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Abstract

Background: Trajectory modeling is a long-standing challenge in the application of computational methods to health care. In
the age of big data, traditional statistical and machine learning methods do not achieve satisfactory results as they often fail to
capture the complex underlying distributions of multimodal health data and long-term dependencies throughout medical histories.
Recent advances in generative artificial intelligence (AI) have provided powerful tools to represent complex distributions and
patterns with minimal underlying assumptions, with major impact in fields such as finance and environmental sciences, prompting
researchers to apply these methods for disease modeling in health care.

Objective: While AI methods have proven powerful, their application in clinical practice remains limited due to their highly
complex nature. The proliferation of AI algorithms also poses a significant challenge for nondevelopers to track and incorporate
these advances into clinical research and application. In this paper, we introduce basic concepts in generative AI and discuss
current algorithms and how they can be applied to health care for practitioners with little background in computer science.

Methods: We surveyed peer-reviewed papers on generative AI models with specific applications to time-series health data.
Our search included single- and multimodal generative AI models that operated over structured and unstructured data, physiological
waveforms, medical imaging, and multi-omics data. We introduce current generative AI methods, review their applications, and
discuss their limitations and future directions in each data modality.

Results: We followed the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for
Scoping Reviews) guidelines and reviewed 155 articles on generative AI applications to time-series health care data across
modalities. Furthermore, we offer a systematic framework for clinicians to easily identify suitable AI methods for their data and
task at hand.

Conclusions: We reviewed and critiqued existing applications of generative AI to time-series health data with the aim of bridging
the gap between computational methods and clinical application. We also identified the shortcomings of existing approaches and
highlighted recent advances in generative AI that represent promising directions for health care modeling.
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Introduction

Background
Generative artificial intelligence (GenAI) is a family of artificial
intelligence (AI) models that can generate synthetic content
ranging across text, images, audio, and video. Well-known
GenAI tools such as ChatGPT [1] and DALL-E [1] have
revolutionized the way in which people view AI [2]. On the
other hand, data analysis in health care has entered a new era
as large amounts of electronic health records (EHRs) are
generated daily. Among these data, biomedical time series have
been of particular interest to researchers in tasks including
tracking patient trajectories [3] and treatment estimations [4].
Compared to cross-sectional data, which represent 1 time point,
time series provide more information on development over time.
There are 2 main types of time-series data: real-time and
longitudinal data. While real-time data usually span a shorter
period (minutes or days) and have more consistent time-point
entries, longitudinal data are recorded over the magnitude of
months or years with various sampling frequencies and number
of entries. Compared to traditional time-series data in finance
and climate science, biomedical time series face unique
challenges in modeling, including missingness and sampling
rate [5]. Therefore, traditional methods such as foundation
models (FMs) that work well on high-frequency time series are
not guaranteed to work well on biomedical data. In the age of
big data, GenAI models have begun to outperform traditional
statistical and machine learning (ML) methods in various tasks
[6]. On the other hand, GenAI for health care faces unique
challenges, including data privacy, transparency of the decision
process, and other ethical issues that must be addressed.
Nonetheless, these tools have the potential to improve disease
modeling accuracy, tailor treatment plans across a heterogeneous
population, and assist clinicians in making clinical decisions.

In this paper, we aim to provide a comprehensive review of
GenAI applications to biomedical time-series data and a
technical overview for clinicians who wish to work with AI
tools but are unsure of where to begin. We survey GenAI
applications to time-series health care data and its ability to
improve patient care and the diagnosis process while considering
the challenges and showcasing real-world uses that highlight
its importance in the field. For the selection process, we
followed the PRISMA-ScR (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses extension for Scoping
Reviews; Multimedia Appendix 1) guidelines and searched in
PubMed and Google Scholar for conference and workshop
papers using the following keywords: “generative AI (GenAI),”
“health care,” “time series,” “longitudinal,” “electronic health
records (EHR),” “electronic medical records (EMR),” and
“genetics.” From the initial search, we applied the following
inclusion criteria—being peer reviewed, published after 2000,
and focusing on time-series or longitudinal data—ultimately
yielding 155 studies as of April 2024. The detailed selection
process is described in the Related Works section.

We organized the review by data modality, including structured
and unstructured text, imaging, waveform, and multi-omics
data, and illustrate possible data sources in each modality for
GenAI application in Figure 1. For each modality, we discuss
preprocessing, applications, model selection, and challenges
and future directions. In the Model Selection sections, we help
guide how to choose the appropriate models for this type of
data for clinicians who are interested in incorporating GenAI
into their practice. We organize the workflow for choosing an
appropriate model for the data and computational resources at
hand. We have organized the paper as follows: (1) overview of
the algorithms and techniques introduced in the review; (2)
structured data; (3) unstructured data; (4) medical imaging; (5)
physiological waveforms; (6) genetics and multi-omics data;
and (7) ethical considerations, challenges, and future directions.
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Figure 1. Health care data sources in different modalities for generative artificial intelligence (AI) application. ECG: electrocardiogram; EEG:
electroencephalogram.

Related Works
Our electronic search retrieved 20,978 study records: 20,003
(95.35%) from Google Scholar and 975 (4.65%) from PubMed,
as shown in Figure 2. After title and abstract screening and
removing duplicates, 3.24% (680/20,978) of these articles were
retained for full-text review. Of these 680 articles, 533 (78.4%)
were excluded, leaving 147 (21.6%) studies after the primary
screening. A total of 8 more articles were added through
secondary screening, resulting in a total of 155 articles included
in our scoping review.

Our search for existing reviews on GenAI for disease trajectory
modeling returned 39 entries broadly covering the use of AI in
health care (Multimedia Appendix 2) in Google Scholar, Scopus,
and PubMed. From a review of these works, although we
observed an increasing number of AI-related review papers in
the biomedical setting in recent years (Multimedia Appendix
3), there remained a gap in reviewing GenAI approaches
working with time-series data specifically, prompting the need
for our paper.
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Figure 2. Study selection.

Algorithm and Technique Overview

Overview
Despite a shared nomenclature, it is important to differentiate
between modern AI and the field of AI. The general study of
AI encompasses the class of ML methods, which includes the
subset of deep learning (DL) methods (also thought of as modern
AI). Previous ML approaches have been mostly discriminative
such that, given a set of input predictors, they learn a strategy
(decision boundary) to fit or separate data points. On the other
hand, DL models can be discriminative or generative based on
the choice of the objective function. Therefore, they are not
inherently generative or discriminative and are the building
blocks of modern AI models, although they have typically been

