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Abstract

Background: Parkinson disease (PD) is a common neurodegenerative disease characterized by both motor and nonmotor
symptoms. Cognitive impairment often occurs early in the disease and can persist throughout its progression, severely impacting
patients’quality of life. The utilization of machine learning (ML) has recently shown promise in identifying cognitive impairment
in patients with PD.

Objective: This study aims to summarize different ML models applied to cognitive impairment in patients with PD and to
identify determinants for improving diagnosis and predictive power for early detection of cognitive impairment.

Methods: PubMed, Cochrane, Embase, and Web of Science were searched for relevant articles on March 2, 2024. The risk of
bias was assessed using the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2). Bivariate meta-analysis was
used to estimate pooled sensitivity and specificity results, presented as odds ratio (OR) and 95% CI. A summary receiver operator
characteristic (SROC) curve was used.

Results: A total of 38 articles met the criteria, involving 8564 patients with PD and 1134 healthy controls. Overall, 120 models
reported sensitivity and specificity, with mean values of 71.07% (SD 13.72%) and 77.01% (SD 14.31%), respectively. Predictors
commonly used in ML models included clinical features, neuroimaging features, and other variables. No significant heterogeneity
was observed in the bivariate meta-analysis, which included 12 studies. Using sensitivity as the metric, the combined sensitivity
and specificity were 0.76 (95% CI 0.67-0.83) and 0.83 (95% CI 0.76-0.88), respectively. When specificity was used, the combined
values were 0.77 (95% CI 0.65-0.86) and 0.76 (95% CI 0.63-0.85), respectively. The area under the curves of the SROC were
0.87 (95% CI 0.83-0.89) and 0.83 (95% CI 0.80-0.86) respectively.

Conclusions: Our findings provide a comprehensive summary of various ML models and demonstrate the effectiveness of ML
as a tool for diagnosing and predicting cognitive impairment in patients with PD.

Trial Registration: PROSPERO CRD42023480196; https://www.crd.york.ac.uk/PROSPERO/view/CRD42023480196

(J Med Internet Res 2025;27:e59649) doi: 10.2196/59649
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Introduction

Parkinson disease (PD) is the second most common progressive
neurodegenerative disease. It has gained much attention from
scientists due to its rising rates of disability and death [1]. The
cause of PD involves the clumping of misfolded α-synuclein in

Lewy bodies in neurons. It also involves mitochondrial
problems, neuroinflammation, and oxidative stress. These
processes lead to irreversible cellular damage and neuronal loss.
Several factors influence the development of PD, including
environmental factors such as exposure to pesticides, lifestyle
factors, such as tobacco consumption and sedentary behavior,
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genetic mutations, such as GBA, LRRK2, PARK, and SNCA, as
well as demographic factors like advancing age and male gender
[2]. Yet, the cause of PD remains unknown.

The cardinal motor symptoms of PD include bradykinesia,
rigidity, rest tremor, and postural instability. In addition,
nonmotor symptoms such as cognitive impairment, sleep
disorders, and autonomic dysfunction are commonly observed.
A recent study has stressed the rising importance of nonmotor
symptoms in the later stages of the disease. It has highlighted
their key role in PD management [3].

Cognitive impairment in PD is marked by problems in many
cognitive domains, including attention, memory, executive
function, language, and visuospatial function [4]. The spectrum
of cognitive impairment in PD ranges from mild cognitive
impairment (MCI) to PD dementia (PD-D) [5]. The definition
and progression of PD-MCI and PD-D exhibit significant
heterogeneity. PD-MCI is defined as a decline in cognition that
deviates from what is expected based on the patient’s age and
education level but does not meet the criteria for impaired
cognitive function [6]. MCI can occur in the early stages of the
disease, even before the onset of motor symptoms, and may be
overlooked. In contrast, dementia typically appears in the
advanced stages of PD and causes impairments across multiple
cognitive domains. These deficits are severe enough to disrupt
the daily life of motor symptoms. Patients who meet specific
criteria [7] can be diagnosed with probable or possible PD-D.
Researchers have identified MCI as a significant risk factor for
the development of dementia in individuals with PD [8]. A
meta-analysis has shown differences in biomarkers and brain
imaging between patients with PD-D and those with PD-MCI
[9].

