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Abstract

The benefits and challenges of electronic health records (EHRs) as data sources for clinical and epidemiologic research have
been well described. However, several factors are important to consider when using EHR data to study novel, emerging, and
multifaceted conditions such as postacute sequelae of SARS-CoV-2 infection or long COVID. In this article, we present
opportunities and challenges of using EHR data to improve our understanding of long COVID, based on lessons learned from
the National Institutes of Health (NIH)–funded RECOVER (REsearching COVID to Enhance Recovery) Initiative, and suggest
steps to maximize the usefulness of EHR data when performing long COVID research.
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Introduction

Postacute sequelae of SARS-CoV-2 infection, colloquially
known as long COVID, refers to ongoing, relapsing, new
symptoms, or other health effects after the acute phase of
SARS-CoV-2 infection (ie, present 4 or more weeks after the
acute infection). Because long COVID is heterogeneous in
presentation and may occur after a mild or even asymptomatic
infection, it has posed unique and significant challenges for
clinical research, including an overarching lack of data that are
accessible and analyzable in a rigorous and reproducible manner
to inform diagnostic criteria and care guidelines.

SARS-CoV-2 continues to impact populations globally with
new and recurrent infections. While studies have provided a
wide range of estimates regarding the proportion of patients
with COVID-19 who develop long COVID [1], even
conservative estimates point toward an enormous burden.
Without established treatments targeting underlying
pathophysiologic mechanisms, patients and clinicians have
largely focused on treating symptoms [2] and managing organ
damage, highlighting an urgent need to expand our knowledge
of COVID-19 infection’s long-term effects.

Electronic health records (EHRs) contain large quantities of
clinical data that can be used for research without significant
delay, making them an important data source for accelerated
insight into emerging health conditions. However, challenges
associated with leveraging EHR data for research can become
amplified when mobilizing rapidly to study these conditions,
particularly when they are multifaceted and lack clear hallmark
traits or biomarkers.

The National Institutes of Health (NIH)–funded REsearching
COVID to Enhance Recovery (RECOVER) Initiative was
launched in 2021 [3] to advance research into long COVID.
Broadly, RECOVER supports prospective clinical studies of
adult and pediatric cohorts and real-world data studies that
leverage EHR networks to study long COVID. These studies
have been developing and validating algorithms to identify
patients with long COVID within EHR networks for clinical
and epidemiological characterization, risk factor prediction, and
identification of prevention and treatment opportunities.
RECOVER’s real-world data efforts are led by 3 participating
EHR research networks: the National COVID Cohort
Collaborative (N3C); the National Patient-Centered Clinical
Research Network (PCORnet); and PEDSnet, a pediatric
learning health system within PCORnet. These networks are
coordinated by a Clinical Science Core (CSC) at NYU Langone
Health.

In this paper, we highlight opportunities and challenges of using
EHR data to improve our understanding of long COVID, with
a focus on analytical resources and scenarios we’ve encountered
as US-based researchers, and conclude with some next steps
for maximizing the usefulness of EHR data for long COVID
research. Similar considerations may pertain to other chronic
infection–associated diseases, that is, complex multisystemic

conditions often occurring in the context of infection with other
pathogens, including myalgic encephalomyelitis/chronic fatigue
syndrome (ME/CFS).

EHR-Based Research Networks

Overview
The widespread adoption of heterogeneous health information
systems across the United States hinders large-scale EHR-based
research efforts. To overcome this, federal funding from the
Patient-Centered Outcomes Research Institute (PCORI), Centers
for Disease Control and Prevention (CDC), and NIH has
facilitated the growth of networks that transform data into a
common data model to facilitate aggregation across participating
institutions. These networks are often referred to as clinical
research networks (CRNs).

While such networks are a focus of this paper, we recognize
that other successful international [4-7] and national models
have been leveraged for large-scale long COVID studies.
Domestically, the Department of Veterans Affairs (VA), which
operates the largest integrated health care system in the United
States, has made important contributions characterizing long
COVID, its burden, and risk after reinfection, immunization or
nirmatrelvir (Paxlovid) use [8-11]. The interoperability across
many VA hospitals and clinics allows for data aggregation
without the extensive harmonization or loss of data depth that
usually accompanies a research network, though VA patients
(military experience, mostly men) are not representative of the
general population. Similarly, researchers have used claims data
and outpatient laboratory results from UnitedHealth, a large
health insurance provider, to characterize risk of long COVID
in commercially insured patients [12]. The addition of claims
data enables better understanding of health care use, inequities
in access to care and costs associated with long COVID, though
quantifying the larger economic burdens and disparities requires
incorporation of data sources outside the health care system.

