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Abstract

In this viewpoint, we explore the use of big data analytics and artificial intelligence (AI) and discuss important challenges to their
ethical, effective, and equitable use within opioid use disorder (OUD) treatment settings. Applying our collective experiences as
OUD policy and treatment experts, we discuss 8 key challenges that OUD treatment services must contend with to make the most
of these rapidly evolving technologies: data and algorithmic transparency, clinical validation, new practitioner-technology
interfaces, capturing data relevant to improving patient care, understanding and responding to algorithmic outputs, obtaining
informed patient consent, navigating mistrust, and addressing digital exclusion and bias. Through this paper, we hope to critically
engage clinicians and policy makers on important ethical considerations, clinical implications, and implementation challenges
involved in big data analytics and AI deployment in OUD treatment settings.
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Introduction

Opioid Use Disorder and Treatment Policy
Opioid use disorder (OUD) is a global public health crisis and
is associated with significant morbidity, mortality, and

implications for socioeconomic development [1]. There is a
broad range of policy responses to reduce the public health
burden of OUD, including demand reduction, supply reduction,
harm reduction, and treatment policies [2-4]. Drug demand
reduction interventions include public education and
communication programs about the risks and harms of opioids

J Med Internet Res 2025 | vol. 27 | e58723 | p. 1https://www.jmir.org/2025/1/e58723
(page number not for citation purposes)

Amer et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

mailto:matthew.amer2@nhs.scot
http://dx.doi.org/10.2196/58723
http://www.w3.org/Style/XSL
http://www.renderx.com/


and treatment options [2,3]. Supply restriction interventions
include reducing unlawful access to opioids through law
enforcement and reducing inappropriate lawful access by
influencing physician opioid prescribing practices through
Prescription Drug Monitoring Programs and clinical guidelines
[2,3]. Harm reduction interventions include opioid overdose
education and naloxone distribution (OEND) programs, drug
checking, syringe service programs, and supervised injection
facilities [4]. Treatment policies tend to focus on increasing
access to and use of medications for opioid use disorder
(MOUD), such as methadone and buprenorphine, and other
psychological and behavioral interventions [4].

Challenges to Policy Implementation
Among the range of policy responses, robust international
evidence supports harm reduction interventions and MOUD
[2,3,5-7]. Despite this, there is a significant treatment gap across
low-, middle-income, and high-income countries [8,9]. In the
United States, for example, only 13.4% of people who might
have benefitted were able to access MOUD, such as methadone
and buprenorphine [10]. Worldwide, only 1 in 12 people in need
of treatment for substance use disorder can access it [11].
Furthermore, there is substantial variation across and within
countries in the programmatic components, implementation,
and quality of the different interventions [9,12-14]. Jin et al [14]
illustrate this in their international systematic review of
treatment programs offering MOUD, which vary considerably
in quality, accessibility, and consistency, limiting its uptake and
efficacy among people with OUD.

Further complicating the implementation of policy responses
to OUD is the diversity in potential outcomes, not all of which
are equally valued. For example, harm reduction interventions
intended to reduce the negative impact of drug use without
requiring abstinence have been shown to reduce opioid overdose
deaths and sequelae of injecting drug use, such as blood-borne
virus transmission or soft tissue infections [5-7]. Yet, due to the
stigma associated with drug use [15], including by treatment
providers [16], there is often poor provision of these
interventions in many settings [6]. Many countries emphasize
law enforcement approaches to reduce the drug supply over the
provision of supervised drug consumption rooms, despite
growing evidence of the impact of this intervention in reducing
drug overdose events [17]. Similarly, OUD service providers
may have different perspectives on how positive outcomes from
pharmacotherapy are defined. For some services, a positive
outcome is defined as a person becoming abstinent and exiting
a treatment program with the assistance of medication. In
contrast, for others, it is defined as remaining on MOUD in the
long term while reducing harmful illicit use [5,18].