Recently, the use of artificial intelligence has grown, specifically
machine learning (ML). ML is a subfield of artificial
intelligence. It focuses on developing algorithms and statistical
models that allow computers to perform tasks without explicit
programming. The main goal of ML is to enable computers to
learn from data and make predictions or decisions based on that
learning [10,11]. ML has 4 types: supervised, unsupervised,
semisupervised, and reinforcement learning. ML can be broadly
classified into 2 main categories: supervised and unsupervised
learning. The former encompassed a range of models, including
support vector machine (SVM), random forest, K-nearest
neighbors, and naive Bayes, among others. In contrast,
unsupervised learning involves clustering, dimensionality
reduction, and so on. They differ in their use of labeled or
unlabeled data to train models. Semisupervised learning is a
hybrid approach. It combines supervised and unsupervised
learning. Reinforcement learning does not require data with
labels; instead, it learns from experiences by interacting with
the environment, observing, and responding to results.

Current evidence has proven that ML is useful in predictive
analytics for medicine. It can analyze complex datasets,
including clinical data, genetic information, and imaging features
to aid in the early detection and diagnosis of diseases. Besides,
it can assess the risk of progression and prognosis. For example,
in conditions like Alzheimer disease and PD, ML models can
find patterns in imaging data for more accurate diagnosis. The

latest research trained an XGBoost (extreme gradient boosting)
model to predict PD-associated genes using genomic,
transcriptomic, and epigenomic data from brain tissues and
dopaminergic neurons [12]. ML has been used as a valuable
technique to predict the high risk of disease conversion [13].
Vast health data is available, including clinical, genetic, imaging,
and biomarker data. They can be used to diagnose and predict
prognosis, rather than being based on symptoms and performed
by specialist neurologists.

In this review, our goal is not to give a full literature review of
articles applying ML to clinical problems, nor do we aim to
delve into the complex mathematical details of numerous ML
methods. Instead, we focus on summarizing the existing ML
models. They are used to diagnose PD with cognitive
impairment and to predict cognitive decline as the disease
progresses. We also aim to list predictors that may help in
diagnosis, progression, and prognosis in patients with PD with
cognitive impairment.

Methods

Search Strategy
Two authors (WYY and XY) independently searched PubMed,
Cochrane, Embase, and Web of Science databases for relevant
articles using the keywords “Parkinson’s disease,” “Machine
Learning,” and “cognitive decline” in different combinations
(Table S1 in Multimedia Appendix 1). The included studies
were from the start of the database until March 2, 2024. The
review was reported according to the PRISMA (Preferred
Reporting Items for Systematic Review and Meta-Analyses)
statement. It is registered in PROSPERO (International
Prospective Register of Systematic Reviews; number
CRD42023480196).

Eligibility Criteria and Study Selection
Studies were eligible if they aimed to diagnose or predict the
cognitive impairment in PD. The target condition was the normal
cognition (PD-NC), PD-MCI, and PD-D. ML models were
carried out to predict the target condition. Studies were eligible
if these reported data on the following: true positive (TP), true
negative (TN), false positive (FP), false negative (FN),
sensitivity, specificity, accuracy, positive predictive value, or
negative predictive value, and others. In case of not reporting
TP, TN, FP, or FN, these were calculated from known variables
(sensitivity and specificity).

The articles retrieved from the electronic databases were
imported into EndNote (Clarivate) for further analysis.
Duplicates, reviews, dissertations, cases, and conference
abstracts were systematically eliminated through an automated
process. Two authors (WYY and XY) independently screened
the titles and abstracts of the rest of the records. Any
disagreements were decided by the third author (CYF).
Following this step, the full text of the remaining studies was
downloaded and carefully reviewed, resulting in the final
selection of relevant articles.

The data collected from the chosen studies included publication
details such as title, first author, and year of publication, as well
as study information such as study design, whether it was

J Med Internet Res 2025 | vol. 27 | e59649 | p. 2https://www.jmir.org/2025/1/e59649/
(page number not for citation purposes)

Wu et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


conducted at single or multiple centers, diagnostic criteria for
PD and cognitive impairment, ML models employed, predictors
used, and value index assessed.

Risk of Bias
There is no widely accepted checklist for assessing the quality
of diagnostic ML papers. We chose combined criteria that had
been used in a previous report [14]. Two review authors (WYY
and XY) independently assessed the risk of bias based on the
Quality Assessment of Diagnostic Accuracy Studies-2
(QUADAS-2) [15], and any disagreements were resolved
through the third author (CYF). If one of the questions was
scored at a high risk of bias, the domain was scored at a high
risk of bias. At least one domain at high risk of bias resulted in
an overall score of high risk of bias, and only one domain scored
as unclear risk of bias resulting in an overall score of unclear
risk of bias for that paper.