While researchers with access to EHR data from large clinical
networks or health systems may bypass some challenges below,
many national and international EHR-based collaborations
wrestle with similar obstacles.

Opportunities
CRNs provide several benefits for conducting clinical research.
Most significantly, they unify patient data that may otherwise
be distributed across multiple health care facilities and facilitate
access to large sets of timely, longitudinal patient information.
This enables broad hypothesis generation, signal identification,
and feasibility analysis, which is highly advantageous for
emerging conditions like long COVID as such analyses can be
conducted at a scale, pace, and cost that surpass traditional
research methods [13]. Because CRNs use data generated during
health care delivery, they are also well-positioned to study how
practices evolve in ways that directly impact patients. For
example, EHR data can be used to evaluate uptake and patterns
of use for new diagnostic codes introduced to capture long
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COVID [14], ME/CFS, and postural orthostatic tachycardia
syndrome (POTS).

To overcome the lack of semantic interoperability across EHR
systems and facilitate analysis, most CRNs map source data to
common data schemas, such as the Observational Medical
Outcomes Partnership (OMOP) [15] or PCORnet common data
models [16], which provide frameworks for data standardization
and are optimized for large-scale longitudinal data analysis. The
popularity and extensibility of common data models helped
CRNs to quickly adapt them for novel disease research at the
beginning of the pandemic [17]. Use of a common data model
also enables distributed network queries and analyses behind
institutional firewalls, as well as centralization of the data for
advanced artificial intelligence and machine learning [18].

In a relatively short time, a large amount of scientific literature
has been generated regarding the clinical characterization and
epidemiology of long COVID, yet efforts to synthesize this
body of research have been hampered by the inconsistency of
methodologic approaches, study definitions, and findings.
Research conducted using a shared infrastructure or data model
promotes reproducible research and exchange of clinical and
variable definitions that can be harmonized and tested across
multiple health systems. For example, a recent collaboration
between RECOVER and NIH’s All of Us study demonstrated
success in reusing long COVID definitions across OMOP data
environments, enabling reproduction of N3C’s definition within
the All of Us database [19].

Along the same lines, CRNs are often well-positioned to foster
multidisciplinary collaboration [20]. They have streamlined
contracting and collaboration processes that expedite research
while reducing regulatory burden, and can also provide an
efficient vehicle for patient recruitment into prospective cohort
studies and clinical trials.

Challenges
Some broad challenges come with using CRNs for population
health research and may directly impact research into long
COVID, where data quality, depth, and timeliness are crucial.
These largely arise from the need to standardize data across
multiple institutions, which may result in a loss of detail and
context from the originating EHR [21]. For example, while the
OMOP and PCORnet data models support documentation of
patient cause of death and discharge disposition, not all do;
furthermore, not all sites collect and report these data. Analyses
can also be limited by not having information such as provider
specialty, medication indication, or drug dosing consistently
abstracted from the EHR. However, as described earlier, the
extensibility of many common data models means that new
concepts can be incorporated to close priority gaps.

Aggregating data within a CRN can mask important
heterogeneity due to differences in how health systems and
individual practitioners provide and document care. One
example is the variation in how visit data are represented across
individual health care facilities. The definition of an “encounter”
in a given health system’s data has more to do with business
rules than clinical care; for example, some systems create a
separate encounter record for each day of an inpatient stay,

while others use a single record to capture the entire
hospitalization. As most variables in EHR data are captured at
the visit level, inconsistency in the definition of encounters can
lead to errors when analyzing clinical observations. Thus, to
accurately classify types of visits and to quantify visits across
sites, careful standardization is required [22]. Ongoing
governance, documentation, and input from data experts at
contributing institutions are essential to bridge syntactic and
semantic differences [21].

Timeliness of data delivery represents an additional challenge.
While data from CRNs are generally rapidly available, there is
still a latency from participating institutions. Data must be
mapped, transformed, transmitted, quality checked, and
potentially resubmitted with corrections, which takes time and
collaborative effort. Delays may also result from the need to
incorporate data standards for new concepts (such as the long
COVID ICD-10 [International Statistical Classification of
Diseases, Tenth Revision] code U09.9, which was not introduced
until late 2021).