Against this complex and contested environment, there has been
widespread support for data-driven systems and surveillance to
inform policy, planning, funding, governance, monitoring, and
evaluation of OUD interventions and treatment services [19-22].
As with other areas of health care, big data analytics and
artificial intelligence (AI) are catalyzing a fundamental shift in
what can be accomplished through data-driven systems to tackle
the opioid crisis [23]. This includes predictive modeling using
large, linked datasets to identify underserved areas with high

opioid overdose rates and the development of clinical decision
support systems (CDSS) to identify and stratify OUD risk
[23-30].

Defining AI

AI refers to the use of computational systems and mathematical
algorithms that simulate human-like intelligence to analyze
complex problems [31]. AI is currently a consolidated field of
research in health care and is being largely applied in other
sectors [32]. The European Commission high-level experts
group on AI defines it as “...systems that display intelligent
behavior by analyzing their environment and taking
actions—with some degree of autonomy—to achieve specific
goals” [33]. These types of algorithms, or models, use large
volumes of data (namely, big data), which come from
heterogeneous sources, to identify patterns, find relationships
between data entities, and generate predictions for supporting
decision-making.

In the specific context of OUD, AI systems may be able to use
a range of data types and sources, including patient records,
treatment histories, and demographic information, to generate
insights into the characteristics of patients and the consequences
that treatments and policies have on the management of related
conditions. These types of analyses can be supervised, in which
the model knows the outcome, or unsupervised, in which the
outcome is unknown and modeling helps to identify groups of
patients or outcomes. AI has the potential to enable health care
systems to continuously improve their performance by learning
from new data. In the context of OUD services, this may include
enhancing clinical decision-making with AI-generated predictive
insights, personalizing care, and improving operational
efficiency.

Challenges to Deploying AI Applications
in Health Care Settings

The large-scale deployment and integration of Al solutions into
health care systems are known to have challenges, including
the lack of a coherent regulatory framework across jurisdictions
[34] and data protection, legal, ethical, and trust issues [35].
However, we argue that there are additional complexities and
challenges within the OUD policy and treatment services
environment in implementing AI and big data solutions. These
include the highly regulated nature of OUD treatment services,
the criminalization and stigmatization of people who use drugs,
inequities in access to technology and data, and a degree of
cognitive dissonance clinicians may have in their dual roles of
regulating behavior and providing person-centered care [24,36].
Using our collective experiences as OUD treatment providers,
evidence experts, and policy makers, we aim to highlight the
challenges to be addressed so that these technologies can be
used ethically, effectively, and equitably.

While it is beyond our scope to provide a cutting-edge account
of this rapidly evolving field, we begin by providing examples
of big data analytics and AI applications in OUD service
settings. We then focus on 8 key challenges that OUD treatment
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services must contend with to make the most of these rapidly
evolving technologies.

Big Data Analytics and AI Applications in
OUD Treatment Settings

Big data analytics is characterized by the integration and analysis
of a large volume of continuously generated, heterogeneous,
and complex data from various sources, including sensors,
smartphones, electronic health records (EHRs), results of clinical
investigations, and the internet [37]. This contrasts with more
traditional research studies with typically fixed boundaries,
including clearly defined variables and data collected at specific
time points over an established period. Types of data include
clinical trial data, anthropometrics (eg, weight and height
measurements), demographic information, payer and insurance
data, lifestyle, behavioral and psychological traits, continuous
physiological measurements, clinical phenotyping (eg,

diagnoses, medication use, medical imaging, and procedure
results), and process measures captured from mobile and
wearable health applications (eg, smartphone apps and text
messaging) [37].

Important technological developments that have expanded the
amount of timely and actional health data include continuous
digital connectivity through the mobile internet [38] and the
digitization of how we interact with each other and our
environment [39]. For example, our mobile phones can provide
continuous location information and the means to engage in
real-time with social media communities [39]. Bluetooth-enabled
wearable technology allows the continuous monitoring of our
heart rate and rhythm, oxygen levels, sleep patterns, and other
physiological measurements [40]. Many health services provide
digital interfaces to exchange and store information, creating
patient-held EHRs [41]. Figure 1 provides an overview of some
AI applications applicable to the OUD treatment setting.
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Figure 1. Big data and artificial intelligence (AI) applications for opioid use disorder (OUD) treatment services.