Performance Metric and Meta-Analysis
Due to the diversity of models and predictors under study,
models were categorized by type (random forest, neural network,
etc) irrespective of variable selection procedures in the study.
Similarly, predictor variables were grouped for analysis. For
example, demographic features (such as age, gender, family
history, and education), clinical features (such as motor
symptoms, nonmotor symptoms, and various scale tests, such
as Mini-Mental Status Examination [MMSE] and Montreal
Cognitive Assessment [MoCA]), neuroimaging features (such
as magnetic resonance imaging [MRI] and single photon
emission computed tomography features), biofluid features
(such as -synuclein [-syn], amyloid β [Aβ], and
phospho-microtubule-associated protein tau [p-tau] in
cerebrospinal fluid and blood plasma), genetic features (such
as GBA, LRRK2, and single-nucleotide polymorphism [SNP]
variants), and quantitative electroencephalography.

Given that classification algorithms in ML can indeed be
considered as a diagnostic test, and that the results included in
the article, ultimately, we used bivariate meta-analysis [16] to

estimate the pooled sensitivity and specificity results, along
with their corresponding 95% CIs. Estimated sensitivity and
specificity were represented as forest plots. A summary receiver
operator characteristic (SROC) curve was generated to evaluate
the accuracy of ML for the prediction of cognitive impairment
in patients with PD [17]. The test of heterogeneity was assessed

using the Cochrane Q-test and I2 test [18]. Heterogeneity was
defined as significant if the Q-test results showed P<.05 or

I2>50%. Potential publication bias was estimated using Deeks’
funnel plot. In the event of bias, it may be evidenced by the
visual asymmetry observed in conventional funnel plots. A
Fagan nomogram was used to identify the maximum pretest
and posttest likelihood. We also conducted sensitivity analysis
by removing studies with a high risk of bias to identify potential
sources of heterogeneity. Considering not all studies reported
the results of both the train and validation sets, we also analyzed
the single set. Statistical analyses were performed using
GraphPad Prism 9.5 (GraphPad Software, Inc) and Stata (version
17; StataCorp). The level of significance was set at P<.05.

Results

Study Selection
Figure 1 shows the literature selection and filtering process
following the PRISMA 2020 guidelines [19]. A total of 1674
records were identified from 4 databases. After removing 199
duplicates, 1475 records were screened, with 785 excluded for
being unrelated (reviews, editorials, conference abstracts, case
reports, etc). Of the 690 records sought for retrieval, 3 were not
obtained. Finally, 687 reports were assessed for eligibility, with
137 excluded for not being related to PD and 511 excluded for
being irrelevant. Finally, 38 studies [20-57] published between
2013 and 2024 were included in the qualitative analysis, from
which 12 studies [20-31] were included in the meta-analysis.
A total of 9698 participants were involved in the current study,
comprising 8564 patients with PD and 1134 healthy controls
in qualitative analysis. Additional information can be found in
Table S2 in Multimedia Appendix 1 [20-57].
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Figure 1. Flowchart illustrating the process of searching for screening and inclusion. PD: Parkinson disease.

Risk of Bias
Table S3 in Multimedia Appendix 1 shows the risk of bias status
of  each included ar t ic le .  A total  of  18
[24,27,29,32,33,39,42-47,51,52,54-57] out of 38 (47%) studies
[20-57] were scored as high risk of bias, 9
[30,31,37,38,40,41,49,50,53] out of 38 (23%) studies were
scored as unclear risk of bias, and the rest of the studies were
low risk of bias. Studies scored a high risk of bias for failing to
describe their study population (patient selection), losing the
gold standard for diagnosing cognitive impairment (reference
standard).

ML Models and Predictors
In the 38 studies [20-57], 172 models were constructed with
different ML models and predictors. However, 142 models were
subjected to analysis, with accuracy being the primary outcome.
These included 45 SVM models, 29 random forest models, 9
K-nearest neighbors models, 18 naive Bayes models, and other
supervised learnings. Also, we included 3 semisupervised

models that used SVM with principal component analysis PCA
and 2 neural networks. The overall mean accuracy of 142 models
was 74.32% (SD 10.25%). Of the 89 models that reported area
under the receiver operating characteristic curve, the mean
accuracy was 0.74 (SD 0.12). Also, 120 models reported
sensitivity and specificity, with mean values of 71.07% (SD
13.72%) and 77.01% (SD 14.31%), respectively.