developed and demonstrated in the discriminative setting.
Finally, GenAI methods belong to the class of generative ML
methods and capture the underlying data generation process.
By learning the distribution domain of the data, these models
can synthesize hypothetical data points that are statistically
indistinguishable from the originals. For discriminative tasks,
GenAI models are often combined with downstream models,
which can be simply rule based or more complex. In this section,
we introduce a set of traditional, ML, DL, and GenAI models
that are referenced later in the paper and list existing models
used in time-series forecasting in Figure 3, as well as showing
a timeline for when these models were first introduced in Figure
4 and a comparison among these methods using common metrics
in Table 1.
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Figure 3. Existing models for time-series forecasting. ARIMA: autoregressive integrated moving average; ARMA: autoregressive moving average;
CNN: convolutional neural network; DANN: deleterious annotation of genetic variants using neural networks; DDPM: denoising diffusion probabilistic
model; ETS: exponential smoothing; EVE: Evolutionary Model of Variant Effect; GAN: generative adversarial network; GenAI: generative artificial
intelligence; Gene-SGAN: gene-guided weakly supervised clustering via GANs; GRU: gated recurrent unit; LSTM: long short-term memory; M-CAP:
Mendelian Clinically Applicable Pathogenicity; MBP: masked bidirectional prediction; PAGA: partition-based graph abstraction; PRESCIENT: Potential
Energy Underlying Single-Cell Gradients; RNN: recurrent neural network; SCUBA: single-cell clustering using bifurcation analysis; T-GAN-D: Trained
GAN Discriminator; TIGON: Trajectory Inference With Growth via Optimal Transport and Neural Network; VAE: variational autoencoder.

Figure 4. Milestones in time-series forecasting models. BERT: Bidirectional Encoder Representations From Transformers; CNN: convolutional neural
network; DDPM: denoising diffusion probabilistic model; GAN: generative adversarial network; GRU: gated recurrent unit; LSTM: long short-term
memory; MA: moving average; RNN: recurrent neural network; VAE: variational autoencoder.
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Table 1. Metric comparison among methods for biomedical time-series prediction (1=lowest; 5=highest).

AccuracyData requirementModel sizeInterpretabilityComputational costModel

21151Benchmark models

33232CNNa

33232RNNb

53343Transformer

54424GANc

44332VAEd

54312Diffusion

43323NLPe

35515Foundation models

aCNN: convolutional neural network.
bRNN: recurrent neural network.
cGAN: generative adversarial network.
dVAE: variational autoencoder.
eNLP: natural language processing.

Traditional Statistical Models
In this section, we introduce several statistical models commonly
used as benchmarks in modeling time-series data. One of the
most basic yet effective methods is the Naive2 model, which
makes a prediction by using the value from the most recent
observation or from a similar period in the past. In the class of
autoregressive methods, the autoregressive moving average
model [7] predicts the outcome value at a given time point using
both a linear combination of multiple past observations and a
linear combination of past error terms in the regression model.
As an extension of the autoregressive moving average, the
autoregressive integrated moving average (ARIMA) model [8]
accounts for seasonal or periodical changes in the data. One of
the most widely used methods is the Prophet model by Meta
[9], which uses an additive model that accounts for yearly,
weekly, and daily seasonality and holidays. Finally, the
exponential smoothing (ETS) model [10] uses a weighted
combination of multiple past observations in which the decay
of the weights is exponentially distributed. While these methods
have limited performance with highly complex data, they remain
a popular choice due to their simplicity and transparency in the
decision-making process.

DL Models
DL models are the combination of an architecture (ie, the
structure) and an objective (ie, the loss function). In this section,
we introduce the canonical DL architectures that are the
foundation of different GenAI settings but are not GenAI models
themselves.

Convolutional Neural Networks
Convolutional neural networks (CNNs) [11] are a type of DL
neural network architecture that is particularly well suited for
processing and analyzing image data. CNNs are good at
recognizing patterns in small areas and work well for short-term
connections due to their ability to perform convolutions step

by step over time [12]. CNNs can be used for univariate
time-series forecasting, in which the trend can be viewed as a
2D graph. In addition, researchers have explored different CNN
architectures for time-series forecasting, such as temporal
convolutional networks [13] that are tailored for
sequence-to-sequence modeling tasks, leveraging the strengths
of CNNs while addressing the challenges of working with
sequential data.

Recurrent Neural Networks
Recurrent neural networks (RNNs) [14] are one of the earliest
DL frameworks that are designed to capture sequential
dependencies and patterns across time steps. RNNs have an
internal or hidden state that captures information from previous
time steps and influences the processing of subsequent inputs.
During training, sequential data are fed into the network one
step at a time. The network processes each input along with its
corresponding hidden state, updating the hidden state based on
the current input and the previous hidden state. This process is
repeated for each time step in the sequence, allowing the
network to capture temporal dependencies and learn patterns
in the data. The architecture of RNNs consists of multiple
recurrent layers, each containing recurrent units. There are 2
main types of units: long short-term memory (LSTM) cells and
gated recurrent units (GRUs). These units are responsible for
capturing temporal dependencies and encoding information
from previous time steps. Due to their training on sequential
data and the leveraging of their recurrent structure, RNNs have
performed strongly against traditional DL networks in modeling
complex patterns in time-series data [15,16]. However, RNNs
can be time-consuming as inputs are processed sequentially and
do not model long-range dependencies well as the information
diminishes over time.

Transformers
Transformers [17] are the foundation of many state-of-the-art
generative models, including ChatGPT. Unlike RNNs, which
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process data sequentially and can be computationally expensive,
transformers rely on a mechanism called self-attention [17] to
capture dependencies simultaneously and over long ranges.
They consist of an encoder-decoder architecture in which the
encoder processes the input sequence and the decoder generates
the output sequence. During training, the input is embedded
into a high-dimensional space, and the encoder applies a
self-attention mechanism to capture relationships between
different parts of the input sequence in the embedding space.
Self-attention allows each position in the sequence to attend to
all other positions, enabling the model to learn contextual
representations efficiently. These representations are then passed
through feedforward neural networks within each layer to further
process the information. The decoder, on the other hand, predicts
the output sequence step by step based on the encoder’s
contextualized representations and previous outputs.
Transformer models typically include multiple layers of encoder
and decoder blocks, each containing self-attention mechanisms
and feedforward neural networks. In the age of large data,
transformers are one of the most powerful models to capture
complex relationships in sequential data. One example is in the
field of natural language processing (NLP), where Bidirectional
Encoder Representations From Transformers (BERT) [18] and
generative pretrained transformer architecture have become
state of the art, achieving the best performance across many
NLP benchmarks [19,20].

GenAI Models

Generative Adversarial Networks
A generative adversarial network (GAN) [21] is a generative
vision model that consists of 2 parts: the generator that creates
fake data and the discriminator that critiques them. The
generator’s goal is to produce realistic outputs from random
noise that resemble realistic images. On the other hand, the
discriminator’s role is to differentiate between real data and the
data generated by the generator. Through this back-and-forth
process of creation and critique, GANs improve over time,
producing increasingly realistic results. GANs are one of the
earliest image generation models that have shown great success
in generating synthetic images [22] and have been used
extensively for the generation of new datasets and domain
transfer in medical imaging [23,24]. However, training GANs
can be challenging due to issues such as the limited type of data
produced and instability during training.

