [25]. Automation bias is defined as people’s heuristic
belief that automation’s performance is consistent when the
system’s performance is not always perfect, which can lead to
users accepting incorrect advice or rejecting correct advice [25].
Conversely, algorithmic aversion reflects the tendency of users
to not trust the algorithm’s performance after seeing it make
mistakes, even when its performance is better than humans [26].
In a study of users’ assessments of AI and human errors in
high-stakes situations (ie, medical and legal), users rated AI
errors significantly more harshly and less fair than human errors
(P<.001) [25]. This result was echoed by Dietvorst et al [26],
who studied the effect of AI errors on participants’ correctly
predicting outcomes. Despite the AI significantly outperforming
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the humans, participants were significantly less likely to trust
the AI’s prediction and their confidence in the AI significantly
decreased after seeing an AI error. To prevent such human errors
in clinical decision-making with the help of AI, high-performing
and reliable systems are pivotal. In this study, we assess the
impact of helpful and unhelpful AI on user cognitive workload.

Previously, our group developed an AI prototype aiming to help
pharmacists with medication product verification and reduce
dispensing errors. Using the participatory design method,
researchers conducted focus groups with pharmacists who had
medication verification experience to understand the workflow,
difficulties, and concerns of the current process, and ideas about
incorporating AI to aid this process. Based on pharmacists’
feedback, a user-centered AI interface emphasizing clarity and
accessibility was developed. The development of the AI help
software is detailed in previous research by Zheng et al [27].
The purpose of this paper is to establish how pharmacists
cognitively incorporate and use an AI prototype during the
medication product verification process by analyzing
eye-tracking fixation data.

Methods

Participants and Trial Design
This study was a randomized controlled trial. We recruited 30
pharmacists to participate in a single, remote study visit. Out
of 2 listservs for professional pharmacists, the Minnesota
Pharmacy Practice-Based Research Network and the University
of Michigan College of Pharmacy Preceptor Network were used
to recruit participants. The listserv managers sent a recruitment
email instructing interested pharmacists to contact the study
team to schedule a screening phone call. The study’s inclusion
criteria were (1) a licensed pharmacist in the United States, (2)
at least 18 years old at the time of screening, and (3) access to
a laptop or desktop computer with a webcam to complete the
experiment. The exclusion criteria were (1) require assistive
technology to use the computer, (2) need eyeglasses with more
than 1 power (eg, bifocals) to complete the experiment, (3) have
uncorrected cataracts, intraocular implants, glaucoma, or
permanently dilated pupils, or (4) eye movement or alignment
abnormalities. A random number generator created in R (R Core

Team) assigned each participant to receive black box or
uncertainty-aware help. The probability of being assigned to
black box help trials or uncertainty-aware help trials was equal
for all participants as was the probability of completing the first
100 trials with AI help or without AI help. In each trial,
participants would check the images on the screen and decide
whether it was a good fill (the medication in the fill image is
identical to the medication in the reference image) or a bad fill
(the medication in the fill image and the reference image are
different) and hit either the reject or the accept button.

To ensure confidence in the quality of the remote data collection,
all participants met online with a researcher before performing
any study activities. The purpose of the online meeting was to
ensure the study setup was consistent (eg, adequate lighting and
no glare) and participants had the required materials (ie, ruler
or tape measure, and standard ID) to conform with Labvanced’s
eye-tracking and calibration requirements. After meeting with
the researcher, all participants watched an orientation video
which provided a detailed overview of the study including an
explanation of how the AI software makes its predictions and
an introduction on how to use the interface to perform the
verifications.

The Task: Pharmacists’ Medication Verification

Overview
Pharmacists are responsible for dispensing the correct
medication to patients to ensure optimal therapeutic outcomes.
Before dispensing medications to patients, pharmacists must
visually inspect the medication being filled and compare them
to the prescribed drugs. This process is called medication
product verification. In the study, each participant performed
200 medication product verification tasks, where their eye
movement was recorded using an eye tracker. Each participant
conducted 100 medication verifications without AI assistance
and 100 verifications according to their assigned AI help group.
A screenshot of the participants’ view is in Figure 1. To avoid
the carry-over effect, the medications being verified in no AI
help trials were different from those with AI help. However,
the medications were identical in trials with black box AI help
and trials with uncertainty-aware AI help.