This study discovered the predictors used to diagnose and predict
cognitive impairment in PD (Figure 2A). Clinical features have
the highest percentage, followed by neuroimaging and
demographic features. Other predictors such as biofluid markers,
genetic variants, electroencephalography, and gait features show
a more balanced or lower percentage representation. The
top-used predictors were summarized in 142 models (Figure
2B). The demographic and clinical characteristics that emerged
as the most significant predictors included age, gender, and
education level, as well as the Unified Parkinson’s Disease
Rating Scale (UPDRS), rapid eye movement sleep behavior
disorder, MMSE, and MoCA. Furthermore, additional
neuroimaging and biomarkers have been identified as potentially
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contributing to the prediction process. Overall, 116 out of 142
models used a single type of feature to diagnose, with a mean
accuracy of 73.42% (SD 10.24%). Nearly 18% of models used
multiple types of features combined, with a higher accuracy of
78.57% (SD 9.2%). In the single type of model, the predictors

with the highest accuracy were neuroimaging features, achieving
an accuracy of 78.78% (SD 11.48%). Furthermore, 13 articles
used longitudinal data to predict cognitive impairment or
conversion, with the majority of predictors being neuroimaging
features and biofluid markers.

Figure 2. Predictors used for diagnosing and predicting cognitive impairment in Parkinson disease in included models. EEG: electroencephalography;
MMSE: Mini-Mental Status Examination; MoCA: Montreal Cognitive Assessment; MRI: magnetic resonance imaging; p-tau:
phospho-microtubule-associated protein tau; RBD: rapid eye movement sleep behavior disorder; SNP: single nucleotide polymorphism; UPDRS: Unified
Parkinson’s Disease Rating Scale; α-syn: α-synuclein.

Meta-Analysis
Due to limited reporting of TP, TN, FP, FN, sensitivity, and
specificity, only 12 studies were conducted for meta-analysis
[20-31]. For studies with multiple models, we prioritized the
one with the highest accuracy, reported in 63% (24/38) of the
articles, to represent optimal model performance. A total of 7
studies [25-31] reported outcomes in the train set or validation
set, while 5 studies [20-24] reported outcomes in both the train
set and validation set. Forest plots for sensitivity and specificity
are shown in Figure 3 for the train and validation set,
respectively, and Figure S1 in Multimedia Appendix 1 for the
single set (train or validation set). The training set sensitivity
exhibited different results in the Q-test (Q=5.68, P=.22) and I²

test (I²=29.53). Other sensitivity and specificity values showed
no heterogeneity. Using sensitivity, the combined sensitivity
and specificity were 0.76 (95% CI 0.67-0.83) and 0.83 (95%
CI 0.76-0.88), respectively. When using specificity, the
combined values were 0.77 (95% CI 0.65-0.86) and 0.76 (95%
CI 0.63-0.85), respectively. The area under the curves of the
SROC were 0.87 (95% CI 0.83-0.89) and 0.83 (95% CI
0.8-0.86), respectively (Figure 4; Figure S2 in Multimedia
Appendix 1). Fagan plots were constructed to illustrate the
pretest and posttest probability of ML predicting cognitive
impairment in patients with PD (Figures S3 and S4 in
Multimedia Appendix 1). The Deeks’ test showed no significant
publication bias for ML (Figures S5 and S6 in Multimedia
Appendix 1).
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Figure 3. Forest plots for sensitivity and specificity in studies with both train and validation sets.

Figure 4. Summary receiver operating characteristic curve for sensitivity and specificity in studies with both train and validation sets. AUC: area under
the curve; SROC: summary receiver operating characteristic.