Due to the volume of generated health care data and the velocity
at which they are produced, it is beyond the capacity of most
health care systems to absorb and respond to every individual
data stream [42]. For example, in a system designed to detect
and respond to an opioid overdose, physiological information
such as respiratory rate will need to be contextualized alongside
the individual’s clinical phenotype, and the health care system
will need to be primed to respond to a predetermined threshold
for action [42]. Advanced statistical methods, the hallmark of
AI and big data analytics, have therefore become necessary to
extract timely, understandable, and actionable outputs from
health care data [43].

Several reviews have described use cases for big data analytics
and AI in the management of OUD [23-27,38,44-50]. This
includes the discovery of new pharmaceuticals [43],
population-level surveillance and public health planning
[24,27,48,51,52], OUD or opioid overdose risk prediction
[23,24,26,27,44,53-55], prediction models for treatment
engagement and retention [23,25,52,54,56,57], generative AI
interfaces to provide advice and support [45], and improved
monitoring and diagnostics [46,58-60]. Table 1 provides more
details on a selection of these applications.
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Table 1. Practical applications of big data analytics and artificial intelligence (AI) applications relevant to opium use disorder (OUD) treatment services.

ExamplesDomain, and big data analytics and AI approaches

Population-level epidemiology and needs assessment

Geospatial data, Google Street View images, nonemergency “311” service requests, and US
Census data were used as indicators to produce a high-resolution spatial-temporal analysis, in-
dicating that OUD is influenced by social and neighborhood determinants such as depressing
or insecure living environments, poverty, and health issues to inform health policies and guide
responses to the opioid crisis.

Contextualizing opioid overdose events with
visual representations of neighborhood-built
environment conditions [51]

Spatiotemporal patterns and maps using color to show variation in aggregates of geographical
data created from opioid overdose–related emergency department visits, geolocation, data on
socioecological factors such as health behaviors, health care, social and economic factors, and
physical environment identified that emergency room visit rates were significantly associated
with the changes in health care factors (ie, access to care and quality of care) and socioeconomic
factors (ie, levels of education, employment, income, family and social support, and community
safety) [61].

Mapping opioid overdose events against health
care access and socioeconomic factors

Statistical techniques applied to social media data may provide close to real-time, county-level
estimates of overdose mortality, a basis to inform prevention and treatment decisions.

Using social media data to identify trends in
opioid use [62-64]

Other studies have identified the possibility of detecting a “phenotype” of social media use by
text analysis in conditions such as schizophrenia, which may allow new opportunities to support
early illness or relapse detection in the community.

Social media analysis and digital phenotyping
[65]

The social media platform X (formerly known as Twitter) offers a feasible approach to identify
some people who use opioids, making it a possible arena to disseminate evidence-based content
and facilitate linkage to treatment and harm reduction services [66].

Using social media to provide targeted interven-
tions for OUD

Integrated treatment approaches.

Data linkage studies, for example, between the records of major health and social agencies and
the use of machine learning predictive models, have the potential to identify key intervention
(touch) points to provide health or social care, treatment for OUD, or harm reduction interven-
tions and can improve understanding of clinical trajectories for people with OUD [67,68].

Identifying intervention touchpoints for people
with OUD across sectors and services

Chatbots that offer support, accountability, and some forms of psychotherapy. Preliminary
studies show encouraging application in addiction treatment [69-71]

Generative AI and chatbots

Clinical decision-making

Combining evidence-based tools, expert consensus with electronic health care data, and moni-
toring tools to develop a screening measure, symptom tracking measure, and clinical decision
support algorithm necessary to implement measurement-based care for OUD with buprenorphine
in primary care [72].

Development of clinical decision support algo-
rithms for OUD treatment

NarxCare is a proprietary analytic tool that analyses state-mandated prescription databases in
the United States to calculate a risk score for possible overdose deaths, which is displayed in
the patient’s electronic medical record [28].