Figure 1. The medication verification system interface with AI Help. In trials without AI assistance, pharmacists only have access to the reference
image (refImage) and fill image. With black box AI help, pharmacists saw an AI match plot, which shows the AI’s stance on the match status for 4 key
medication characteristics (imprint, color, shape, and score). In uncertainty-aware AI help, in addition to the match plot, pharmacists also saw the AI
histogram, which displays the probability distribution from 50 predictions, indicating the uncertainty of the prediction. Examples of high certainty
(left-hand image) and low certainty (right-hand image) are shown. AI: artificial intelligence.
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Trial Type
Each trial was configured with specific variables, including type
of AI assistance, case type, and participant performance. There
were 3 categories of AI assistance (1) no help, (2) black box
help, and (3) uncertainty-aware help. In all 3 categories, 76 of
the 100 (76%) trials displayed correctly filled medications. In
the no-help condition, participants used only the reference image
and filled the image and text. Black box help added an
AI-generated match plot, while uncertainty-aware help also
included an AI-generated probability histogram. The case type,
relevant only when AI assistance was provided, referred to the
alignment between the AI’s recommendation and the correct
answer. The AI accurately recommended the correct action
(accept or reject) 79% of the time. There were 2 scenarios: (1)
helpful advice, where the AI’s guidance matched the correct
action (accept or reject), and (2) unhelpful advice, where the
AI’s suggestion opposed the correct answer.

The AI Help Software
We previously developed an automated tool using a Bayesian
neural network [28] to predict the National Drug Code (NDC),
color, and shape of medications using images of pills in a
prescription bottle [29]. In this study, we modified the Bayesian
model [30] to predict the dispensed pills’ NDC and the
associated model’s uncertainty of the predictions. This was
accomplished by applying the random dropout technique [30]
to the ResNet-34 [31] convolutional neural network. The dropout
technique is realized by a layer in the neural network called the
dropout layer, which activates connections in the layer with
certain probabilities. As such, the output of the layer is random
every time it predicts, which we use to measure the uncertainty
of the prediction. In our research, the model generated 50
potential probabilities for every image. Because the distribution
of predicted probabilities could not be written mathematically
in close forms, it was approximated using samples drawn from
the distribution.

A sample size of 50 was used to balance between computational
cost and goodness of approximation. The AI software then
compares the predicted NDC and the reference image NDC to
generate insights on the match status. The final interface had 2
AI-generated regions that were designed to aid pharmacists’
medication verification the AI match plot and AI histogram.
The AI match plot showed the match status of 4 characteristics
between the AI-predicted NDC and the expected NDC on the
prescription which were (1) imprint, (2) color, (3) shape, and
(4) score. The unmatched characteristics were denoted by a red
“X,” while matched ones by a green check. Figure 1 shows a
prediction with 4 green checks.

The AI histogram displayed the probability distribution from
50 AI predictions, each representing the AI’s estimated
likelihood that its predicted NDC matches the expected NDC.
These probabilities form the histogram, illustrating the AI
software “confidence” in the match status. A green peak in the
histogram indicates consistent results across the 50 simulations,
suggesting high confidence. Conversely, a flat, colorful
distribution signifies low confidence. In Figure 1, the left-hand
image shows a highly confident prediction and the right-hand
image shows a low confidence prediction.

A crucial component of this study was to examine how
pharmacists interact with AI-generated errors. The model’s
overall accuracy is 98.46%. For the purpose of this study, errors
were oversampled to obtain a sufficient number of mistakes
which lowered the model’s accuracy to 79% for the experiment.
At 79% accuracy, our model is above the 0.70 reliability
threshold wherein imperfect automation is preferable to no
automation [32]. Lowering the accuracy balanced the number
of trials and participants’ time commitment to the study.

