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Abstract

Background: Septic shock (SS) is a syndrome with high mortality. Early forewarning and diagnosis of SS, which are critical
in reducing mortality, are still challenging in clinical management.

Objective: We propose a simple and fast risk-stratified forewarning model for SS to help physicians recognize patients in time.
Moreover, further insights can be gained from the application of the model to improve our understanding of SS.

Methods: A total of 5125 patients with sepsis from the Medical Information Mart for Intensive Care-IV (MIMIC-IV) database
were divided into training, validation, and test sets. In addition, 2180 patients with sepsis from the eICU Collaborative Research
Database (eICU) were used as an external validation set. We developed a simplified risk-stratified early forewarning model for
SS based on the weight of evidence and logistic regression, which was compared with multi-feature complex models, and clinical
characteristics among risk groups were evaluated.

Results: Using only vital signs and rapid arterial blood gas test features according to feature importance, we constructed the
Septic Shock Risk Predictor (SORP), with an area under the curve (AUC) of 0.9458 in the test set, which is only slightly lower
than that of the optimal multi-feature complex model (0.9651). A median forewarning time of 13 hours was calculated for SS
patients. 4 distinct risk groups (high, medium, low, and ultralow) were identified by the SORP 6 hours before onset, and the
incidence rates of SS in the 4 risk groups in the postonset interval were 88.6% (433/489), 34.5% (262/760), 2.5% (67/2707), and
0.3% (4/1301), respectively. The severity increased significantly with increasing risk in both clinical features and survival.
Clustering analysis demonstrated a high similarity of pathophysiological characteristics between the high-risk patients without
SS diagnosis (NS_HR) and the SS patients, while a significantly worse overall survival was shown in NS_HR patients. On further
exploring the characteristics of the treatment and comorbidities of the NS_HR group, these patients demonstrated a significantly

J Med Internet Res 2025 | vol. 27 | e58779 | p. 1https://www.jmir.org/2025/1/e58779
(page number not for citation purposes)

Liu et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

mailto:xshen@fjmu.edu.cn
http://www.w3.org/Style/XSL
http://www.renderx.com/


higher incidence of mean blood pressure <65 mmHg, significantly lower vasopressor use and infused volume, and more severe
renal dysfunction. The above findings were further validated by multicenter eICU data.

Conclusions: The SORP demonstrated accurate forewarning and a reliable risk stratification capability. Among patients
forewarned as high risk, similar pathophysiological phenotypes and high mortality were observed in both those subsequently
diagnosed as having SS and those without such a diagnosis. NS_HR patients, overlooked by the Sepsis-3 definition, may provide
further insights into the pathophysiological processes of SS onset and help to complement its diagnosis and precise management.
The importance of precise fluid resuscitation management in SS patients with renal dysfunction is further highlighted. For
convenience, an online service for the SORP has been provided.

(J Med Internet Res 2025;27:e58779) doi: 10.2196/58779

KEYWORDS

septic shock; early forewarning; risk stratification; machine learning

Introduction

Sepsis is a syndrome or group of symptoms associated with
infection rather than a single disease [1]. Reportedly,
approximately 48.9 million cases of sepsis occurred globally
in 2017, with approximately 11 million sepsis-related deaths,
accounting for approximately 19.7% of all deaths worldwide
[2]. According to the Third International Consensus on Sepsis
and Septic Shock held in 2016 [1], sepsis is defined as
life-threatening organ dysfunction caused by a dysregulated
host response to infection, and septic shock (SS) is defined as
an advanced state of sepsis in which severe circulatory, cellular,
and metabolic abnormalities lead to a greater risk of death than
sepsis alone, with a mortality rate estimated to be as high as
45% [3,4]. Kumar et al [5] found that patients with SS treated
within the first hour of diagnosis had a 79.9% survival rate, but
each hour of delay in treatment was associated with a 7.6%
increase in mortality. Therefore, early forewarning of the onset
of SS and timely treatment can help reduce the morbidity,
mortality, and length of intensive care unit (ICU) stay. However,
early forewarning is challenging due to the complexity of the
disease in the clinical context [6,7] and the heterogeneity of the
sepsis population [8].

Recently, machine learning techniques have been applied to
electronic health record data to develop models for risk
prediction [9,10], clinical phenotyping [11-13], and early
forewarning [14-19]. While several studies have focused on
early forewarning of SS in the ICU, practical limitations remain
[20-24]. Many models required extensive clinical features from
multiple examinations [21,22], increasing the complexity and
time for data collection, which can delay forewarnings. Efforts
to reduce the feature number often relied on distributed
examinations [23] and left limited time for intervention [24].
Additionally, many studies prioritized predictive performance
[25-27] while neglecting clinical interpretability. Specifically,
limited attention has been given to the triggers of inconsistent
predictions, a crucial factor for improving models and the
understanding of disease diagnostic criteria. To enhance clinical
applicability, models must offer straightforward actionable
insights rather than complex algorithms that burden clinicians.