Variational Autoencoders
Autoencoders are a class of neural network that learn a
low-dimensional representation of high-dimensional structured
data [25]. Autoencoders consist of 2 parts: an encoder that
projects high-dimensional data into a latent space with lower
dimensions and a decoder that learns to map a point in the latent
space back to its high-dimensional representation. However,
the latent distribution of a vanilla autoencoder is unknown,
making inference difficult and prompting the need for variational
autoencoders (VAEs). VAE models [26] make further
assumptions about the sample generation process that allow us
to model an approximation of the distribution of the latent space,
usually a Gaussian distribution with a mean and variance
estimated by the model. Unlike other image generation models,

VAEs provide a latent space that can be estimated efficiently
and used for further modeling. As with many medical
applications, conditional variables offer additional information
and can improve parameter estimation. A natural extension to
the VAE is the conditional VAE, which includes additional
conditional variables [27].

Diffusion Models
Denoising diffusion probabilistic models (DDPMs) [28] are a
class of vision models that generate a new image by removing
noise gradually from a pure noise input. The model learns to
denoise data by understanding the probabilistic relationships
between noisy and clean data points, making it particularly
effective in scenarios in which data are corrupted by noise.
During training, DDPMs simulate a diffusion process in which
noise is gradually added to the data and then iteratively remove
this noise to reconstruct the original signal. At each step, the
noisy observation is generated by adding a small amount of
noise to the previous observation. The diffusion process is
typically modeled using an autoregressive process in which the
next observation is conditioned on the previous observation and
noise.

FMs for Medicine
FMs [29] are ML models capable of performing various
generative tasks after being trained on extremely large and
typically unlabeled datasets [30]. In the past few years, FMs
have received significant attention given their impressive range
of capabilities across multiple domains. FMs trained on EHRs
have shown the ability to predict the risk of 30-day readmission
[31], select future treatments [32], and diagnose rare diseases
[33]. These models encode the patient features, such as
procedures, diagnosis, medications, and laboratory values, into
embeddings that represent the patient’s entire medical history.
There are 2 broad categories of FMs built from electronic
medical record data: clinical language models (CLaMs) and
FMs for electronic medical records (FEMRs). CLaMs are a
subtype of large language models that specialize on clinical or
biomedical text—CLaMs are primarily trained on and output
clinical or biomedical text. On the other hand, FEMRs are
trained on the entire timeline of events in a patient’s medical
history. Given a patient’s electronic medical record as input, an
FEMR will output not clinical text but rather a
machine-understandable representation for that patient. This
representation, also referred to as a patient embedding, is
typically a fixed-length, high-dimensional vector that condenses
large amounts of patient information.

Although most of the CLaMs are freely accessible on the web,
the best-performing models are trained on private
datasets—EHR-BERT [34]; University of California, San
Francisco–BERT [35]; and GatorTron [36]. Researchers
developed the BERT for Biomedical Text Mining [37] and
PubMedBERT [38] transformer models using biomedical
literature from PubMed. NVIDIA developed the BioMegatron
models in the biomedical domain with different sizes from 345
million to 1.2 billion parameters using a more expansive set of
PubMed-derived free text [39]. Other large transformer models
include ClinicalBERT [40], which has 110 million parameters
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and was trained using 0.5 billion words from the publicly
available dataset.

Structured Text Data

Overview
In an effort to improve patient safety and reduce medical costs,
>500,000 physicians and almost 6000 hospitals in the United
States are expected to have operating EHRs and health IT
systems [41] and charts [42] as of 2015. As a result, big data in
health care in the United States have grown rapidly in recent
years, with a massive database of electronic patient data. Among
these, unstructured text data, also referred to as tabular data, are
the most recorded and used time series, including numeric (eg,
laboratory measurements and vital signs) and categorical
(demographics, medications, and diagnostic codes) features.
We note here that tabular data encompass a wide range of data,
and we focus only on time series in this review.

Preprocessing
Among time-series structured data, vital signs and laboratory
results are the most common sources. These are typically
represented in one of two ways: (1) as one 2D matrix in which
each row is an encounter or patient and each feature can be
represented across time as multiple columns, such as
heart_rate_time1 and heart_rate_time2; and (2) as stacked 2D
matrices in which each matrix contains columns of all features
at 1 time point. Depending on the recorded values, feature values
can be either numerical or categorical. During preprocessing,
the number of time points can be determined by the mean or
median number of entries available across patients. The interval
between each point can be absolute or relative time depending
on whether the cohort has a large variability in terms of hospital
stay time. With a large variability, a set number of time points
can correspond to the relative time such that all patients have
the same number of points but the intervals do not match up in
absolute time. For uncommon measures such as certain
laboratory tests, there may be large missingness within the
cohort, which is further discussed in the next section. Finally,
feature engineering can be performed through either a manual
selection or feature selection algorithms [43,44].

Applications
In this section, we introduce existing work on GenAI application
in 3 main categories: data augmentation and imputation, disease
classification and prediction, and counterfactual estimation.

Data Augmentation and Imputation
EHR datasets often face the problem of missing or unavailable
data, which is especially common in laboratory data as not every
patient in the cohort will receive the same tests. In addition,
incomplete documentation or patient privacy concerns could
also limit access to the complete dataset. Naive approaches such
as filling missing data with 0 or forward filling in time add noise
to the dataset at the cost of performance, prompting the need
for better methods. Generative models impute missing values
by learning underlying patterns of the trajectory, resulting in
an overall smoother trajectory. Another challenge arises when
the prevalence of certain rare diseases is so low that it is

impossible for models to learn the pattern. In this case,
generative models are used to generate synthetic patient records
that mimic real-world data distributions. This can help in
augmenting limited datasets and improving the robustness of
predictive models trained on scarce data. The general approach
of data imputation will start with an RNN model with LSTM
layers [45-50] or GRU layers [51]. In more advanced
approaches, researchers can modify the architecture parameters
based on the dataset size or augment the model with additional
pieces. In the work by Zaman and Du [52], the authors combined
the GRU with ordinary differential equations to model
irregularly sampled data and impute the entire time series.
ImputeRNN [45] is a method that imputes data with
consideration of medical bias by applying a mask during
training. One can also combine DL methods, where a VAE is
used first to find a data representation, which is then passed to
an RNN for imputation [53]. For filling in missing data, it may
be favorable to consider both previous and later observations.
Bidirectional Recurrent Imputation for Time Series [54] imputes
the missing data bidirectionally using an RNN graph. While
RNN is the most common method in the space, GANs have
also become a popular choice. In a few studies (4/155, 2.6%),
time-series data were treated as an “image” on which a GAN
was trained to fill in the missing “gaps” [55-58].