Eye-Tracking Data
Eye-tracking data were collected using software from Labvanced
(Paderborn). Labvanced uses deep learning models to process
webcam videos, allowing online eye movement tracking. The
accuracy and precision are comparable to in-laboratory “gold
standard” eye trackers and are verified in a peer-reviewed paper
[33]. Participants logged on to the Labvanced Trials website.
First, they verified the webcam accurately captured their face
and agreed to the recording and data use policy before starting
the trial. Participants were then prompted to complete a
demographics questionnaire that included questions such as
age, gender, race, pharmacy practice experience level, practice
setting, and trust level in automated systems.

The first phase of the trial was the calibration. During
calibration, participants were first asked to measure the distance
of their face to the screen and set the center pose that worked
best. The actual calibration included 2 parts: (1) the position
and orientation and (2) fixation (ie, focused gaze) to certain
points on the screen. Participants were asked to follow and fixate
on 2 series of red dots on the screen while maintaining their
faces at the center pose. After the calibration was completed,
participants started the medication verification trials. The system
continuously monitored participants’ facial position and
orientation. If participants moved out of the center pose, they
were prompted to re-align their face to the center pose and rerun
the fixation calibration. The raw eye-tracking data were
processed by the Labvanced algorithm [34] to fixation data.
Our analyses were based on the fixation data and excluded eye
movement known as saccades, where participants were simply
transitioning from 1 fixation to the next and not necessarily
fixating in the region.

Data Analysis and Preprocessing
Fixation analysis is the most common metric for analyzing
eye-tracking data. The fixation rate, fixation duration, and dwell
time have been proposed to reflect human cognitive interest in
certain areas of interest [35-37]. Higher fixation rates and longer
dwell times indicate repeated interest in a certain area. The
longer fixation duration indicates a higher cognitive load. To
characterize the use pattern, we were also interested in the order
in which pharmacists use these images. Thus, we report the first
fixation region, the last fixation region, the number of fixations
in each region, the average fixation duration of each fixation,
and the dwell time, which was calculated by the sum of the
duration of all fixations in each region in each trial. We further
stratified the data based on different AI help types (ie, black
box versus uncertainty-aware help), and case types (helpful
versus unhelpful advice).
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To eliminate calibration failure and measurement error, we
calculated the modified z score of each region’s dwell time in
each trial. The modified z score method is more robust in
detecting outliers since it uses median instead of mean in the
calculation of z scores. If the modified z score of the dwell time
in that region is greater than 3.5, we labeled that observation as
an outlier and excluded it from our analyses.

For all help type pairs, 2-tailed z tests were run for the first and
last fixation area to determine if differences among categories
were statistically significant (Figure 2). P values were also
calculated to show if the proportions being compared were
statistically significant. Statistical significance between help
types was calculated for fixation duration, number of durations,
time of fixations per area, and total dwell time by case type
using the Mann-Whitney U test with the P values adjusted using
the Bonferroni correction.

Figure 2. Percentage of trials by region of interest and AI help type. Left: first fixation; right: last fixation. P values were calculated for the 2-tailed z
tests to determine the significance of the observed differences and are displayed above respective brackets. AI histogram was only present in the
uncertainty-aware condition. No comparative statistics exist in this case. AI: artificial intelligence.

Ethical Considerations
This study did not meet the National Institutes of Health’s
definition of a clinical trial and the University of Michigan’s
Institutional Review Board determined this research is exempt
from institutional review board oversight under federal
Exemption 3(i)(A) and/or 3(i)(B) at 45 CFR 46.104(d).

Results

Overview
In total, 31 participants were randomized to receive black box
or uncertainty-aware AI help. One participant experienced
technical difficulties and was unable to complete any trials.
Fifteen subjects in each condition completed the experiment
and were included in the final analysis. Demographic variables
of age, gender, race, practice settings, and working years were
well-balanced (P>.05). Full details of demographic variables
are reported elsewhere [38]. After outlier removal, the dataset
comprises 2449 trials without AI assistance, 1365 with black
box AI help, and 1391 with uncertainty-aware AI help.

The effects of AI assistance on pharmacists’ decision-making
and reaction time are reported in full elsewhere [38]. In
summary, performance and reaction times varied by AI type
and AI accuracy. In general, uncertainty-aware AI led to faster
decision-making and protected against bad AI advice to approve

a misfiled medication whereas black box AI increased reaction
times and bad AI advice resulted in lower accuracy.