Therefore, we developed a real-time risk-stratified forewarning
model for SS that minimized the need for extensive clinical
examinations, enabling physicians to quickly and easily assess
the patient’s risk and facilitate timely intervention. Furthermore,

after stratifying patients based on the risk scores provided by
the model, we further analyzed the clinical characteristics of
patients in different risk groups, with a particular focus on
high-risk (HR) patients. A public web application was deployed
that enables easy access and use of our proposed model [28].

Methods

Datasets and Participants
To improve the quality and reproducibility of reporting, we
prepared a checklist (Multimedia Appendix 1) according to the
TRIPOD (Transparent Reporting of a Multivariable Prediction
Model for Individual Prognosis or Diagnosis) guidelines [29].

Data were collected from an open-source dataset released for
sizeable critical care databases, including the Medical
Information Mart for Intensive Care-IV (MIMIC-IV) [30] and
the eICU Collaborative Research Database (eICU) [31]. The
MIMIC-IV contains comprehensive and high-quality data on
deidentified patients admitted to ICUs at the Beth Israel
Deaconess Medical Center (BIDMC), with more than 76,000
admissions between 2008 and 2019. The eICU is a multicenter
publicly available database containing deidentified highly
granular medical data for more than 200,000 patients in 335
ICUs from 208 hospitals across the United States between 2014
and 2015. Both databases include vital signs (VSs), laboratory
results, diagnosis, treatment, care plan documentation, severity
of illness measures, and other information.

Patients aged 18 years or older who were admitted for the first
time and stayed in the ICU for more than 24 hours were included
in the analysis. To reduce the impact of complicating factors in
defining SS, patients designated as “do not resuscitate” or
“encounter for palliative care” according to the International
Classification of Diseases (ICD) were excluded. Moreover,
patients in the coronary care unit were excluded to reduce the
impact of cardiogenic shock. A final cohort of 5125 patients
(including 766 SS patients) in the MIMIC-IV and 2180 patients
(480 SS patients) in the eICU was obtained. The MIMIC-IV
data were randomly partitioned into training (60%), validation
(20%), and testing (20%) sets. The eICU data were used for
external validation.

Ethical Considerations
The MIMIC-IV and eICU databases are publicly accessible,
deidentified, and transformed, and have been approved for use
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by the institutional review boards at BIDMC and the
Massachusetts Institute of Technology, in accordance with the
Declaration of Helsinki. Both databases received waivers for
informed consent due to the deidentification of all protected
health information. Access to these databases was granted upon
completion of human research ethics training and signing of a
data use agreement with PhysioNet (certification number
38539898).

Definitions of Sepsis and SS
The Third International Consensus Definitions for Sepsis and
Septic Shock (Sepsis-3) [1] were applied to determine the onset
time of sepsis and SS. Specifically, all episodes of suspected
infection (tsuspicion) were identified by the timestamp of antibiotic
administration or blood culture, whichever was earlier, within
a specific period. If the antibiotic was administered first, the
culture sampling was required to be obtained within 24 hours.
If the culture sampling occurred first, the antibiotic was required
to be ordered within 72 hours. The onset time of sepsis (tsepsis)
was defined as an episode of suspected infection with a change
in the Sequential Organ Failure Assessment (SOFA) score of
2 or more points from up to 48 hours before to up to 24 hours
after tsuspicion. Patients with SS were identified by a clinical
construct of sepsis with persisting hypotension requiring
vasopressors to maintain mean arterial pressure ≥65 mmHg and
with a serum lactate level >2 mmol/L (18 mg/dL) despite
adequate volume resuscitation [1]. Specifically, adequate fluid
resuscitation was defined as a total fluid volume greater than
30 mL/kg or 1000 mL within a 3-hour window before the
initiation of vasoactive drugs or hypotension. The first lactate
level needed to be greater than 2 mmol/L within 6 hours after
adequate resuscitation. The onset time of SS (tseptic shock) was
the earliest time when all criteria for SS were met. Due to a lack
of information on the starting and ending times of fluid
resuscitation, SS, according to Sepsis-3, could not be defined
in the eICU data. Instead, we used the ICD code labels in the
“diagnosis.csv” table to determine SS onset.

Data Processing
Given the characteristics of time-series data and the need for
real-time monitoring for SS risk, this study defined a 6-hour
retrospective window, whereby data collected during the 6 hours
prior to the current state of the patient were used to provide a
forewarning of the SS risk in the next 6 hours. We discretized
the features of high-frequency detection, such as VSs, and the
features of low-frequency testing, such as laboratory test data,
to an hourly value. If multiple measurements were performed
in the same hour, their mean value was calculated as the value
for this hour of the feature. The forward-filling method was
used to fill in missing measurements (with the early
measurement), if there was no measurement in this hour.

Next, several time intervals were defined to assess and compare
differences among risk groups (derived from the Septic Shock
Risk Predictor [SORP] risk scores) in terms of patient
pathophysiology (based on VSs and laboratory testing features),
clinical characteristics, etc. The time of SS onset is defined as
0. Considering this, –1 indicates 1 hour before onset and +1
indicates 1 hour after onset, and the risk prediction time is –6.