Finally, real-world data present specific limitations compared
with traditional research data. These include data missingness,
which has been described extensively [23] and can exist for
various reasons (eg, patient discontinuation of care or data points
not being systematically captured in EHRs). EHR data are also
subject to biases like selection bias [24], where patients
accessing care may be sicker, more likely to be insured, and
able to take time off work and afford transportation [13,25].
Data from nonacademic institutions, and other settings that may
lack robust data systems such as nursing homes, are often
underrepresented in CRNs. Careful study designs,
informatics-informed approaches to transforming raw clinical
data into analytical datasets [26], techniques to supplement
structured EHR data with items extracted from free text notes
such as social determinants [27], and advanced statistical
approaches are often required to minimize bias.

Identifying Patients With Long COVID
Within EHRs

Overview
Robust case definitions are essential to disease surveillance,
enabling consistent use of data from collection through analysis
and across population subgroups, time, and geographic
jurisdictions. However, Long COVID still lacks a uniform case
definition, and multiple frameworks have emerged with varying
timeframes and symptoms [25]. This is partly due to the
heterogeneity of long COVID’s clinical presentation, which
includes substantial differences between adults and children
[28] and hundreds of potential signs and symptoms. The
National Academies of Sciences, Engineering, and Medicine’s
recent report A Long COVID Definition provides updated
recommendations around diagnosis, noting that long COVID
can impact any organ system; follow acute infection of any
severity, including asymptomatic infection; be continuous from
acute infection or delayed in onset; and present as incident or
worsening, mild or severe, and persistent or intermittent [29].
These broad guidelines leave room for ambiguity, and as there
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is no diagnostic test for long COVID, their application at the
point of care involves clinical judgement, experience, and
thorough differential diagnosis to establish probable causality.

Finally, we are still learning about long COVID’s disease course
and trajectory, how it relates to development of clinical
conditions such as diabetes, kidney disease, and POTS, and
how its characteristics may evolve over time. While these
complexities underlie all long COVID research, EHR-based
research is particularly well-positioned to inform and validate
potential definitions.

Opportunities
Researchers working with EHR data operationalize case
definitions by creating computable phenotypes, which
algorithmically identify cohorts of interest within an EHR
system [30]. Generating, adapting, and validating computable
phenotypes can be complex, even for well-characterized diseases
and conditions, so multiple approaches for identifying patients
with long COVID have evolved both nationally and
internationally. These include building computable phenotypes
using “rules-based” approaches or prespecified logic-based
queries to search for specific criteria such as diagnosis codes,
medications, or laboratory results based on clinical literature
and expertise [31-33], and data-driven or inductive approaches,
including machine learning (ML) to automatically classify long
COVID without detailed prespecification of the inclusion or
exclusion criteria [34,35]. These approaches can also be
combined, leveraging insights from ML to shape rules-based
definitions.

The lack of a formal case definition, limited SARS-CoV-2
testing information, and large amounts of rich longitudinal data
within EHRs make ML approaches particularly attractive.
Supervised ML models can be trained on sets of patients that
are certain or highly likely to have long COVID, such as patients
assigned a long COVID diagnostic code, and then used to
identify patients with probable long COVID who may not have
a documented or readily recognized diagnosis [35]. ML and
other statistical approaches have also been applied to recognize
incident diagnoses that appear more frequently in cohorts with
a recent history of COVID-19 infection than those without
[36,37].

Although the EHR does not capture every case (or every
recurrence) of acute SARS-CoV-2 among its patients, there is
still significant opportunity to use EHRs to study the potential
effect of SARS-CoV-2 reinfection on risk of long COVID
among those patients with multiple recorded cases. Hadley et
al [38] found that across SARS-CoV-2 variants, the incidence
of new long COVID diagnoses after reinfection is lower than
after the initial SARS-CoV-2 infection. Bowe et al [11] found
that though risk is lower with more recent variants, it is
cumulative across infections. As multiple reinfections become
more common, there will be continual opportunities to
reevaluate these findings in the context of new variants and
subvariants.

Both rules-based and ML techniques are being used to identify
potential clusters or subphenotypes of long COVID [39-41].
For example, an analysis by Zhang et al [41] identified four

distinct subphenotypes (including cardiac and renal,
musculoskeletal, and nervous system) and specific risk
predictors for each. Clustering analyses may uncover diverse
symptoms that have common biological causes, and in
establishing distinct groupings around them, facilitate diagnosis
and treatment targeted toward specific subtypes [42].