First and Last Fixation Area

Overview
In trials without AI help, the first fixation area (Figure 2, left)
was either (1) the reference image (1822/2449, 74.4%) or (2)
the fill image (627/2449, 25.6%). In the black box help
condition, the first fixation area was either (1) the reference
image (622/1365, 45.6%), (2) the fill image (174/1365, 12.7%),
or (3) the AI match plot (569/1365, 41.7%). In uncertainty-aware
help, it was (1) the reference image (469/1391, 33.7%), (2) the
fill image (270/1391, 19.4%), (3) the AI match plot (581/1391,
41.8%), and (4) the AI histogram (71/1391, 5.1%). For trials
without AI help, the last fixation area (Figure 2, right) was either
(1) the reference image (822/2449, 33.6%) or (2) the fill image
(1627/2449, 66.4%). In the black box help condition, it was (1)
the reference image (276/1365, 20.2%), (2) the fill image
(651/1365, 47.7%), and (3) the AI match plot (438/1365,
32.1%). In uncertainty-aware help, it was (1) the reference image
(146/1391, 10.5%), (2) the fill image (339/1391, 24.4%), (3)
the AI match plot (202/1391, 14.5%), and (4) the AI histogram
(704/1391, 50.6%). All of these comparisons, with one
exception, showed statistically significant differences between
help types. The P values were calculated to be P<.05 (z
score>1.96 or <–1.96), thus rejecting the null hypothesis and
suggesting there is a significant difference in proportions
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between each 2. The one exception to this was the pair for first
fixation being AI match plot with black box help versus
uncertainty-aware help, where the z test was –.45 and the P
value was .97, suggesting that these values were not statistically
significantly different.

Number of Fixations
Irrespective of help type, fill images had the highest number of
fixations in a trial, and the number of fixations per trial did not
decrease after the introduction of AI-generated areas (number
of fixations: mean [SD], median [IQR]): (1) no help, mean 4.44
(SD 2.92), median 4.0 (IQR 2.0-6.0); (2) black box help, mean
4.33 (SD 2.90), median 4.0 (IQR 2.0-6.0); and (3)
uncertainty-aware help, mean 5.14 (SD 3.43), median 4.0 (IQR
3.0-7.0). Reference images received fewer fixations, with the
averages and range being (1) no help: mean 2.47 (SD 1.4),
median 2.0 (IQR 1.0-3.0), (2) simple help mean 2.38 (SD 1.4),
median 2.0 (IQR 1.0-3.0), and (3) advanced help mean 2.45

(SD 1.4), median 2.0 (IQR 1.0-3.0). The AI match plot and AI
histogram received a lower number of fixations. The mean (SD)
and median (IQR) for the number of fixations in AI match plots
in black box and uncertainty-aware help trials are mean 1.91
(SD 1.12), median 2.0 (IRQ 1.0-2.0), and mean 1.65 (SD 0.82),
median 1.0 (IQR 1.0-2.0), and in AI histogram in
uncertainty-aware help trials, they are mean 1.69 (SD 0.87),
median 1.0 (IQR 1.0-2.0), respectively. The numbers are
visualized in a box plot in Figure 3. Bonferroni adjusted P values
comparing no help with black box for fill image and all 3
comparisons for reference image were observed to be greater
than .05. Therefore, we do not reject the null hypothesis of the
groups being statistically similar. The comparisons of no help
and uncertainty-aware and black box with uncertainty-aware
advice for fill image, and black box with uncertainty-aware for
AI match plot showed significance (Mann-Whitney
U=1088528.5, 507726.0, and 381013.0, respectively; all P<.05).

Figure 3. Boxplot representation of the number of fixations in each area per trial, categorized by help type. Bonferroni adjusted P values were calculated
alongside Mann-Whitney U tests, and these statistics are displayed above respective brackets. AI histogram was only present in the uncertainty-aware
condition. No comparative statistics exist in this case. AI: artificial intelligence.