Three primary time intervals were delimited, namely, –12 to
–6, –6 to 0, and 0 to +6, representing the look-back interval, the
preonset interval, and the postonset interval, respectively, where
the look-back interval was the time interval used for data
collection for risk calculation by the model. For easier
comparison among risk groups, the mean value of a clinical
feature was used to represent its value within a specified time
interval.

Notably, information on patient comorbidities (eg, chronic
kidney disease [CKD]) was taken from ICD codes, and invasive
procedures (eg, dialysis-continuous renal replacement therapy
[CRRT]) were taken from the procedures documented
(“procedureevents” table).

Risk Model
To facilitate clinical application, we filtered the features and
then developed a scorecard [9,10] to evaluate SS onset risk by
logistic regression (LogR). Next, to present the patient’s risk
more visually, we stratified the risk scoring and assessed the
characteristics of patients in each risk group. The workflow is
shown in Figure 1.

The scorecard was constructed as follows. The scorecard
allowed for transferring continuous variables into multiple bins,
and each feature was divided into multiple bins. In this study,
we used the weight of evidence (WOE) to measure the
probability of illness in each bin and determine the most
appropriate number of bins by detecting the change in
information value (IV) under each bin. The WOE and IV were
calculated according to equations 1 and 2, respectively.
Specifically, first, features were divided into 10 bins, making
sure that each bin contained both SS patients and nonshock
(NS) patients. Subsequently, the chi-square test was performed
on 2 neighboring bins, traversing and merging those bins with
the largest P-value until the number of bins met the expectation.
Then, the final number of bins was determined based on the IV.
After the binning was completed, the WOE value of each bin
was calculated, and then, the WOE was mapped back to the
original dataset to build the LogR model.

where i represents each subgroup, DistributionNSi denotes the
proportion of septic NS patients in group i to the NS patients
in the entire feature, and Distribution Si denotes the proportion
of SS patients in group i to the SS patients in the entire feature.

The scorecard points were calculated using the following
equations:

where P0 and PDO (points to double odds) are the score ranges
that were set manually, woej can be calculated with equation 1,
βi denotes the coefficient of the ith feature in LogR, α is the
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intercept term from LogR, n is the number of features, and k is
the number of bins in each feature.

The scorecard was adjusted to a range of scores between 0 and
100. The final scorecard consisted of a base score and a score
for each bin in each feature (Multimedia Appendix 2).

Figure 1. The flowchart of this study. The study flowchart comprises 4 stages. (A) Model development: Electronic health record (EHR) data were
collected from the Medical Information Mart for Intensive Care-IV (MIMIC-IV) and eICU Collaborative Research Database (eICU), and multiple
forewarning models were constructed. Using Shapley Additive Explanations (SHAP) analysis, we identified key features within the same test batch,
which were then used to build the Septic Shock Risk Predictor (SORP) model. The performance of the SORP was compared to that of models based
on all available features to evaluate whether the SORP performance loss is acceptable. (B) Risk stratification of septic shock (SS): Patients were stratified
into risk groups based on SORP scores. (C) Clinical characteristics of the risk groups: We analyzed clinical characteristics across risk groups, with a
focused analysis on high-risk nonshock patients. (D) Model deployment: An online tool was developed for clinical use. HR: high risk; LR: low risk;
MR: medium risk; ULR: ultralow risk; WOE: weight of evidence.

Statistical Methods
We employed the Shapley Additive Explanations (SHAP) [32]
method to calculate the importance of clinical features for SS
in the look-back interval. SHAP assigns a value to each feature
in the given prediction. These values are calculated for each
prediction separately and do not provide general information
about the entire model. Higher absolute SHAP values indicate

higher importance, whereas values close to 0 indicate low
significance of a feature.

To facilitate observation and evaluation and determine risk
intervals, we employed the Kolmogorov-Smirnov (KS) curve
to describe the overall score distribution. The KS curve
illustrated the changes in the sample proportion of SS patients,
the proportion of septic NS patients, and the trend of differences
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between SS and NS patients (blue line) with a score from 0 to
100. From the KS curve, it could be seen that the proportion of
SS patients in the low score accumulated faster, while the
proportion of NS patients in the high score accumulated faster.
The blue curve showed the variation process of the difference
between SS and NS patients at each score point. At the highest
point of the blue curve, the ability to distinguish between SS
and NS patients was the strongest. Therefore, to provide a more
direct scoring effect, based on the distributions described above,
the scores were divided into 4 risk groups: HR, medium risk
(MR), low risk (LR), and ultralow risk (ULR), with score
intervals of 0-40, 40-60, 60-80, and 80-100, respectively.