Challenges
Within the EHR, Long COVID may not be well-documented
due to diagnostic complexities, as described earlier. The initial
focus among clinicians on respiratory symptoms and widespread
lack of knowledge around what were initially considered to be
“atypical” presentations, such as postexertional malaise,
ME/CFS, POTS, and dysautonomia, also contribute to
missingness of relevant diagnoses within the EHR [43], which
is compounded by the absence of or delay in introduction of
ICD-10 codes for many of these conditions, including the U09.9
code for long COVID itself. Such manifestations can
significantly impact daily function but may not be considered
attributable to previous COVID-19 infection (or misdiagnosed
as mental health issues), leading to their underrepresentation in
research [43].

Health care professionals may be subject to implicit biases that
impact documentation of patient information (eg, social
determinants and symptoms) within the EHR [24]. This may
also lead to underestimation of long COVID for certain
populations, such as racial or ethnic minorities. Indeed, U09.9
diagnostic codes have been found to be more common among
patients that are non-Hispanic White and living in areas of low
poverty compared with the overall COVID-19–positive
population, potentially reflecting differences in access to care
and other interactions with the health care system [14]. Although
we found value in using visits to a long COVID clinic as an
early proxy for a long COVID diagnosis code [35], both of these
markers have biases and should not be considered a gold
standard for long COVID identification [44]. There is also
substantial need to complement patient-reported symptoms with
clinically characterized ones [45] so that physicians are not
“gatekeepers” of documented symptoms.

Given that long COVID is likely underdiagnosed and
underdocumented, computable phenotype algorithms must
supplement formal U09.9 diagnoses with other patient data
following acute SARS-CoV-2 infection. However, identifying
acute infections is also not straightforward. Diagnosis codes
such as the ICD-10 code U07.1 have demonstrated variable
sensitivity and positive predictive value [46,47], which may be
exacerbated by “rule out” diagnoses or improper coding. Even
when diagnoses are correct, the true timing of the initial
infection with respect to the date of the diagnosis code may be
uncertain [44], and we found this to complicate EHR-based
calculations of long COVID incidence. Limited availability of
SARS-CoV-2 testing during the early phase of the pandemic,
widespread testing at nonclinical settings (eg, kiosks and
pharmacies), and the later popularity of at-home tests have all
contributed to low confidence in accurately capturing
SARS-CoV-2 infection (and reinfection) history within the
EHR, and amplified potential misclassification of long COVID
patients without documented acute COVID-19 infection. We
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note, however, that misclassification of patients as uninfected
is an issue that extends beyond EHR-based studies [48], broadly
impacting long COVID research.

ML methods are also subject to obstacles, including the lack of
a validated test set for long COVID and dependency of results
on the training set used, which may limit reproducibility
(although, as demonstrated by the collaboration between
RECOVER and All of Us, ML algorithms can be replicated in
new environments) [19]. ML models must be interpretable, so
predictions can be explained instead of only existing within a
“black box.”

Determining Risk Factors for Long COVID
Using EHRs

Risk factors for long COVID include demographic
characteristics, lifestyle behaviors, underlying comorbidities,
and social and environmental factors. Identifying risk factors
can guide screening and prevention efforts, particularly in highly
susceptible groups, and potentially facilitate tailored long
COVID treatments.

Opportunities
EHR-based studies are primed to quickly reveal possible
associations and risk factors for conditions like long COVID
due to large volumes of available data and ability to stratify by
various subgroups. For example, Rao et al [28] leveraged
PEDSnet’s geographical and clinical breadth to identify risk
factors such as age, severity of acute COVID-19 infection, and
comorbid conditions. Potential biological variables that are
well-defined in EHRs and therefore, more reliably available for
application in adjusted analyses include age, sex, BMI, and
blood pressure, and, indeed, these variables have been shown
to confound the evaluation of causal pathways for long COVID
[49-51].

Where data of interest are missing from the EHR, linkage to
external sources can increase data quality and completeness.
Statewide vaccination or vital record data can be acquired and
linked at the patient or area level to enhance the accuracy of
vaccine status and COVID-19 outcomes [52,53]. Linkage with
geographic information systems (GIS) can address questions
about complex networks of long COVID burden that pertain to
certain geographic regions, including the so-called “exposome”
[54] even down to ZIP codes and neighborhoods [13,14].
Patient-reported outcomes from patient portals and surveys can
improve the completeness of information on demographic,
social, and behavioral factors such as race, ethnicity, substance
use, exercise frequency, and smoking status [13,55]. To enhance
completeness of data such as outpatient medication use, linkage
to claims data can be an effective strategy. Data of interest may
also be captured within free-text clinical notes, images, and
other scanned documents, requiring application of natural
language processing tools, including cutting-edge language
models [27], or manual chart review to incorporate them.