Disease Classification and Prediction
The most common goal in modeling disease trajectory is disease
prediction and classification. Generative models can learn
temporal dependencies within these sequences and generate
realistic patient trajectories over time, enabling downstream
predictive modeling of disease progression or treatment
outcomes. There are several types of predictions that can be
made: a binary classification of whether an event will occur
(eg, mortality or sepsis), a probability prediction of an event
occurring at some point, or a time at which an event occurs
(survival analysis). Due to time-series data’s nature of unfixed
length and frequency, many ways are proposed to handle such
data. In earlier approaches, time points in time-series data are
treated as separate entries with no relation to each other and
passed through a fully connected neural network to predict the
disease of interest. However, this approach ignores temporal
information that can be crucial in future predictions. One of the
most common ways of handling input with variable length is
to first convert the input into a fixed-length representation,
which is then passed through a network. In the study by Guo et
al [59], measures such as BMI, smoking status, and cholesterol
level were first converted to an embedding of fixed size and
then passed through an RNN with LSTM layers to predict
cardiac dysrhythmias. In another study [60], time-series data
including laboratory results and vital signs were divided into 5
relative time points in reference to the duration of the hospital
stay (eg, if the hospital stay for 1 patient is 4 hours, the times
are admission, 1 hour into admission, 2 hours into admission,
and so on) to fix the input length and predict mortality in patients
with heart failure.

In many studies (19/155, 12.3%), once the embedding choice
was made, the subsequent model of choice was similar. In these
studies, RNN models were used to predict methicillin-resistant
Staphylococcus aureus positivity [61], mortality [51,62-64],
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readmission [65-68], next diagnosis [69-72], length of stay
[73,74], hypertension [75,76], treatment response [77], and
survival analysis [78]. Furthermore, the general-use prediction
models in several studies (4/155, 2.6%) [32,79-81] all used an
RNN model to predict clinical events based on time-series data.
Extending from a single prediction point, the work by Pham et
al [81] used LSTM to model irregularly timed time-series data
and predict multistep future trajectories on diabetes and mental
health cohorts. In recent years, researchers have also turned to
transformer models for prediction tasks [82-84] as they capture
more long-range dependencies and provide more interpretability
of model weights than RNNs. In the work by Sheikhalishahi et
al [85], self-attention was used to measure each feature’s
relevance to each other and also each time point’s relevance
within each feature to predict delirium in critical care, and
another study [86] used similar mechanisms to predict the
mortality risk of patients with cardiac issues. Transformers have
also been useful in making multi-point predictions. The
Transformer for Electronic Health Records is one of the earlier
models using transformers to predict clinical events and can
predict up to 300 events simultaneously [87]. The Dual Event
Time Transformer for Electronic Health Records is a
general-purpose transformer-based method that takes in
time-series features [88]. In addition to RNN and transformers,
a deep diffusion model can also be used to learn complex
representations of disease networks that can be used for
downstream prediction tasks [89].

Counterfactual Estimation
Counterfactual estimations aim to track the “what-if”
trajectory—what would a patient’s trajectories look like if they
were not given any medication or treatment. To estimate a
trajectory that is never observed, one must take into account
both observed and hidden confounding variables, which is
challenging in causal inference models. AI models offer the
advantage of making no previous assumptions about the
relationship between variables, learning purely from the data.
However, this does not tackle the issue of the hidden variable,
which is still an active problem in the field. Most commonly,
RNNs were used to estimate treatment outcomes and, therefore,

provide counterfactual estimation in several studies (4/155,
2.6%) [77,89-91]. Depending on the task and data at hand,
modifications can be made to the basic RNN to achieve better
results. In the work by Wang et al [92], a 2-layer bidirectional
LSTM model was used for survival estimation. Similarly, the
work by Li et al [93] combined RNN with g-computation, a
causal inference method, to estimate treatment effects. A
combination of reinforcement learning and RNN was also used
to predict counterfactual evaluation in a study on public
intervention for COVID-19 [94]. In addition to RNN models,
autoencoders have been used to discriminate patient
characteristics from treatment for counterfactual estimation
[95].

Model Selection
As they are most abundant and easiest to access, unstructured
text data are a good place to start for clinicians who want to
explore GenAI tools. In Figure 5, we present a flowchart to help
guide the process of choosing the right model for the data and
task at hand. The flowchart is organized in the same way as the
sections in this paper, where different colors refer to different
data modalities for easier visualization. In addition to the
statistical methods mentioned previously, there are also a
number of ML models, including logistic regression, decision
tree, random forest, and Extreme Gradient Boosting (colored
red in Figure 5). While we do not discuss these methods in this
review, there are review papers that describe them in detail
[96-98]. If the dataset is quite small, a traditional autoregressive
or a simple ML method would work better as more complex
models require more data. However, if the dataset is large, DL
models would perform better as the relationship between
features is more complex and tends to be nonlinear. Commonly,
the model of choice will be RNN or transformer based, which
also have the most literature available. Once one has chosen a
base model, they can start with a published framework and
modify certain parameters based on their goal. If the model is
quite simple and only consists of linear layers, one may also
consider changing part of the structure to newer architectures,
such as attention layers, or chaining 2 models together to
improve performance.
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Figure 5. Flowchart to choose the appropriate deep learning model. BERT: Bidirectional Encoder Representations From Transformers; DDPM:
denoising diffusion probabilistic model; ESM1b: Evolutionary Scale Modeling 1b; EVE: Evolutionary Model of Variant Effect; LSTM: long short-term
memory; MBP: masked bidirectional prediction; ML: machine learning; PRESCIENT: Potential Energy Underlying Single-Cell Gradients; SCUBA:
single-cell clustering using bifurcation analysis; SIFT: Sorting Intolerant From Tolerant; SVM: support vector machine; TF-IDF: term frequency–inverse
document frequency; TIGON: Trajectory Inference With Growth via Optimal Transport and Neural Network; VAE: variational autoencoder; VUS:
variant of uncertain significance; XGBoost: Extreme Gradient Boosting.

Challenges and Future Directions
As ML and DL methods, including GenAI, continue to grow
with an increasing amount of available data, many comparisons
have been made between AI methods and traditional statistical
methods. Cerqueira et al [99] compared ML methods in
time-series forecasting (rule based, random forest, and Gaussian
process regression) to statistical methods (ARIMA, Naive2,
and ETS) using datasets with varying sample sizes up to 1000
and showed that ML methods outperformed statistical methods
when the sample size was relatively large. Makridakis et al
[100] jointly evaluated the accuracy of DL methods and
statistical methods (Naive2, ARIMA, ETS, and ensemble
methods) using the 1045 M3 dataset and showed that, among
the nonensemble approaches, the statistical methods on average
yielded better performance than DL methods for short-range
prediction with regard to symmetric mean absolute percentage
error and mean absolute scaled error, whereas the DL methods
performed better in general for medium- and long-range
predictions. The DL ensemble method using a combination of
the 4 DL methods consistently outperformed the nonensemble

methods in the study by Bonnheim et al [101]. However, in a
practical setting, AI methods face the biggest challenge of low
transparency due to their black-box nature. Interpretability has
been an active area of research, and many techniques and tools
have been proposed to understand the decision-making process
of such models. Feature importance analysis tools such as
Shapley Additive Explanations [102] and Local Interpretable
Model-Agnostic Estimations [103] estimate feature contribution
to reveal top features that are important to the decision. These
tools may help shed light on how the model predicts the
outcome, which is extremely important in the field of health
care. A second challenge that AI methods face is the trade-off
between generalization and performance as an exceptionally
good performance of a model on one dataset may be caused by
overfitting. As patient distributions can differ widely between
hospitals and areas, the model’s robustness must be measured
before deploying it in practice. Nonetheless, GenAI has shown
great potential in clinical support, such as early warning systems
or care assistance tools. Future GenAI tools that tackle these
challenges will become paramount in health care.
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Unstructured Text Data