The Population Stability Index (PSI) was used to evaluate the
stability of risk group distribution across different datasets in
the postonset interval. A smaller PSI value indicates a minor
difference between 2 distributions and more consistency. In
addition, the area under the curve (AUC) was calculated to
evaluate the performance of each model. Estimation and
comparison of the survival curves among risk groups were
performed using Kaplan-Meier survival analysis and log-rank
tests, respectively. The Local Polynomial Regression Fitting
(locally estimated scatterplot smoothing [LOESS]) method was
used to fit the relationship between the risk score and SS onset
rates at 6 hours. Hierarchical clustering was used to assess the
similarity between risk groups. All statistical analyses and
algorithm approaches in this study were performed using Python
(Python Software Foundation) and R (R Project for Statistical
Computing).

Results

Development of the SORP
Since a particular time window is required for early forewarning
of SS, the longer it takes to collect the necessary data for the
model, the less time is left for physicians to intervene. Therefore,
we calculated the importance of each feature in the early
forewarning of SS in the look-back interval and selected the
top-ranked feature set that could be accessed in the same testing
batch. In particular, we observed that 8 of the 10 most important
clinical features for SS prediction were arterial blood gases
(ABGs) and VSs (Figure 2A). Notably, point-of-care ABG
testing results could be obtained even within 5-10 minutes in
the ICU, and VS features could be obtained at any time from
the monitor. This result indicated that septic preshock core

pathophysiological shifts could be mainly monitored by ABG
and VS features, allowing us to quickly obtain essential features
for early forewarning of SS and providing a prompt assessment.

Since features obtained simultaneously from an ABG test might
have a certain degree of complementarity, we included 8 ABG
and 7 VS features collected in the MIMIC-IV and eICU in the
subsequent analysis. An SS risk predictor (SORP) based on a
scorecard was constructed by combining LogR with WOE in
the look-back interval (detailed in the Methods section).
According to the scorecard, a patient’s SS risk score could be
obtained by adding interval scores to the base score (Multimedia
Appendix 2). Lower total scores indicated a higher risk of SS
onset. In the training, validation, and test datasets, the AUCs
were 0.9557, 0.9537, and 0.9458, respectively (Figure 2B).
Meanwhile, based on all available clinical features, multi-feature
complex models were constructed, including deep learning and
machine learning models (Figure 1A; Multimedia Appendix 3).
These features are related to acid-base balance, coagulation,
renal aspects, hepatic aspects, pulmonary aspects, hematologic
aspects, the Glasgow Coma Scale, etc. The predictive
performance of the SORP is only slightly lower than that of the
optimal complex model. In the test datasets, the AUCs of the
SORP and the optimal complex model were 0.9458 and 0.9651,
respectively. It indicated that the construction of the SORP was
reasonable and had strong early forewarning ability.

To facilitate observation and evaluation and determine risk
intervals, according to the KS curve plot (Figure 2C), the scores
were divided into 4 risk groups as detailed in the Statistical
Methods subsection. The distribution of SS was highly
consistent and stable among the training, validation, and test
datasets (PSI <0.01; Figure 2D; Multimedia Appendix 4). In
total, the incidences of SS for the HR, MR, LR, and ULR groups
in the postonset interval were 88.6% (433/489), 34.5%
(262/760), 2.5% (67/2707), and 0.3% (4/1301), respectively
(Figure 2D; Multimedia Appendix 5). A total of 88.6%
(433/489) of HR patients developed SS, and 90.7% (695/766)
of SS patients were classified into the HR or MR group. Further,
a curve was fitted for the relationship between the risk score
and SS onset rate at 6 hours (Figure 2E; Multimedia Appendix
6), and the result showed a clear stratification and monotonicity,
with an increase in the SS onset rate with increasing risk
(decreasing risk score). These results suggest that the SORP
exhibits a great early forewarning performance.
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Figure 2. Construction of the Septic Shock Risk Predictor (SORP) and derivation of patient risk stratification. (A) Shapley Additive Explanations
(SHAP) summary plot for the top 10 clinical features contributing to the XGBoost model. The position on the y-axis is determined by the feature, in
which “hotpink” represents blood gases and “cyan” represents vital signs, and that on the x-axis is determined by the Shapley value. The color from
blue to red represents the feature values from low to high. (B) Receiver operating characteristic curve and area under the curve (AUC) for SORP
forewarning performance. (C) Kolmogorov-Smirnov (KS) curve shows the difference between the cumulative proportion of septic shock (SS) patients
and the cumulative proportion of septic nonshock (NS) patients as the risk score increases (blue line). (D) Stability of SS distribution across datasets.
(E) A fitted curve showing the monotonic relationship between the risk score and SS probability in the postonset interval, according to the locally
estimated scatterplot smoothing (LOESS) method. HR: high risk; LR: low risk; MR: medium risk; PSI: population stability index; ULR: ultralow risk.