Within EHR-based studies, several analytic approaches can
address confounding and effect modification and help measure
mediating influences. Researchers can match comparison groups

using various approaches, including propensity scores for known
confounders. In addition, causal mediation analysis methods
may more accurately explain observed associations between
risk factors and long COVID development.

Designing studies with appropriate comparison groups for
analyses of risk factors can be challenging. If comparison groups
are matched too closely, relevant differences in concurrent risk
factors and outcomes may be masked. If groups are not matched
well enough, then the impact of confounders may overwhelm
the ability to detect differences associated with the characteristic
of interest. Researchers using real-world data can conduct
sensitivity analyses under different assumptions of risks and
outcomes. For example, Hill et al [56] leveraged 3 different
control groups and 2 definitions of long COVID to enhance an
investigation of risk factors within N3C. This agility is
especially useful with a novel condition such as long COVID,
where our understanding is rapidly evolving. Comparison groups
can be iteratively modified, and analyses rerun as new
information or criteria emerge.

EHR data, especially within the context of a CRN, also
facilitates the study of risk factors within rare populations and
subgroups (eg, peoples indigenous to the United States). Such
groups often experience a disproportionate burden of COVID-19
complications due to socioeconomic and structural factors
[51,57], but are generally not well-represented in prospective
studies and randomized controlled trials [58]. EHR data can
similarly help overcome the methodological constraints and
recruitment challenges of rare disease research [13], providing
an opportunity to study rare conditions and outcomes and
facilitating clinical trial cohort selection.

Finally, EHRs provide rich datasets for pragmatic clinical trials
and target trial emulation to identify potential therapies [59,60].
For example, there is inconclusive data on the efficacy of
Paxlovid for preventing or treating long COVID [61]; novel
approaches such as target trial emulation using EHR data can
help evaluate its efficacy and determine which patients should
be prioritized for treatment based on risk factors for severe long
COVID subphenotypes. The ability to quickly evaluate and
personalize potential treatments is highly advantageous given
the large burden of long COVID and its heterogeneous
presentation. Because target trial emulation better reflects
real-world medication adherence (or application of other
interventions), comparing the results of emulated and clinical
trials, and examining how the methods and populations differ,
may yield insights into generalizability of clinical trial results
and sources of bias within observational analyses.

Challenges
Limitations outlined earlier, such as data missingness, selection
bias, and implicit biases, can directly impact the ability to
evaluate risk factors using EHR-based analyses. Potential risk
factors can be rigorously evaluated if well-defined and
well-captured, but many important risk factors may not be
completely, meaningfully, or consistently recorded within the
EHR.

For example, race and ethnicity are important demographic risk
factors for long COVID [51], but these data can be missing in
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over 25% of patient records [55,62]. Lack of robust, structured
data on social and behavioral determinants of health, such as
physical activity levels, smoking status, and alcohol use
[13,51,62] may necessitate supplementation with survey results
or data extracted from clinical notes as described above.
EHR-based assessments of symptom severity and improvement
may also be of limited use without these approaches.

Imperfect data capture also impacts our ability to establish
proper comparison groups. This notably includes the shrinking
population of patients without previous SARS-CoV-2 infection
[63]. In addition to being challenging to identify, control patients
identified by negative lab tests may actually be in worse health
than those with mild COVID-19 infection, likely due to routine
testing of patients within the emergency department or inpatient
settings. Another example applies to our work examining
obstructive sleep apnea (OSA) as a risk factor for long COVID
[64]. A comparison group of patients ostensibly without OSA
may include some with undiagnosed, subclinical, or
undocumented OSA, and sizable numbers of misclassified
patients would lead to underestimation of effect size on long
COVID. Similarly, slight improvements in recognition of
ME/CFS throughout the pandemic may have resulted in some
individuals with prepandemic long COVID–like symptoms (eg,
unrefreshing sleep and postexertional malaise) having their
illness misclassified as SARS-CoV-2–related. Appropriate
comparison groups must be carefully considered.