Fixation Duration
The fixation duration in each region was similar, regardless of
help type. The median duration of fixation was around 0.22
seconds, with an IQR of approximately 0.75 seconds. This
indicates that the cognitive load for processing information in

each area was similar. The boxplot of the finding is in Figure
4. One adjusted P value was below .05, with a U value of
29067652, comparing no help to uncertainty-aware advice for
the fill image. This indicates a meaningful statistical difference
between these 2 groups.
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Figure 4. Boxplot representation of fixation duration in each area, categorized by help type. Bonferroni adjusted P values were calculated alongside
Mann-Whitney U tests, with a Bonferroni correction, and these statistics are displayed above respective brackets. AI histogram was only present in the
uncertainty-aware condition. No comparative statistics exist in this case. AI: artificial intelligence.

Dwell Times
Participants consistently spent the most time on fill images. The
median (IQR) fill image dwell times (in seconds) were: (1) no
help trials, median 0.80 (IQR 0.48-1.36), (2) black box help,
median 0.80 (IQR 0.47-1.26), and (3) uncertainty-aware help,
median 0.92 (IQR 0.53-1.54). For the reference image, the
median (IQR) dwell times (in seconds) were (1) no-help,
median, 0.44 (0.26-0.66), (2) black box help, median 0.42
(0.24-0.64), and (3) uncertainty-aware help, median 0.43 (IQR
0.26-0.65). The AI match plots had median (IQR) dwell times
of 0.33 (IQR 0.22-0.51) and 0.27 (IQR 0.22-0.47) seconds in
black box and uncertainty-aware help trials, respectively. The
AI histograms had a median (IQR) dwell time of 0.27 (IQR
0.23-0.48) seconds in uncertainty-aware help trials (Figure 5).

The Mann-Whitney U test result showed no significant
difference between the dwell time in reference images. There
was a significant difference in dwell times for fill images with
uncertainty-aware help trials compared with no-help trials (U
value=1113203.0, Bonferroni adjusted P<.05) and black box
help trials (U value=517551.5, Bonferroni adjusted P<.05); and
for AI match plot from black box to uncertainty-aware (U
value=375591.0, Bonferroni adjusted P<.05). The difference
in fill image dwell times was nonsignificant between no help
and black box help (Figure 5). Dwell times in fill images and
reference images were significantly longer in trials with
unhelpful advice compared with helpful advice (the fill image,
median: 1.30 vs 0.81 seconds, U value 238928.0, P<.05; ref
image, median: 0.54 vs 0.41 seconds, U value 264560.5, P<.05;
Figure 6).
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Figure 5. Boxplot representation of dwell time in each area, categorized by help type. Bonferroni adjusted P values were calculated alongside
Mann-Whitney U tests, with a Bonferroni correction, and these statistics are displayed above respective brackets. AI histogram was only present in the
uncertainty-aware condition. No comparative statistics exist in this case. AI: artificial intelligence.

Figure 6. Dwell time in each area by case type. Compared with helpful advice trials, those with unhelpful advice resulted in significantly longer dwell
times in fill and reference images. Bonferroni adjusted P values were calculated alongside Mann-Whitney U tests and these statistics are displayed
above respective brackets. AI: artificial intelligence.
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Discussion

Principal Results
Our study presents critical insights into the interaction between
pharmacists and an AI-based CDSS. Our findings highlight a
shift in the visual and cognitive engagement of pharmacists
when AI-driven tools are used. Although communicating the
uncertainty of AI has been shown to have benefits such as
preventing overreliance and fostering trust in AI [20,22], our
study found that it resulted in a longer cognitive processing time
of the core task image (ie, filled medication images), though
primarily in situations where the AI provided unhelpful advice.
The criticality of AI accuracy is underscored by our findings,
as AI advice of varying correctness significantly impacts the
cognitive processing time of users. These findings suggest the
potential of human-AI collaboration to enhance health care
delivery if AI is accurate, reliable, and deployed properly
without interfering with health care professionals’ existing
workflow or increasing their cognitive load.