Sensitivity Analysis
According to the risk of bias analysis, 3 articles scored high.
After excluding these studies, all results exhibited no statistically

significant heterogeneity, for the sensitivity of the training set.
The results indicated a moderate degree of heterogeneity
between studies (I²=45.45). However, the results suggested no
statistically significant heterogeneity between studies in the
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Q-test (Q=5.5, P=.14; Figure S7 in Multimedia Appendix 1).
The sensitivity, specificity, and SROC were consistent with the
original analysis (Figure S9 in Multimedia Appendix 1). In the
single set, there exists high heterogeneity both in sensitivity
(Q=14.6, P=.01; I²=72.59) and in specificity (Q=96.07, P<.01;
I²=95.84; Figure S8 in Multimedia Appendix 1). The results
were consistent with the original analysis, with high sensitivity
and specificity, and good overall diagnostic accuracy (Figures
S9 and S10 in Multimedia Appendix 1). Fagan plots are shown
in Figures S11 and S12 in Multimedia Appendix 1. The Deeks’
test also found no significant publication bias for ML (Figures
S13 and S14 in Multimedia Appendix 1).

Discussion

Principal Findings
This meta-analysis provided new insights into the efficacy of
ML in diagnosing cognitive impairment in patients with PD.
The average accuracy of 142 models was 74.32%, with 120
models reporting mean sensitivity and specificity values of
71.07% (SD 13.72%) and 77.01% (SD 14.31%), respectively.
No significant heterogeneity was found among the sensitivities
and specificities reported by the analyzed included in our
meta-analysis. Nearly 50% of the included studies had a high
risk of bias affecting applicability. A total of 12 studies
[22,31,36,37-44,53] explored the cognition changes in a
longitudinal cohort of patients with PD. Although complete
data were not obtained in this study, we could conclude that the
ML can predict potential cognitive impairment at baseline and
forecast changes in cognitive state.

According to the QUADAS-2, most of the studies had high or
unclear risk in the patient selection and reference standard. Part
of the studies lacked detailed patient source descriptions.
However, these articles were not excluded due to the use of
Movement Disorder Society diagnostic criteria for cognitive
impairment in patients with PD [7,58]. Many studies faced
similar issues in patient selection, and complete exclusion would
significantly reduce the available data. The diverse metrics used
to assess ML resulted in incomplete reporting of expected
metrics, increasing bias risk. These problems may lead to
unstable meta-analysis results and make it difficult to provide
meaningful conclusions. Furthermore, the low heterogeneity
between studies limits the values of sensitivity analyses.

The meta-analysis of 12 studies [20-31] demonstrated that ML
models exhibited greater consistency in terms of sensitivity and
specificity in the training and validation sets. In addition, no
heterogeneity or publication bias was observed, suggesting that
the ML model exhibits superior performance in predicting
cognitive impairment in patients with PD. However, further
studies are essential to validate its clinical applicability.

Studies with a high risk of bias were excluded, and the results
were found to be consistent with those of the original analyses.
However, the I² in the sensitivity of the train set exhibited a
slight increase, while the Q-test suggested no statistically
significant heterogeneity. The sensitivity analysis demonstrated
the credibility and robustness of the results. The results of the
remaining 9 studies [20-23,25,26,28,30,31] remained stable

compared to the original analysis and showed high sensitivity
and specificity of the ML to diagnose and predict cognitive
impairment in patients with PD. While, due to the limited
number of studies included in the meta-analysis, further
exploration was required.

ML Models and Predictors
A recent review divided ML into traditional ML (including
supervised and unsupervised ML), and ML methods based on
neural networks (such as convolutional neural networks and
recurrent neural networks) [59]. The majority of research still
focuses on traditional ML in this review, possibly because
supervised learning still has advantages in ML algorithms and
processed data. First, supervised learning can be further divided
into classification and regression based on their tasks. It can
differentiate between patients with cognitive impairment and
those with mild cognitive normality and also can identify
patients with MCI in PD from those who can be diagnosed with
dementia. Unsupervised learning is primarily used for clustering,
aiming to discover inherent groupings in the data. It is limited
to categorizing patients into distinct groups by reducing the
dimensionality of their shared characteristics. It cannot offer a
definitive diagnosis due to the absence of labeled features.
Second, although unsupervised learning is proving valuable in
reducing the cost of labeling data and automatically identifying
data structures and patterns, the results still require manual
interpretation and analysis for interpretability [60].

Determining the superiority of ML methods is challenging.
With the development of imaging technology and the increasing
costs of data collection, unsupervised learning, deep learning,
and neural networks may become more prevalent in the future.
Notably, semisupervised learning also showed great potential
[61]. Chen et al [32] combined SVM with principal component
analysis to successfully extract 6 features from 32 predictors,
improving the performance over the simple SVM model. Other
models use unsupervised learning to cluster this unlabeled data
and then use supervised learning for longitudinal prediction
[33]. Further research and discussion are needed to assess the
accuracy and effectiveness of these different models.