Overview
Unstructured data include a wide range of clinical narratives,
such as progress notes, radiology reports, patient
correspondence, and discharge summaries, comprising 80% of
EHRs [104]. The loosely structured nature of typed text (also
known as “free text”) is effective in day-to-day clinical
workflows but presents a major challenge for automating
EHR-based registries. The unstructured data may contain key
patient information missing in structured data, extra information
complementing structured data, or even data that may contradict
information presented in structured data. As such, the overall
goal of modeling using unstructured data is to assist disease
prediction using structured data by adding critical missing
information. The complexities of unstructured data, along with
the fact that existing text-mining tools and NLP applications
have limited accuracy in extracting information from free text,
have prompted some registries to ask for a manual chart review
of individual patients before final inclusion in the registry.
Unstructured data limit the application of automated
computational phenotyping methods and increase the likelihood
of low data quality (eg, missing data) when data are extracted
from structured EHR data only [105,106].

Preprocessing
Information retrieval from unstructured data is challenging
because the information can often be of low quality and contain
missing values. Commonly used data preprocessing techniques
for unstructured data include data collection, data cleaning,
tokenization, stemming, and the removal of stop words
[107,108]. Tokenization refers to segregating, for example,
words and punctuation marks in the input document as tokens
and computing their frequency. Stemming is the process of
identifying the roots of words, typically by removing the suffix.
Stop word removal consists of removing infrequent words to
reduce the dimensionality of the dataset. Once the key
components of the dataset are extracted, they can be used for
downstream applications such as the identification of risk factors
and individuals at high risk of a particular disease.

Applications
As the application of large language models to health care
time-series data is still a developing area of research, in this
section, we discuss static time applications of these models. We
will discuss potential research directions for time-series
unstructured text based on progress in other fields such as
climate and finance in the Challenges and Future Directions
section. Both traditional NLP and FMs can be used to perform
clinical NLP tasks such as clinical concept extraction (or named
entity recognition), medical relation extraction, semantic textual
similarity, natural language inference, medical question
answering, and medical report summarization. The domain of
medical report summarization is a popular area of research, with
numerous papers published on the use of NLP and FMs to
summarize medical reports, health care records, and medical
dialogues [109]. A radiology report is a medical document that
contains the details of an imaging examination (such as x-rays
and magnetic resonance imaging [MRI]). A radiology report

consists of three components: (1) the Background section, which
contains the medical history of the patient; (2) the Findings
section, which discusses the crucial observations and findings
of the radiology examination; and (3) the Impression section,
which is a short summary of the findings section. The
Impression section is usually written by medical professionals,
which is a time-consuming process. The only aim of radiology
report summarization is to automate the generation of this
Impression section. Several attention-based and FM-based
models have been developed to improve the quality of
summarization [110].

Medical dialogue summarization corresponds to the automatic
generation of coherent summaries that capture medically
relevant context from dialogues between patients and health
care providers. Medical dialogue summarization can help
medical providers keep a record of patient encounters and also
provide the necessary context of a patient’s medical history
during patient handoffs between providers. Existing studies
have used techniques from computational linguistics [111], NLP
(Pegasus [112]), pretrained language models, and low-shot
learning to collect labeled data and perform medical dialogue
summarization.

Medical question answering refers to developing a technique
that automatically analyzes thousands of articles to generate a
short text, ideally in less than a few seconds, to answer questions
posed by physicians [113]. Such a technique provides a practical
alternative that allows physicians to efficiently seek information
at the point of patient care. Several question-and-answer systems
have been developed using NLP [114] and FMs (generalist
medical AI and MedLM).

Model Selection
FMs hold great potential to assist clinicians in a wide range of
health care problems. However, clinicians should be aware of
the risks associated with the use of these models and potential
data leaks. They should also select which models to use based
on the computational resources available to them, as shown in
Figure 5, as the training of these models is becoming
increasingly expensive (Table 1).

Challenges and Future Directions
Compared to traditional ML models, FMs have a significantly
higher computational cost, requiring massive datasets and
graphics processing unit specifications for training. While they
achieve high predictive accuracy [115], these models are
composed of millions to billions of parameters and have poor
interpretability and high latency and runtime. While these costs
can be lowered over multiple downstream applications, their
value may take longer to realize than that a smaller model
developed for a single high-value task [30]. In addition, data
privacy and security are significant concerns with FMs as they
may leak protected health information through model weights
or prompt injection attacks [116]. As the cost of computing
decreases and the amount of data increases, FMs may become
easier to train and more accessible. One active area of research
is testing FMs’ potential in multimodality input, in which FMs
are trained and evaluated on multimodal datasets, such as both
text and images. These models can be used to generate
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personalized treatment plans based on the patient history as well
as develop early warning systems for individuals at high risk.
These advancements would transform how health care
professionals interact with patient data, making health care more
predictive, personalized, and precise.

Medical Imaging

Overview
Medical imaging refers to 2D or 3D images obtained from
radiology procedures such as MRI and computed tomography
(CT). GenAI has been applied to a wide set of problems in
medical imaging to solve issues of scarcity, heterogeneity
between datasets, and low resolution quality, among others.
There are 3 main classes of generative vision methods: GANs,
VAEs, and DDPMs. Each of these classes has been applied to
medical imaging. Among all applications, medical image series
input has been used mostly in data generation, anomaly detection
and classification, and image segmentation and registration
tasks.

Preprocessing
There are several steps in preparing a medical imaging dataset
as the quality varies largely depending on location, time, and
cohort [117]. First, a denoising technique is applied to remove
as much nuisance noise as possible. After denoising, data
interpolation can be conducted for certain images such as CT
scans to ensure the same spacing across all images. In the case
of MRI images, bias field correction may be performed to adjust
image intensity. Third, image registration is performed to align
all images with a common template to avoid unnecessary
incoherency among images, such as rotation. Finally, images
can be standardized or normalized to improve algorithm
efficiency. Depending on computational resources, the image
may also be downsampled to a lower resolution or split into
patches to reduce computational cost. Publicly available datasets
such as those of the Alzheimer’s Disease Neuroimaging
Initiative [118] and Open Access Series of Imaging Studies
[119] do not need much preprocessing as they have been
carefully curated. However, image registration is recommended
to align all patients with a common template of choice if
multiple datasets are combined. The medical images are usually
represented as 2D matrices or 3D vectors of the pixels or voxels.