Irrespective of AI intervention, participants allocated the
majority of their fixation time to fill images. The fact that
pharmacists need to inspect pills from various angles to verify
color, shape, and imprint for accurate identification may give
rise to longer cognitive processing times. On the other hand,
AI-generated regions have shorter dwell times. This might stem
from the graphical simplicity of these images [39] or indicate
that users correctly perceive the AI-generated regions as
supportive in completing the task. Compared with not showing
AI outputs’ uncertainty (ie, black box AI help), we found that
displaying uncertainty results in significantly longer dwell times
in the original (fill) images, especially when the AI advice was
unhelpful. This may suggest that users are confused or
second-guess the AI’s correctness when they see the uncertainty
histogram, leading to a need to go back to the fill images and
verify the correctness of the advice. The shorter dwell times
observed with black box AI advice may be attributed to
overreliance on automation, resulting in missed errors in the
filled medication.

AI-based CDSS influenced participants’ drug verification
processes. When participants had access to AI, 19% to 26% of
total fixations were shifted to AI regions, and there was a
decrease in fixation in the original (fill and reference) images.
This indicates that the AI tool changed how participants process
information, and participants incorporate AI-generated
information in their decision-making process. The decrease in
fixation counts in original images and the shift to AI-generated
regions indicate that AI may support users in completing the
task. When AI help is available, users tend to look at the AI
match plot first, and then move on to the fill and reference
images. This suggests that providing a simple graphical
“summary” of the AI advice may aid users in their
decision-making and help them maintain vigilance.

Comparison With Previous Work
Our finding demonstrates the need for well-designed AI that
balances transparency and information load. Since many AI
algorithms are essentially a “black box,” there is a demand for
AI transparency [23,40]. However, displaying more information

about the advice can decrease user vigilance since more
information needs to be processed. In designing AI-based
systems, there is a need to balance the transparency and
explainability of AI output and the amount of information
presented to the users. Previous research has shown that
high-complexity interfaces significantly increase cognitive
workload compared with low-complexity interfaces [19].
Together, our findings and the previous research support the
use of our graphically simple, black box AI help over to the
histogram which may be overloading the users.

According to Prabhudesai et al [22], users develop their
expertise in explaining the uncertainty plot over time, which
resolves the initial confusion. In addition to users developing
an explanation over time, the user’s expertise with a task impacts
the level of cognitive load. Wu et al [19] found at the same level
of information load, experts at a task experience significantly
less cognitive load than novices. Too much complexity, such
as an uncertainty histogram, might not be suitable for the
relatively simple medication verification task especially since
pharmacists are often tasked with additional responsibilities,
which interfere with their vigilance in performing the
verification task [41]. Simplifying the communication of the
uncertainty might balance the benefits of this kind of advice
from AI.

The results revealed that AI’s correctness (ie, helpfulness) had
a significant impact on users’cognitive processing time. Helpful
advice resulted in significantly shorter dwell times in reference
images and fill images compared with unhelpful advice. This
finding supports that users are susceptible to automation bias,
the heuristic tendency of users to favor the suggestion made by
automated systems [25], and underlines the importance of AI’s
correctness and performance. Developers should validate AI’s
accuracy and reliability before implementing it in the real world,
for the underperformance of AI can introduce new user errors
through mechanisms such as automation bias, slowing users
down. An important way to do this is through the development
of standards and guidelines, as well as assessing accuracy,
reliability, and other performance metrics [40]. Park et al [42],
introduced a framework for AI-based medical products,
emphasizing phases akin to drug trials which are (1) balancing
benefits and risks, (2) confirming usability through methods
like AB testing, (3) conducting large-scale trials to validate
effectiveness, and (4) ongoing monitoring for self-improvement.
Like medications, AI-driven CDSS can profoundly impact
patient care, necessitating rigorous pre- and post-deployment
validation.