Stratifying overdose risk

Tailoring interventions and personalized approaches; personalized medicine or treatment

Linking ecological momentary assessment data (where participants are prompted by a smartphone
app to self-report on various factors such as sleep, stress, pain, craving, and mood), ambulatory
physiological assessment using mobile sensors or smartwatches and social media data, and using
deep neural networks for predictive analysis may be useful to identify people at high risk of
cravings or withdrawal symptoms to receiving dynamic dose adjustments of medications for
OUD (eg, methadone and buprenorphine) to improve treatment retention [54].

Predictive analytics to identify high-risk periods
for people with OUD and link these with appro-
priate interventions

Drug discovery

Drug discovery models using generative AI may drive forward potential brain-targeting biolog-
ical therapeutics for people who use drugs [73].

—a

Performance and quality benchmarking

Predicting premature discontinuation of OUD treatment, using a supervised machine learning
approach for analysis of millions of treatment episodes to identify predictors of treatment dis-
continuation: the most influential risk factors include characteristics of service setting, geographic
region, primary source of payment, referral source, employment status, and delays to entering
treatment [56].

Identifying service level characteristics associat-
ed with disengagement from OUD treatment

aNot applicable.
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Implementation Challenges in OUD
Treatment Services.

As mentioned earlier, there are important caveats to the potential
of big data analytics and AI to transform OUD services,
including limited research evidence on the impacts of this
technology on treatment outcomes, uncertainties around the
regulatory frameworks for the use of AI in health care, and
significant translational and implementation obstacles [74-77].
Here, we focus on 8 key challenges that OUD treatment services
must contend with to make the most of these rapidly evolving
technologies.

Service Performance Data and Algorithmic
Transparency
Given the treatment gap and the lack of evidence-based practice
[78], there have been calls to introduce data-driven approaches
to monitor and improve OUD treatment service performance
[78,79]. For example, the Pew Charitable Trust—a US
nonpartisan, data-driven think tank—proposed making
intervention impact and quality data publicly available to create
accountability at the state level on efforts to tackle the opioid
crisis [80]. This proposal advocates for the collection and
publication of disaggregated data on the numbers diagnosed
with OUD, prescribed MOUD, and supported to remain on
treatment for at least 6 months [80]. In 2021, the Scottish
Government launched a public health–led MOUD quality
standards monitoring program, which incorporated many of the
measures recommended by the Pew expert panel [81]. Within
3 years, improvements in treatment access have been observed
in Scotland, including a significant shortening in the waiting
times to access MOUD [82].

There have been some notable examples of using big data
analytics to identify service-level performance gaps [56]. For
example, a US-based study used machine learning techniques
on a sample of 941,286 OUD treatment episodes collected in
2015-2017 and identified inequities in access to treatment
dominated by race, health insurance, and housing status [52].
Another study used granular spatiotemporal data to map
area-level access and quality of care against emergency
department opioid overdose visits, potentially exposing
jurisdictional variability in performance [61]. Nevertheless,
barriers to service providers and funders engaging in these
approaches may lie in increased public scrutiny, potentially
leading to performance management and other sanctions.
Furthermore, insights into performance may not be welcome
in settings where services are beleaguered by multiple pressures,
including underfunding, lack of incentives, competing priorities,
and a lack of capacity.

Transparency and accountability are equally important where
big data and AI systems are deployed in OUD treatment settings.
The term explainable AI describes important aspects of
transparency in using predictive algorithms, including its
purpose, function, accuracy, and traceability [83]. Furthermore,
with regard to function, it is important for clinicians and patients
to understand the limits of these predictions, including the data
used for training the algorithm and the implications for both

accepting and rejecting the output [84]. Unfortunately, the lack
of algorithmic transparency is a common finding. In a recent
systematic review on the use of AI in mental health research, a
lack of transparency was noted in the reporting of
methodological flaws relating to statistical processes and data
preprocessing [50,85]. This lack of transparency often links
back to the proprietary nature of AI algorithms that have been
developed as commercial products [85]. However, it may also
be an unintentional consequence where black-box deep learning
approaches are used or where there is a complexity level that
the algorithm creators do not understand [86].