Characteristics of Different Risk Groups After SS
Onset
To verify the rationality of risk stratification, we explored the
differences in clinical features among risk groups in the
postonset interval. Remarkably, increased abnormal values for
standardized means of ranking continuous features, especially
features related to the SS definition (such as lactate and blood
pressure), kidneys, acid-base balance, and coagulation (Figure
3A and 3B; Multimedia Appendix 7), were observed in HR
patients when compared with those in other risk groups. The

degree of abnormality of these features further increased as risk
increased (Figure 3A). For all patients, Kaplan-Meier survival
curves progressively declined as patient risk increased (Figure
3C). An even more rapid progressive decline was observed in
NS patients in the HR group (Figure 3D), but there was no
difference for SS patients (Figure 3E). Furthermore, the length
of time from sepsis to SS was significantly reduced with
increasing risk (Figure 3F). These results suggest that disease
severity increased with increasing risk groups and that the SORP
has a reliable risk stratification capability.
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Figure 3. Characteristics of different risk groups in the postonset interval. (A) The clinical features are standardized such that all means are scaled to
0 and SDs to 1. A value of 1 for the standardized mean value (y-axis) signifies that the mean value for the risk group was 1 SD higher than the mean
value for the 4 risk groups shown in the graph as a whole. (B) Boxplot showing the changing trend for each clinical feature with risk groups. The y-axis
shows the standardized value for each clinical feature. (C-F) Kaplan-Meier curves and survival analysis. (C) Overall survival for all patients. (D) Overall
survival for septic nonshock patients. (E) Overall survival for septic shock patients in different risk groups. (F) Time from sepsis to septic shock. HR:
high risk; LR: low risk; MR: medium risk; ULR: ultralow risk.

Are NS_HR Patients Truly Septic NS Patients?
Among the HR patients identified by the SORP, 11.5% (56/489)
did not meet the SS definition according to the Sepsis-3 criteria
[1] and were labeled NS_HR. To further confirm the disease
status of these patients, the distribution of features in the
postonset interval for NS_HR patients was compared to that for
SS and other NS (NS_O) patients. In clustering analysis and
heatmap visualization, NS_HR patients clustered with the SS
groups but not with the other 3 NS groups (Figure 4A). This
result indicates that the NS_HR group was more similar to SS
patients in terms of clinical features, such as lactate, the SOFA
score, and features related to renal function (creatinine and urine
output), coagulation (prothrombin time, international normalized
ratio, and platelet count), and acid-base balance (base excess,
bicarbonate, total CO2, and anion gap) (Figure 4B). Compared
to NS_O patients, both NS_HR and SS patients displayed a
consistently higher degree of variation in clinical features
(Figure 4C). The distribution and variation of features
demonstrated that both HR_NS and SS patients had similar
levels of disorder compared with NS_O patients. Moreover,
both NS_HR and SS patients had significantly shorter overall
survival than NS_O patients (Figure 4D). In total, NS_HR

patients were highly similar to SS patients and distinct from
NS_O patients. In addition, we queried the patients’ ICD codes,
and 35% (19/55) of NS_HR patients were labeled with “septic
shock,” which implied that a proportion of NS_HR patients
might meet the previous criteria for SS.

Notably, the overall survival of NS_HR patients was
significantly worse than that of SS patients (Figure 4D), and
we explored the potential factors contributing to this survival
difference. SS-associated treatments, such as vasopressors and
fluid resuscitation, were evaluated. Compared to the SS group,
the NS_HR group had a significantly higher incidence of mean
blood pressure (MBP) <65 mmHg and a significantly lower rate
of vasopressor use and infusion volume (all P values <.001;
Figure 4E; Multimedia Appendix 8). Furthermore, NS_HR
patients showed the highest percentage of CKD (P=.006) and
the most abnormal kidney-related features (Figure 4E;
Multimedia Appendix 8). According to this finding, one of the
reasons for high mortality in NS_HR patients might be
inadequate treatments, including both vasopressor use and
infusion. One of the reasons NS_HR patients did not receive
adequate fluid resuscitation might be severe kidney injury, as
physicians may reduce fluid infusion in these patients to protect
them from further severe kidney damage.
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Figure 4. Characteristics of septic nonshock high risk (NS_HR) patients. (A) Clustering heatmap showing the similarity among risk groups. Standardized
values were used for clustering (ie, each feature is centered at the sample mean and scaled by its SD), and “Euclidean” and “average” were used for
clustering distance and clustering method, respectively. The values in the box are the median raw values of the features. (B) Boxplots showing the
distribution of clinical features across risk groups. Red indicates NS_HR patients, orange indicates septic shock (SS) patients, and green indicates septic
nonshock (NS) patients. (C) The degree of variation in the features of the risk groups. The y-axis shows the standardized mean for each clinical feature.
(D) Overall survival for SS, NS_HR, and NS_O (other risk groups of NS). (E) Bar plot of the polar coordinate showing the proportion of clinical events
in each risk group of patients. The boxplot shows the values of kidney-related features during the look-back interval. We transformed the infusion
volume (IV), used SS_LR’s IV as a reference (3815.25 mL), and expressed the IV in other risk groups as a percentage of that of SS_LR patients. CKD:
the rate of patients with chronic kidney disease; HR: high risk; IV: the mean infusion volume of patients from the preonset interval to the postonset
interval; LR: low risk; MBP <65: the rate of patients with mean blood pressure (MBP) <65 mmHg from the preonset interval to the postonset interval;
MR: medium risk; ns: not significant (P>.05); ULR: ultralow risk; vaso: the rate of patients treated with vasopressors from the preonset interval to the
postonset interval. *P≤.05, **P≤.01, ***P≤.001.