How AI and CDSS can be used in medication dispensing is
under-researched. A systematic review of CDSS and medication
use found that while CDSS is used in the prescribing,
administrating, and monitoring phases of medication use, CDSS
has not been deployed for medication dispensing [43]. To the
best of our knowledge, our innovative study is the first to
examine how a CDSS impacts cognitive workload for
medication verification and dispensing. Our study adds
important insights into supporting pharmacists who are
experiencing high levels of burnout. A nationwide survey of
community pharmacists found that 74.9% of pharmacists have
experienced burnout [44]. Furthermore, high prescription
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volumes and inadequate pharmacist coverage are contributing
factors to dispensing errors [45]. This is concerning as nearly
a third (32.1%) of community pharmacists work alone [46], and
community pharmacists spend nearly half their work hours
(48%) verifying prescriptions [47]. Wash et al [48] narrative
review of pharmacists’ well-being and burnout found a lack of
research into interventions to assist pharmacists with burnout.
AI tools such as ours offer a potential solution to alleviate
burnout and prevent dispensing errors by providing a second
opinion and decreasing cognitive workload.

The use of user-centered design is becoming increasingly
prominent in CDSS development [49-53]. A 2024 review of
CDSS highlighted the importance of user-centered design to
foster the trustworthiness, usability, and acceptability of CDSS
tools by health care providers [54]. CDSS tools should fit into
current workflows and address health care providers’needs and
preferences [54]. During the user-centered design phase of
developing our AI prototype, pharmacists emphasized the need
for simple and accessible information to guide them in
completing the task [27]. To avoid overwhelming pharmacists
with redundant information, the match plot only displays AI’s
stance on color, shape, imprint, and score, which pharmacists
identified as the most important information during the
medication verification process [27]. Our study adds to the
literature a pharmacy-based user-centered design use case
underscoring the importance of incorporating user feedback and
preferences into the design process. Developers of CDSS should
focus on creating systems that align closely with user needs and
preferences which can enhance usability and effectiveness. By
prioritizing user-centered design principles, developers can
improve the performance of AI-based systems and ensure that
these systems effectively augment rather than disrupt user
workflows.

Limitations and Future Work
Several other eye-tracking metrics have been proposed to assess
cognitive load. Voluntary movements such as saccade length
and saccade velocity, and involuntary movements such as pupil
dilation can reflect cognitive load. Due to the lack of data
availability, we did not include these metrics in our analysis.
Future studies can include these eye-tracking metrics to further
understand users’ cognitive workload.

This study showcases the need for well-designed AI that
balances transparency and information load. Future research
should focus on conducting user-center design and usability

testing before implementation to understand the benefits and
drawbacks of using the AI tool. Also, qualitative methods, such
as interviews, and quantitative methods, such as surveys, can
incorporated throughout the design and testing phases to allow
for design revision based on participants’ perceptions of the AI
tools. This may help inform the design and implementation of
AI tools in augmenting health care professionals’ workflow.
As Wu et al [19] described, the interaction between a user’s
level of expertise and the complexity of an AI tool has a
significant impact on the user’s cognitive load. Future research
should consider allowing users to customize the AI display
based on their expertise with the task and comfort with the AI
tool. Future studies can include qualitative and quantitative
methods to further understand user experiences.

Pharmacists routinely perform a variety of tasks concurrently
with the medication verification including checking for
drug-drug interactions, confirming the medication count is
correct, and verifying patient directions are accurate, complete,
and written in patient-friendly language. Pharmacy-specific
future research should explore new designs to support dispensing
tasks and reduce cognitive load.

Conclusions
The goal of this study was to assess how pharmacists cognitively
incorporate and use an AI prototype during the medication
product verification process, using eye-tracking data to analyze
their interaction with the system. The study revealed that
AI-based CDSS can alter traditional workflow and cognitive
engagement, with pharmacists allocating significant focus to
AI-generated regions, which indicates the integration of AI
advice in decision-making. However, communicating AI
uncertainty by displaying a probability histogram increased
cognitive processing time for original images. The correctness
of AI suggestions directly affects cognitive processing, with
helpful AI advice reducing and unhelpful AI advice increasing
it. The findings underscore the importance of accurate, reliable
AI in health care and suggest that user-centered design and AI
transparency are crucial for effective human-AI collaboration.
Future research should assess additional eye-tracking metrics
to determine users’ cognitive load, incorporate user-centered
design to inform the CDSS design, use qualitative and
quantitative methods throughout the design and testing phases
to better understand users’ experiences, and focus on assisting
pharmacists with the varied tasks involved in medication
dispensing.
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