Clinical Validation
Linked to algorithmic transparency is the clinical validation of
AI and big data applications in real-world OUD service settings
[74,87]. A recent narrative review on the application of AI in
opioid use disorder highlighted the necessity for validation and
robust evaluation of these technologies [26]. People in need of
OUD treatment are a heterogeneous group with social,
psychological, and biological diversity and complexity. This
may make them particularly vulnerable to dataset shift, where
a machine learning system underperforms as it has been
developed from a dataset that is materially different from the
one in which it is deployed [88].

The widespread use of unregulated big-data analytics in OUD
treatment settings has already been identified. NarxCare
(Bamboo Health) is an analytics platform embedded in the EHRs
of health care providers in over 45 US states [28]. The platform
analyses prescription drug monitoring data and combines them
with other health data to provide clinicians with an opioid
overdose risk score [28]. Despite no evidence of its safety,
effectiveness in reducing overdose deaths, or risk assessment
of its potential to increase disparities in access to care, NarxCare
is positioned to influence over 1 billion clinical encounters every
year in the United States [28]. The pervasiveness of the
NarxCare product in everyday patient care underscores the need
for more robust regulation of “Software as a Medical Device”
products.

It is also important to have a mandated system for monitoring
and reporting mistakes and errors arising from using big data
and AI analytics tools in health care settings [89]. However, it
may be challenging for clinicians to correctly recognize and
attribute errors to these tools, considering that algorithm creators
themselves do not always understand how their products work.
In addition, the lines of accountability for any error detection
process have not been defined, for example, whether this would
be the manufacturer’s responsibility or an independent regulator
[89].

Navigating the Practitioner-Technology Interface
The interface between AI systems and clinicians is an important
yet arguably understudied domain. For example, returning to
the use of CDSS for identifying and treating OUD [72] or opioid
prescribing [28], it is unclear how to manage the incongruity
between an algorithmic and a human clinical decision. What
are the medicolegal implications if an algorithmic decision is
overridden based on values or ethics-based judgment? Errors
in AI and big data outputs are inevitable, yet it remains unclear
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where responsibility lies if an error output is ignored or acted
upon [90]. A clinician may be faced with committing serious
harm if, for example, a correct predictor output is ignored or
incorrect output is acted on.

In addition, as seen with early technology-clinician interfaces
such as radiological screening [91] and medicine interaction
prompts [92], there is a risk of “prompt fatigue” with predictive
AI models [74]. This is particularly likely where predictive
warnings do not seem relevant to typical clinical encounters
and may lead to a subconscious dismissal of warnings by
clinicians, resulting in error when a correct prediction is given.
Indeed, if new technologies become instruments of control and
surveillance, thus increasing administrative burden and reducing
clinical time and autonomy, clinicians may reject them. The
human element of connection has been identified as essential
in addiction care by both clinicians and patients [93]. AI and
big data interfaces must be designed to be unobtrusive and
facilitative of person-centered care to preserve the relational
aspect of clinical encounters.

Capturing the Right Data
Health care data are often siloed into many different systems,
such as medical imaging, pathology, EHRs, electronic
prescribing tools, and insurance databases. These data become
notoriously difficult to link and integrate due to the lack of
uniformity in technology infrastructure and privacy and
regulatory barriers. The lack of data interoperability limits
effective AI model generation, training, and deployment [94].
In addition, the inability of different systems to communicate
and share data in real time presents major challenges to the
generation of relevant outputs in time-limited situations, for
example, in opioid overdose scenarios [95].

Yet, linking diverse data sources has proven to be useful in
understanding the clinical trajectories of people with OUD. For
example, linked ecological momentary assessment, biosensor,
and social media data have been used to increase the predictive
accuracy when using AI to model OUD clinical trajectories
[54]. However, it is important to note that simply adding more
data because they are available does not improve model
accuracy. In the work by Marsch et al [54], the data types and
streams were carefully selected based on existing evidence,
clinical expertise, and judgment.