The pandemic disrupted typical health care use and
documentation patterns. Clinic closures and reduced access to
specialty care may have masked diagnoses of chronic conditions
and comorbidities and led some patients with long COVID,
particularly those with milder presentations, not to seek care.
This biases EHR data, especially from the first year of the
pandemic, toward underascertainment of health issues;
prepandemic controls (who we can say with certainty have not
had COVID-19 infection) may have higher rates of clinical
events than pandemic-era patients. Similarly, research about
the effectiveness of vaccinations in reducing the risk of long
COVID is hampered by widespread distribution in nonclinical
settings [65] and reinforces the importance of ongoing data
exchange between EHRs and vaccination registries in addition
to dedicated linkage efforts.

These challenges also apply to potential confounding, which is
particularly important within observational research on risk
factors and causal mechanistic pathways for long COVID.
Certain potential confounders, such as age or underlying health
conditions, are easier to adjust for than others. The severity of
acute COVID-19 infection, which appears in some studies to
be directly associated with the risk of developing long COVID
[49,50,66], is a particularly illustrative example. More severe
COVID-19 infection, whether it results in hospitalization or
not, may result in increased frequency of diagnosis and
monitoring of long COVID and higher data density for affected
patients within the EHR. These biases may contribute to the
underrepresentation of asymptomatic, mild, or moderate acute
COVID-19 infections, as well as greater clinician awareness of
long COVID in the context of severe illness (although most
cases occur among nonhospitalized patients) [43]. Analyses

stratified by acute illness severity are important to differentiate
between nonhospitalized and hospitalized patients.

Discussion

As SARS-CoV-2 and our susceptibility to infection evolve,
sustained research efforts are needed to build our knowledge
of long COVID and evaluate its presentation over time. Within
a short timeframe, the use of EHR networks to study long
COVID has grown rapidly, nationally and internationally. The
immediate need to advance our understanding of long COVID
must be balanced with a thoughtful methodological approach
that leverages the many strengths of EHR data while recognizing
their limitations. EHRs have been used to characterize long
COVID and its subphenotypes [14,32,40,41,45], estimate its
burden [28,67], identify risk factors [49-51,66], and evaluate
SARS-CoV-2 vaccine efficacy for long COVID prevention
[8,53,68]. Although we anticipate that the breadth and rigor of
this research will increase as computable phenotypes improve
through iterative validation and data linkage becomes more
extensive, several innovations to effectively wield EHR data,
such as improved accuracy and consistency of recording of long
COVID-specific diagnoses, application of ML to identify
patients with long COVID and harmonized data analyses across
CRNs, have already begun increasing the capacity of
investigators to study long COVID and, importantly, augment
research on long COVID subphenotypes.

EHRs can be instrumental in supplementing randomized
controlled trials to evaluate treatments and preventative
strategies such as vaccinations, but novel approaches such as
target trial emulation have not yet widely extended to long
COVID. Increased data linkage to vaccination registries, survey
data, and other sources can further enrich EHR-based analyses,
providing more complete patient outcomes and medical history
data. As recruitment into prospective RECOVER studies
increases, efforts are underway to link EHR data with participant
study data, enhancing both datasets for validation and analysis.

We envision a near future where the mutual benefits of clinical
and real-world data research collaborations have been optimized
for synergistic learning. EHRs can identify study participants
and generate hypotheses that can be prospectively tested. They
can also inform clinical trial feasibility, generate preliminary
data around specific populations, therapeutics, and outcomes
of interest, and inform the interpretation of clinical trial results
through trial emulation. However, strengthening this interchange
will require new workflows, collaboration, and time.

We caution that despite the dedication of the research
community and high expectations for EHRs to quickly advance
our understanding of long COVID, sustained, collaborative
efforts are needed for this work. New treatments and vaccines
are still being introduced, requiring process modifications for
extraction and standardization of data. Complex clinical traits
require careful development of computable phenotypes and
rigorous data quality evaluation to identify specific
misclassification risks. Continued coordination is necessary to
converge upon reliable, repeatable insights and yield effective
strategies for long COVID.
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ICD-10: International Statistical Classification of Diseases, Tenth Revision
ME/CFS: myalgic encephalomyelitis/chronic fatigue syndrome
ML: machine learning
N3C: National COVID Cohort Collaborative
NIH: National Institutes of Health
OMOP: Observational Medical Outcomes Partnership
OSA: obstructive sleep apnea
PCORI: Patient-Centered Outcomes Research Institute
PCORNet: National Patient-Centered Clinical Research Network
POTS: postural orthostatic tachycardia syndrome
RECOVER: REsearching COVID to Enhance Recovery
VA: Department of Veterans Affairs
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