We found that cognitive tests such as the MMSE and the MoCA
were mostly used as predictors. Meanwhile, the UPDRS score
as a specific feature that can reflect the patient’s severity of
motor and nonmotor symptoms was highly recommended as a
potential predictor. In addition, with the advancement of
neuroimaging techniques, not only traditional neuroimaging,
such as cortical thickness but also functional MRI was widely
used to diagnose and predict disease progression, including
Fluorine-18 fluorodeoxyglucose positron emission tomography,
which can reflect the metabolism in the brain and diffusion
tensor imaging which can show the damages to brain
connectivity. On the other hand, demographic features such as
older age, male sex, and lower education, which were considered
as highly risk factors to cause PD, were highly ranked. Biofluid
markers, total-tau, p-tau, Aβ, and -syn detected in the
cerebrospinal fluid were the most popular approaches and were
deemed as the vital factors to show the prognosis. Furthermore,
the rise of genomics has become a crucial factor in diagnosis
and prediction. The growing popularity of genome-wide
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association studies research has made SNP variation a focal
point of interest, more and more SNP variants that count were
found to cause PD. The APOE gene, which is the risk factor in
AD, is also a potential predictor to predict cognitive impairment
in PD. This review also shows that the performances of ML
vary depending on its feature input. Some studies have found
inconsistent accuracy when using single or multiple types of
features. Some studies have reported greater accuracy in models
with a single type of feature model [34], while others have
concluded that the models incorporating multiple types of
features are more effective [21,24,26]. Despite the remaining
discrepancies in the existing research, integrating multiple types
of features for predictive models appears to yield better results
overall.

This review also summarized the longitudinal studies on
predicting cognitive impairment and conversion in PD
[22,31,36-39]. We discovered that neuroimaging features and
biofluid markers are robust predictors. With the advancement
of imaging technology, such as functional MRI and magnetic
resonance spectroscopy, and their noninvasive detection
capabilities, neuroimaging has become mainstream today.
Neural networks and deep learning are especially focused on
applications in imaging. Numerous research studies have
suggested that biomarkers such as Aβ, -syn, and tau, play an
essential role in the pathologic changes in PD. The detection of
these biomarkers in fluids such as cerebrospinal fluid and blood
becomes a potential approach to improving the accuracy of ML
in diagnosing and predicting the status of cognitive impairment
and disease progression.

A personal review proposed new diagnostic criteria: a
3-component system (SynNeurGe). It includes the harmful
α-synuclein (S) accumulated in tissues or cerebrospinal fluid,
evidence of neurodegeneration (N) in imaging, and the
disease-causing gene variants (G) for PD. They are associated
with clinical symptoms, defined either by a single highly specific

clinical feature or by multiple less specific clinical features. A
biological classification will aid in both basic and clinical
research and bring the field closer to the precision medicine
needed to develop disease-modifying therapies [62].
Consequently, a universally applicable ML model that integrates
these significant variations can lead to personalized diagnosis
and prediction, providing immense value for early detection,
intervention, and management.

Strengths and Limitations
A large number of studies have investigated the diagnostic
accuracy of ML to diagnose cognitive impairment in patients
with PD. With the increasing number of deep learning and
detection approaches, a more comprehensive exploration of ML
was conducted. We used bivariate analysis to show more robust
results. However, there are still several limitations in this review.
First, we excluded nonpublished data in the meta-analysis. Due
to heterogeneity in intervention methods and outcome measures
between studies, it was not possible to synthesize all articles
included using meta-analysis. Second, several studies used
Parkinson’s Disease Progression Markers Initiative datasets, as
they focus on the longitudinal cognitive change. However, we
did not analyze the predictive power of ML in the follow-up
cohort [22,31,36,38-46]. We are also limited to analyzing the
optimum models and the predictors. Further investigation is
required to determine the most effective model or predictors
for identifying patients with PD who have cognitive impairment,
predicting the disease progression (including conversion to
dementia), and providing personalized treatment options.

Conclusions
ML algorithms have been proven to be highly effective in
diagnosing cognitive impairment in patients with PD, especially
MCI, compared to normal cognitive function. Furthermore, ML
holds significant potential for predicting the cognitive decline
in patients with risk factors and the transition from MCI to
dementia.
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