Applications

Data Generation
Similarly to tabular data, data generation has been used to
combat the problem of data scarcity. For longitudinal medical
image series, GANs, VAEs, and DDPMs have all been used to
generate synthetic images. In the work by Hamghalam and
Simpson [120], a recurrent conditional GAN was used to
generate sequential image data conditioned on past variables.
Diffusion-based models have also been applied to impute
longitudinal CT and MRI images [121]. Finally, predicting and
generating aging brain images using only the input of age and
disease state is an example of applying autoencoders with
contractions on the latent space [122].

Anomaly Detection and Classification
The most common application to longitudinal images is anomaly
detection and disease progression prediction. For clinical
diagnosis, GenAI-based anomaly detection tools have been
developed in which the model identifies deviations in 1 image
from the rest of the population, aiding in the detection of
diseases or abnormalities. For medical image series, previous
scans are used as inputs or conditional variables to predict the
next image. Many approaches in this space are a variation of
GANs as they were introduced earlier than VAEs and DDPMs.
Gaussian-Poisson GAN uses stacked GANs to predict tumor
growth from longitudinal MRI [123]. The multi-Pareto GAN
makes longitudinal prediction of infant MRI using multi-contrast
perceptual adversarial learning [124]. In the low-dimensional
GAN [125], disease progression images are predicted using
missing MRI in the input. In the study by Devika et al [126],
the authors trained a GAN to predict autism spectrum disorder
given longitudinal structural MRI scans. More recently, VAEs
have been applied extensively as they offer a latent space to
work with. In general, researchers start with a vanilla VAE and
apply slight modifications to fit their data modality and goal to
detect and predict diseases, including multiple sclerosis [127],
Alzheimer disease (AD) [128-131], tau biomarker detection for
AD [132], glaucoma [133], and lung cancer [134]. There has
also been an increase in works published using multi-modality
data, such as imaging data and tabular or genetics data. In the
work by Kmetzsch et al [135], the authors trained a VAE model
to predict disease progression score based on longitudinal
images and micro-RNA data input. When dealing with
multimodal inputs, a combination of DL models dealing with
each modality may also be advantageous. The work by Sauty
and Durrleman [136] combined VAE with a linear mixed-effects
model to learn a Riemann progression model that can be applied
to general disease trajectory estimation. Another study combined
an autoencoder framework with attention units in a transformer
to predict final ischemic stroke lesions from MRI [137]. In the
study by Zhang et al [138], a spatiotemporal convolutional
LSTM was learned to combine imaging and nonimaging data
to predict tumor growth images. Conditional SliceGen is a
method that takes an arbitrary axial slice in the abdominal region
as a condition and estimates a vertebral-level slice [139].

Image Segmentation and Registration Tasks
Another common task in medical imaging is image segmentation
and registration. We note here that, while image segmentation
and registration tasks are different concepts, the underlying
models applied to solve the problems are largely the same. In
the work by Zhang et al [140], an encoder-decoder structure
model was used for contrastive learning for image segmentation.
Extending from autoencoders, a conditional VAE has also been
used to produce cardiac image segmentation conditioned on
predefined anatomical criteria [141]. We note here that, while
work in this area using time-series input is scarce, the underlying
model and training process remain the same for single time
input models [142-147]. Furthermore, many of the methods
mentioned previously for anomaly detection can also be applied
to registration and segmentation tasks during training.
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Model Selection
Although there are many tasks associated with imaging data
input, the underlying model architecture remains largely the
same for prediction, synthesis, registration, or even domain
transfer tasks. For anyone using time-series or longitudinal
images for any task, choosing 1 of the 3 families of vision
methods following the workflow in Figure 5 is a good place to
start. One may also refer to Table 1 to compare the models’
strengths and weaknesses. GANs are an earlier framework that
remains powerful today, especially with synthetic generation,
but are more complicated to implement as they have a generator
and a discriminator. On the other hand, VAEs offer a latent
space that can be used to downstream linear models such as
mixed-effects models to control for variables such as age, but
its generation quality may not be as ideal as that of GANs or
DDPMs. Finally, diffusion models have been largely applied
in recent years due to their simple architecture compared to that
of the other 2 and low memory requirements but offer very little
interpretability on the generation process. For clinicians with
limited computing resources, 3D images may be too large to fit
onto graphics processing units, and in many cases, the images
can be split into smaller patches to reduce memory footprint
[148]. Finally, there are publicly available general-purpose
vision models that can be downloaded as a starting point, which
can be further trained and fine-tuned for the specific task at
hand.

Challenges and Future Directions
With computer vision models’ success in recent years, there is
a lot of potential in their applications to medical imaging. In
recent years, diffusion models have shown great promise in
generating images that are comparable to those generated by
state-of-the-art GAN methods. Furthermore, GenAI methods
that support video generation can potentially be adapted for
medical imaging [149-153]. However, some issues that are
present in current vision models also extend to medical imaging,
such as illogical generations that do not comply with physical
laws [119]. Therefore, clinicians should take the generations
with a grain of salt when applying them to downstream tasks.
The advent of vision models has been revolutionary in the study
of medical images as previous methods must first transform the
images into numeric representations, such as thickness and mean
intensity. These representations are then fed into linear models
for tasks such as classification and segmentation. To work with
raw image inputs, linear models of estimation such as principal
component analysis or single-value decomposition are often
used. However, these generations often have poor resolution or
fail to adequately capture variability. In contrast, modern neural
network approaches (eg, CNN) jointly learn the optimal feature
extraction strategy together with the downstream task. Thus,
GenAI algorithms are able to consider highly nonlinear and
nuanced interactions between inputs that better capture the
underlying distribution of the data. While GenAI faces the
challenge of transparency, interpretability methods such as
Gradient-Weighted Class Activation Mapping [154] have shown
convincing results. Another challenge of GenAI in medical
imaging is the computational resources required to support such
a model, which will become cheaper and easier to acquire as
hardware technology becomes more efficient.

Physiological Waveforms

Overview
Waveform data capture the change of one or multiple physical
quantities over time and can be viewed as either univariate or
multivariate time-series data. Examples of medical waveform
data include single-lead electrocardiograms (ECGs) or
photoplethysmograms, which can be represented as univariate
time series. Multi-channel technologies such as
electroencephalograms (EEGs) are typically represented as
multivariate time series. Although waveforms are considered
to be closer to structured time-series tabular data, DL methods
applied to structured data often face technical limitations when
applied to waveforms as the sampling frequency is much higher.
As such, GenAI methods applied to waveforms often resemble
speech processing [155] or vision-based models adapted for 1D
input signals.

Preprocessing
Physiological waveforms are often recorded over a short period
with low missingness but face the problem of noise and signal
artifacts. Therefore, waveform preprocessing aims to remove
as much nonphysiological noise and artifacts as possible while
preserving the actual signal. This is typically accomplished by
applying digital filters designed to address nonbiological signals,
drifts, and spikes [155]. Depending on the signal, specific filters
have also been developed and shown strong performance, such
as the Wiener filter for ECGs [156]. After filtering, the
waveform is usually normalized for efficiency and resampled
to a common frequency.

Applications
GenAI models have gained increasing popularity among medical
waveform data. Major tasks using GenAI models for this type
of data include synthesis and imputation and anomaly detection.