Application of the SORP in Real-Time Risk Monitoring
for SS
The SORP showed great performance in sepsis stratification,
and we further evaluated its feasibility as a real-time monitoring
risk score for patients with sepsis. The hourly risk score for SS
onset was calculated by the SORP, and the patient’s risk scores
and trends throughout the ICU process were fully displayed.
Two patients, one with NS and another with SS, are shown in
Multimedia Appendix 9. The NS patient had a progressively
lower risk (increasing score) nearing discharge. In comparison,
the SS patient had an increasingly higher risk until SS onset,
with entry into the HR zone 6 hours before onset, and a gradual

reduction in risk after onset, which might also reflect the role
of treatment. Furthermore, based on continuous real-time
scoring, we found that 50.0% (383/766) and 74.9% (574/766)
of SS patients with risk scoring entered the HR zone 13 hours
and 6 hours before onset (IQR 6-26), respectively. In addition,
hourly risk scores were shown for each risk group during the
48-hour period before and after SS onset (Figure 5A). The risk
gradually increased (risk score gradually decreased) as septic
patients progressed to shock and decreased with treatment
intervention (after SS onset), demonstrating that the SORP can
monitor the patient’s risk for SS in real-time (Figure 5A).

In contrast to the gradual increase in risk in the other 2 groups,
SS_LR patients maintained a relatively stable risk during and
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before the look-back interval but demonstrated an extremely
rapid increase in risk (risk scores decreased) in the preshock
interval (Figure 5A). Further analysis demonstrated that SS_LR
patients had a higher rate of invasive procedures than other SS
patients (Figure 5B; Multimedia Appendix 10), which was
significantly higher than that of other LR patients (Figure 5C;
Multimedia Appendix 11). Therefore, we speculated that this
might be one of the reasons for the rapid progression of SS_LR

patients: invasive procedures can introduce additional
microorganisms into the body, which can exacerbate the
infectious response and lead to rapid deterioration. Analysis
showed that 52% (35/67) of SS_LR patients were recognized
by the SORP as their risk group increased from LR to MR 3
hours before SS onset. Therefore, we recommend that LR
patients exposed to invasive procedures should be assessed
more frequently for the timely recognition of SS.

Figure 5. Characteristics of septic shock low risk (SS_LR) patients. (A) Mean value line and unbiased standard error bar for septic shock (SS) patients.
Risk groups derived by the Septic Shock Risk Predictor (SORP) 6 hours before SS, and the change in risk over time for each group. The cyan dashed
line represents 6 hours before the onset of SS, and the red dashed line represents the onset time of SS. (B) The rate of invasive procedures of each risk
group in SS patients. P values are derived from SS_LR patients compared to other SS patients (details in Multimedia Appendix 10). (C) The rate of
invasive procedures of each risk group in LR patients identified by the SORP. Here, events are measured from 12 hours before the prediction to the
time of the prediction. P values are derived from SS_LR patients compared to other septic nonshock low risk (NS_LR) patients (details in Multimedia
Appendix 11). CRRT: continuous renal replacement therapy; HR: high risk; LR: low risk; MR: medium risk; ns: not significant.

Reliability and Robustness of the SORP
To further verify these findings, we additionally used multicenter
eICU data for validation. Consistently, in the look-back interval,
eICU patients were grouped into 4 risk groups. Although the
proportion of SS patients was reduced in the HR group in the
postonset interval (Multimedia Appendix 12), which might be
due to different definitions, the distribution of SS was consistent
and stable in both the eICU dataset and the MIMIC-IV dataset
(PSI <0.05; Multimedia Appendix 13). Similar to the
MIMIC-IV, the patients’ features became increasingly abnormal
as risk increased, especially features related to the SS definition
(eg, lactate and blood pressure), kidneys, acid-base balance,
and coagulation (Figure 6A; Multimedia Appendix 14). For
overall survival, the 4 risk groups also showed significant
differences, even in NS patients and SS patients (Figure 6B-D).
SS_LR patients, similar to MIMIC-IV patients, underwent
significantly more invasive procedures than the other LR
patients (Multimedia Appendix 15), but there was no significant
difference from the other SS patients (Multimedia Appendix

16). NS_HR patients, similar to MIMIC-IV patients,
significantly differed from NS_O patients in clinical features
and survival, being more similar to SS patients but with a more
severe status (Figure 6E-G). Regarding treatment, as the eICU
did not provide start and end times for infusion, we could not
obtain accurate infusion volumes for eICU patients within a
certain interval, so we focused only on vasopressor use.
Compared to SS patients, NS_HR patients showed significant
hypotension and less vasopressor use, which were similar to
the results of the MIMIC-IV (Figure 6H; Multimedia Appendix
17). Although this analysis was based on a different definition
of SS, similar results were still observed, further confirming
the robustness of the SORP and the reasonability of the risk
stratification system.

In summary, the SORP has a reliable and robust ability to not
only provide early forewarning but also stratify patients with
potentially different risks of SS. For convenience, we provide
an online service of the SORP [28]. The “Help” section in the
navigation bar of the website contains detailed instructions on
how to use the online tool.
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Figure 6. Reproducibility of findings in external independent eICU Collaborative Research Database (eICU) data. (A) The clinical features are
standardized with all means scaled to 0 and SDs to 1. A value of 1 for the standardized mean value (y-axis) signifies that the mean value for the risk
group was 1 SD higher than the mean value for the 4 risk groups shown in the graph. (B-D) Overall survival for all patients, septic nonshock (NS)
patients, and septic shock (SS) patients. (E) Clustering heatmap showing the similarity among risk groups. Standardized values were used for clustering
(ie, each feature is centered at the sample mean and scaled by its SD), and “Euclidean” and “average” were used for clustering distance and clustering
method, respectively. Red indicates higher levels, and blue indicates lower levels. (F) Characteristics of risk groups. The y-axis shows the standardized
mean for each clinical feature. (G) Overall survival for SS, NS_HR, and NS_O (other risk groups of NS). (H) The bar plot of the polar coordinate shows
the proportion of clinical events in each risk group of patients. The starting and ending times of patient infusions are not provided in the eICU, and thus,
it was not possible to estimate the infusion volume of patients within a specific interval. HR: high risk; LR: low risk; MBP <65: the rate of patients with
mean blood pressure (MBP) <65 mmHg from the preonset interval to the postonset interval; MR: medium risk; ULR: ultralow risk; vaso: the rate of
patients treated with vasopressors from the preonset interval to the postonset interval.
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Discussion

Principal Findings
Timely forewarning and early intervention are especially
important for patients who are developing SS, and clinically
applicable forewarning tools for SS are still lacking. In this
study, we constructed the SORP, a simplified model, that not
only provides real-time risk stratification for patients but can
also easily trace the SS risk of patients during the entire ICU
process and forewarn SS onset with a median of 13 hours in
advance. The SORP can precisely assess the risk of SS 6 hours
in advance by using only ABG and VS features, with an AUC
of 0.9458 in the test set. Compared to the findings in previous
studies, the SORP remarkably reduces both time and economic
costs by using easily available ABG and VS features that can
be accessed within minutes and can achieve competitive
predictive performance (Multimedia Appendix 18). In contrast,
other studies require additional tests, such as biochemical tests,
SOFA score calculations, and specific urine output
measurements, which extend data collection by several hours.
While some studies reduce the number of features through
feature engineering methods, these features may still be
distributed across test batches, which may not effectively shorten
the overall time and costs needed for assessments. Moreover,
in addition to being available through the web service [28], the
patient’s risk score can be simply and quickly calculated
manually using a scorecard (Multimedia Appendix 2). The ease
of data collection and the simplicity of use will greatly enhance
the usefulness of the SORP in clinical applications. Furthermore,
we focused more on the clinical characteristics of HR patients,
especially septic NS patients, and the assessment of newly
discovered NS_HR patients, overlooked by the Sepsis-3
definition, may provide further insights into the
pathophysiological processes of SS onset and help to
complement its diagnosis and precise management.

In this study, 4 risk groups were identified by the SORP. For
these risk groups, we observed distinct clinical features and a
significantly stratified risk for SS onset rates and survival status.
For SS patients in different risk groups, the time from sepsis
onset to SS decreased as their risk increased. Significant survival
differences were observed in NS patients across different risk
groups, but these same differences were not observed in SS
patients (Figure 3E). This may be because of the active
guideline-directed resuscitation treatment of SS patients. These
findings confirm the effectiveness of the current SS resuscitation
treatment guidelines and further affirm the accuracy of risk
stratification and the reliability of the SORP.

Interestingly, despite the high agreement between SS patients
diagnosed by the Sepsis-3 definition and those identified by the
SORP, we still identified 2 relatively distinct groups. One group
was SS_LR, where patients were defined as having SS by
Sepsis-3 but were identified as LR by the SORP. The overall
survival of these patients was not significantly different from
that of other SS groups, but rapid progression and an extremely
increased risk were demonstrated within 6 hours before SS onset
(Figure 5A). In addition, 52% (35/67) of SS_LR patients showed
an increase from LR to MR 3 hours before SS onset. Thus,

although these patients could not be identified 6 hours in
advance, their risk changes were captured in real-time, which
highlights the high sensitivity of the SORP. Further analysis
showed that SS_LR patients underwent more invasive
procedures than other SS patients and much more than other
patients in the LR group, such as “invasive ventilation,” “dialysis
catheter,” “arterial line,” and “dialysis-CRRT” (Figure 5B and
5C). Thus, we speculate that invasive procedures might be one
of the causes of the rapidly exacerbating patient status. We
recommend that LR patients undergoing invasive procedures
should be evaluated more frequently to recognize rapid
exacerbation in a timely manner.