Synthesis and Imputation
GenAI-based approaches can augment existing data and generate
synthetic data to support downstream algorithms, allowing for
more applications when the amount of real medical waveform
data is limited. For this task, GANs have been used extensively
[156-161], along with diffusion models [162]. In their work,
Elazab et al [123] made modifications to the improved
Wasserstein GANs and generated single-channel EEG signals.
Zhu et al [163] constructed a GAN with bidirectional LSTM
and CNN to synthesize single-beat ECGs and demonstrated that
the model performed consistently better than benchmark
architectures with regard to the quality of the signals. In another
work, To et al [127] reconstructed high–sampling sensitivity
EEG signals with improvements in reconstruction and
classification results.

Anomaly Detection
While little work has been done on anomaly detection directly,
GAN-based approaches have been explored to detect cardiac
abnormalities [164-166] and seizures [167,168]. Diffusion-based
models have also been used for anomaly detection with ECGs
and EEGs. Xiao et al [169] adopted a denoising diffusion-based
imputation method with conditional weight-incremental
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diffusion to improve data generation quality and ECG anomaly
detection stability. Wang et al [170] designed a diffusion-based
framework with a reverse diffusion data augmentation module
to learn more generalized features for major depressive disorder
detection using EEGs.

Model Selection
In general, waveform data are best trained using vision models
such as VAE and DDPM as the time series can be viewed as a
1D image. Therefore, the workflow to choose an appropriate
model for waveform data is similar to that for imaging data. As
GANs are often more complex but do not significantly
outperform other vision models, they are being replaced with
VAEs and DDPMs [171,172].

Challenges and Future Directions
As GenAI models are only beginning to be applied to waveform
data, there are many directions to pursue. One of these is
cross-modality imputation, where, given an EEG, a GenAI
model can be trained to generate the corresponding functional
MRI or vice versa. Another area of study is to convert EEG
signals to natural language by combining vision models with a
language model [173]. As previous studies have focused on
modeling a single type of waveform data in isolation, one natural
direction is to use more data sources, for example, EEGs with
text data or ECGs with medication data, as they are often
informative about one another in tasks such as imputation [174]
and forecasting [175].

Genetics and Multi-Omics Data

Multi-omics data encompass genomics, transcriptomics,
proteomics, epigenomics, and metabolomics, offering a detailed
picture of biological activities at various molecular layers. One
of the most successful applications of AI in genetics is in
trajectory modeling using multi-omics data, which focuses on
how biological systems such as cell development, diseases, or
reactions to treatments change over time.

Preprocessing
Multi-omics data comprise multiple-sequencing data types and
various features. To efficiently preprocess the data, different
methods are used for each type of data. DNA sequences are
represented as strings of adenine, thymine, guanine, and cytosine
nucleotides, which can be transformed into a numerical matrix
in which each nucleotide is represented as a binary vector. For
transcriptomics, expression data are often represented as a matrix
of continuous numeric values in which each row corresponds
to a sample or a cell and each column corresponds to a gene or
transcript. Proteomics data are similarly structured but represent
peptide abundances or protein expression levels, and
epigenomics data such as methylation status are typically
captured as binary values or continuous levels indicating
methylation at specific sites. Depending on the goal, different
omics data can be combined to uncover time-related trends and
critical factors that influence those biological shifts.

Applications

Identifying Pathogenic Mutations
Identifying pathogenic mutations is pivotal for unraveling the
genetic underpinnings of diseases. The task of variant effect
prediction, which seeks to determine the phenotypic implications
of genetic variations, stands as a cornerstone challenge in human
genetics. Traditional approaches leveraging statistical methods
alongside evolutionary conservation scores such as Sorting
Intolerant From Tolerant and phyloP have made strides in
classifying variants of uncertain significance (VUSs) [176,177].
Despite these advancements, accurately differentiating between
variants that disrupt protein function and those with neutral
effects remains a daunting challenge. The persistence of many
missense variants within the gray area of VUSs significantly
hampers the diagnostic utility of exome sequencing in clinical
settings. To effectively address the challenge of categorizing
mutations, particularly those classified as VUSs, ML techniques
have been increasingly applied. Among the array of ML
methodologies, random forest, gradient-boosting models, and
support vector machines are often used for training complex
genetic datasets to decipher VUSs [178,179]. However, the high
dimensionality of genomic information and the intricate
interactions between genetic variants often exceed the capacity
of traditional ML techniques, leading to potential overfitting
and a lack of generalizability to unseen data. DL methods,
including CNNs and RNNs, offer a promising solution for
addressing the challenges of modeling complex, nonlinear
relationships in high-dimensional biological data. These methods
significantly diminish the need for manual feature engineering
by efficiently learning from raw data. Among the DL models
developed for predicting VUSs are Evolutionary Scale Modeling
1b (ESM1b), Evolutionary Model of Variant Effect, MetaRNN,
masked bidirectional prediction, PrimateAI, and deleterious
annotation of genetic variants using neural networks. ESM1b
is particularly noteworthy for its innovative use of a protein
language model developed by Meta AI [180-185]. ESM1b has
demonstrated exceptional capability in classifying approximately
150,000 ClinVar and Human Gene Mutation Database variants
and annotating approximately 2 million variants as damaging
in specific protein isoforms, a feat not previously achieved with
ML-based methods. This focus on isoform-specific annotations
underlines the critical importance of considering all protein
isoforms in variant effect predictions, marking a significant
advancement with which ESM1b contributes to genetic research.

Trajectory Modeling
Time-series transcriptomics and proteomics data have been used
widely to study trajectories in biological processes and disease
development. Among them, single-cell transcriptomics data
have been used to reveal cellular dynamics via pseudotime
inference models, including Monocle (versions 2 and 3),
Wanderlust, scVelo, single-cell clustering using bifurcation
analysis, partition-based graph abstraction, and Trajectory
Inference With Growth via Optimal Transport and Neural
Network [154]. Monocle uses single-cell variations to sequence
cells in pseudotime, depicting their progression through
biological processes such as differentiation based on gene
expression. Monocle version 2 [186] uses reversed graph
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embedding with a minimum spanning tree algorithm for
pseudotime reconstruction, whereas Monocle version 3 [187]
enhances this with principal graph learning for refined trajectory
inference. Wanderlust adjusts each cell’s trajectory position
using weighted averages from the shortest-path distances of
randomly chosen waypoints until convergence, thereby
producing an average trajectory. scVelo [188], a
likelihood-based dynamic model, estimates RNA velocity to
derive dynamic insights from RNA sequencing data, analyzing
gene-level transcriptional dynamics by determining
gene-specific transcription, splicing, and degradation rates,
which is suitable for both transient states and systems with
varying subpopulation kinetics. Single-cell clustering using
bifurcation analysis [189] forecasts the temporal evolution of
gene expression in single cells using theories of nonlinear
dynamics and stochastic differential equations, aiding in the
comprehension of gene expression dynamics. Partition-based
graph abstraction [190] merges clustering and trajectory
inference in single-cell RNA sequencing data, creating a graph
to depict cell relationships based on gene expression and
enhance understanding of cellular transitions. Finally, Trajectory
Inference With Growth via Optimal Transport and Neural
Network [191] uses dynamic unbalanced optimal transport based
on the Wasserstein-Fisher-Rao distance to integrate temporal
datasets, which provides a framework for connecting temporal
measurements and predicting novel dynamics. In addition,
expression data can be used to study responses to infectious
diseases. Huang et al [192] analyzed time-series expression data
from human volunteers infected with influenza. They identified
distinct temporal patterns of gene expression that could
discriminate between asymptomatic and symptomatic infections.
Similar approaches have been used to study the response to
various treatments, such as interferon-β therapy in patients with
multiple sclerosis [193].