Another notable group was NS_HR, where patients were not
defined as having SS by Sepsis-3 but were identified as HR by
the SORP. This prompted us to further analyze this particular
patient group, and the results showed that these patients had the
following characteristics: (1) NS_HR patients were quite similar
to SS patients in terms of clinical phenotypes (Figure 4A-C);
(2) NS_HR patients had the worst overall survival, which was
significantly poorer than even that of SS_HR patients (Figure
3C and 3D; Figure 4D); (3) NS_HR patients did not receive
sufficient fluid resuscitation or timely vasopressor administration
(Figure 4E), which might be a key factor that resulted in their
noncompliance with the SS diagnosis and their higher mortality;
and (4) NS_HR patients had more significant abnormalities in
renal-related features (Figure 4E), which reflect higher
incidences of renal malfunction, such as CKD (Figure 4E). The
literature has shown that excessive fluid resuscitation in patients
with severe renal disease exacerbates renal injury and leads to
poorer outcomes [33,34]. Therefore, cautious and conservative
strategies might be adopted by physicians, resulting in a much
higher likelihood of insufficient fluid resuscitation in these
patients. Hence, precise fluid resuscitation management is
crucial in SS patients with renal dysfunction. In total, NS_HR
patients share a similar pathophysiologic process with SS
patients but experience a more aggressive clinical outcome due
to insufficient treatment.

Compared to previous versions, the Sepsis-3 shock definition
is more focused on tissue-organ hypoperfusion and metabolic
dysfunction and the corresponding therapeutic response, which
largely ensures the authenticity and reliability of SS diagnosis,
showing a significant increase in specificity but at the cost of
sensitivity [35]. Studies have shown that a proportion of patients
who met the previous version of the SS criteria, but not the
Sepsis-3 shock criteria, had significant organ failure and high
mortality [36], with a value of up to 31.6% [37]. In this study,
we identified a group of patients (NS_HR) with poor survival
and a similar clinical phenotype to SS. In addition to low
vasopressor use, the NS_HR group had inadequate fluid
resuscitation due to severe renal disease, thus failing the Sepsis-3
shock definition. These patients are missed by the current SS
definition, but they are at HR and are worthy of attention.
Therefore, for more precise diagnosis and management of SS
patients, “adequate fluid resuscitation” in the SS definition may
have different criteria in different populations. The need for
fluid personalization has emerged as an admirable goal,
especially in SS [38].
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Limitations
In this study, the designed SS risk early forewarning and
stratification model, SORP, can easily and quickly provide ICU
physicians with the patient’s risk status and its changing trend,
which can provide valuable support for the early identification
of patient deterioration. However, it should be noted that there
are limitations in this study. The current data sources are
relatively limited in terms of geographic regions, which to some
extent hinders the study of differences in different regions.
Future studies should collect data from different regions to test
the accuracy of the SORP for early forewarning, analyze the
impact of regional differences on risk factors for SS, and
establish a more accurate early forewarning system. Moreover,
it is crucial to regularly monitor and assess the early forewarning
capability and stability of the system and to make necessary
adjustments as additional data becomes available. In addition,
in the eICU dataset, we were unable to define SS by the Sepsis-3
criteria due to data limitations, which resulted in the
incomparability of performance metrics such as AUC. However,
based on a different SS definition, we were still able to observe
results similar to those with the MIMIC-IV data, which further
confirms the robustness of the SORP and the rationality of the
risk stratification system.

Summary and Outlook
Early forewarning and diagnosis of SS are essential for reducing
mortality. To support this, we developed the SORP early
forewarning model, which offers several key benefits: (1) easy
and rapid feature collection within minutes; (2) ease of use via
online tools or a scorecard (Multimedia Appendix 2); (3)
excellent predictive performance (Figure 2B); (4) continuous
status monitoring for risk deterioration or improvement; and
(5) identification of HR patients, including those with similar
symptoms who may not fully meet diagnostic criteria. In clinical
practice, the SORP can be easily integrated into sepsis
management as an auxiliary monitoring tool (Multimedia
Appendix 19). For MR patients whose SORP score is still
decreasing, it is recommended to increase the frequency of blood
gas testing for timely monitoring. For those identified as HR,
the SS determination process can be initiated ahead of time,
facilitating the early administration of appropriate treatments,
such as fluid resuscitation.

Future research should further explore the applicability of the
SORP model in diverse clinical settings, including validation
with additional datasets. We have also planned a prospective
trial to evaluate its impact on prognosis and survival, particularly
in NS_HR patients. These efforts aim to advance early SS
identification and management, ultimately improving patient
outcomes.
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