On the other hand, single-cell proteomics approaches such as
mass cytometry (cytometry by time of flight) have
revolutionized our ability to understand complex cellular
processes at an unprecedented resolution. Palii et al [194] used
single-cell proteomics to define the temporal hierarchy of human
erythropoiesis. The analysis revealed a timely ordered
appearance and disappearance of transient cell populations or
stages that accumulate at various positions along the erythroid
trajectory, with cells undergoing gradual transitions between
these stages. In the fields of proteomics, epigenomics, and
metabolomics, CellTag-multi [195], a method for single-cell
lineage tracing across single-cell RNA sequencing and
single-cell assay for transposase-accessible chromatin
sequencing assays, mapped transcriptional and epigenomic
states of progenitor cells, significantly improving cell fate
prediction. In addition, linear mixed models have been used to
quantify temporal changes in metabolite concentrations, offering
insights into the dynamics of the metabolic system [196,197].

Model Selection
GenAI has shown great promise in analyzing multi-omics data
for disease progression analysis. By using techniques such as
omicsGAN, which uses GANs, and graph-linked unified
embedding and MultiVI, which use VAEs, GenAI facilitates
the integration and compression of multi-omics data from

diverse sources into a unified representation [198-200]. This
aids in a more comprehensive analysis of the data. In addition,
tools such as Potential Energy Underlying Single-Cell Gradients
apply generative modeling to map out potential landscapes from
time-series single-cell transcriptomics data, making it possible
to generate trajectories for unseen data points [201]. This opens
up avenues for hypothesizing about biological perturbations
and pathways of disease progression. Moreover, GenAI proves
instrumental in identifying distinct disease subtypes and
stratifying patients based on their multi-omics profiles. For
example, gene-guided weakly supervised clustering via GANs
uses a GAN to generate imaging features from brain MRIs and
single nucleotide polymorphisms to explore conditions such as
AD and hypertension [202], whereas the Trained GAN
Discriminator model stratifies patients with breast cancer into
high- versus low-risk categories based on their transcriptome
profiles [203]. For clinicians interested in working with
multi-omics data, we outline a procedure for finding the best
tool in Figure 5 based on their specific needs, such as resource
availability and the type of data analysis required, including
genetics, single-cell transcriptomics, and proteomics or
epigenomics.

Challenges and Future Directions
Analyzing and modeling multi-omics data in time-series contexts
presents challenges in addressing missing data across different
biomolecule types, which complicates the integration of datasets
obtained through various omics technologies. In addition, the
complexity of biological interactions can lead to analytical
difficulties when dealing with high-dimensional data. The
integration of multi-omics data is becoming increasingly
important in the pursuit of future progress. This approach uses
various biological data layers—genomics, transcriptomics,
proteomics, and metabolomics—to enhance the understanding
of genetic interactions and disease mechanisms.

Discussion

Data Ownership and Privacy

Overview
While GenAI software has proven powerful in understanding
and predicting disease trajectories across modalities, its
implementation in the clinic remains difficult due to challenges
including ethical considerations [204] and other regulatory and
technical challenges. Regulations such as HIPAA (Health
Insurance Portability and Accountability Act) and the General
Data Protection Regulation protect personal health information,
but the evolving nature of GenAI complicates compliance,
especially regarding AI-generated synthetic data and indirect
identification risks [205-207]. This rapid advancement outpaces
regulatory updates, causing uncertainty among health care
providers and AI developers about legal responsibilities and
best practices [208-210]. Technically, health care time-series
forecasting struggles with short data lengths and significant
temporal changes as discussed in previous sections, making
model training and parameter estimation difficult [211,212].

Data ownership and privacy in health care GenAI are critical
issues involving rights and responsibilities over data control,
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use, and dissemination [213]. This includes patient records,
genetic information, and AI-generated datasets. Ambiguities in
ownership, particularly with AI-generated synthetic data,
complicate matters. This raises questions about who owns the
data—the AI developer, health care providers, or patients [214].
Current regulations enforce data minimization, purpose
limitation, and consent to protect patients’ privacy rights [215].
However, GenAI models require extensive patient data for
training, leading to the risk of reidentification of anonymized
data through advanced algorithms [216]. Ensuring that raw
patient data remain protected is crucial to prevent unauthorized
access [217,218].

Security
AI models in health care should be deployed with the highest
standard of data security as breaches of sensitive patient
information can be disastrous. In 2023, >500 data breaches
affected >112 million individuals [219]. Cyberattacks such as
phishing and malware are common, but prompt injection attacks
in GenAI models are emerging threats [220]. Effective
countermeasures such as prompt filtering and human-in-the-loop
systems are essential despite potentially compromising model
performance [221-224].

Bias
The deployment of GenAI in health care can also result in
inadvertently embedded societal biases, leading to
discriminatory outcomes [225]. Biases in training data can result
in disparities in treatment across different patient groups [226].
Addressing these biases requires comprehensive strategies
throughout AI development to ensure fairness and equity
[227-231].

Clinical Safety and Reliability
Ensuring clinical safety and reliability is vital for the
trustworthiness of health care GenAI. AI models can produce
inconsistent or erroneous outputs, particularly in complex
medical scenarios, due to issues such as hallucinations
[232,233]. In health care, such errors are unacceptable and can
lead to harmful consequences, which require rigorous scrutiny
and validation. Moreover, AI models, particularly DL models,
often lack transparency and explainability, posing challenges
in health care [234]. Enhancing transparency and explainability
through techniques such as feature importance scores and
decision trees is crucial for gaining trust and ensuring
comprehensible AI decisions [235-237]. Regulatory and ethical
frameworks must evolve to support these efforts [238].

Conclusions
While there remain many challenges to deploy reliable GenAI
methods in real practice, including technical, regulatory, and
ethical issues, these models can have huge impacts that could
benefit patients, practitioners, and administrators. As such,
collaboration among policy makers, legal experts, AI developers,
and health care providers is crucial in overcoming these issues.
In this paper, we introduced concepts basic to DL and GenAI
to those unfamiliar with the field, reviewed existing work on
GenAI application to time-series health data, and offered
suggestions to clinicians who are interested in applying such
tools to their field. We hope that this review bridges the gap
and promotes better collaboration between technical and applied
disciplines to develop better methods that are suitable and robust
in a practical setting.
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