Furthermore, there are necessary and important regulatory
protections to prevent potentially sensitive data from being
collected or used outside the context for which they were
gathered. This is particularly important in the context of OUD,
where prediction models can easily become “surveillance
models,” which may impact the individual's privacy and work
against their best interests [96]. For example, predictive
modeling using social media data may be able to predict future
drug use–related behaviors, creating opportunities for
intervening and preventing a possible drug overdose [63,64].
However, people using social media have not consented to their
data being used this way and may be uncomfortable with it.
Their concerns are especially justified in jurisdictions with less
robust regulatory and human rights protections, where exposure
may lead to arrest or coercive OUD treatment [97].

Data sharing frameworks and models, such as Trusted Research
Environment (TRE), have been created in some jurisdictions
to address some of the issues raised here [98]. A TRE is a
controlled remote access virtual computing domain allowing
approved researchers to work with individual-level data but
only export aggregate-level results once screened by data
custodians [99]. This helps to reduce the costs and risks to
organizations when conducting big data analytics studies, which
stem from data protection breaches and the operating costs of
centralized systems [99,100].

Responding to and Understanding AI and Big Data
Outputs
There is a real risk that services may not keep up with the
outputs and insights generated by big data analytics and AI
technology. For example, cloud-based AI algorithms can
effectively process smartphone-collected data to detect
respiratory depression among people using opioids in real time
to trigger an automated emergency response [59]. However,
this opioid overdose detection and alert system works only if
local emergency services have the capacity to respond to this
additional data stream. Similarly, modeling studies showing
shortfalls in service coverage [51,61] can be helpful if they
result in a concerted effort for improvement rather than to
generate defensiveness, resentment, or a loss of morale among
care providers and funders. While it is laudable that our sector
is engaging with new technologies and approaches, it is
important that we make sustainable investments in services that
have a measurable impact on patient outcomes. In the context
of predictive and diagnostic technologies, this must include
strengthening existing health care infrastructures to ensure they
can respond to an increased demand for their services.

Obtaining Informed Consent
Health care providers are ethically and legally obliged to obtain
informed consent when providing a health intervention
[101,102]. Obtaining informed consent is also a key aspect of
ethical research practice [103]. This applies also to the use of
big data analytics and AI. Andreotta et al [86] have identified
3 issues when obtaining informed consent in relation to the use
of big data analytics: the issue of algorithmic transparency (how
does it work?), the potential for data to be repurposed (how will
it be used?), and providing people with a reasonable alternative
should they refuse consent (do I have a choice?).

Unfortunately, in relation to transparency, providing detailed
information on the workings of an AI algorithm may not always
be helpful to the patient in the decision-making process [86].
Explainable AI, a relatively new research area, attempts to define
levels of understanding people may wish to have commensurate
with the algorithms’ functions [83]. One of the goals of
explainable AI is to standardize how we communicate
meaningfully with individuals to empower them to make
informed decisions on the risks and benefits of data-sharing
[104].

Indeed, the importance of communication about data cannot be
understated. Data acquired and processed for a defined health
care–related purpose are vulnerable to data security breaches
and trafficking, making this a key international regulatory
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priority [105,106]. The data security landscape is in constant
flux, requiring constantly improving systems, including
advanced encryption measures [106]. There is, therefore, an
ethical obligation when obtaining informed consent to raise
awareness of the risks of data security breaches and the measures
taken to mitigate against these.

More challenging to incorporate into consenting practices is the
issue of repurposed data. AI algorithms may reveal insights and
generate secondary uses for the same data that were not
anticipated during the original consenting process [107]. While
securing informed consent from the original participants of a
large dataset is impractical, patients may wish to be protected
from data repurposing, which results in actions that are
personally detrimental. For example, insights from linked
datasets to map intervention touch points for people with OUD
[61] can be easily repurposed to highlight areas that become
targets of increased policing activity. Robust data protection
laws must be in place to reassure patients that sensitive data
will not be exploited. Trusted research environments described
earlier can act as an arbitrator of public trust by guaranteeing
that personal data is not reidentified, providing some
reassurances to safeguard against such risks [100].

Trust in Institutions and Technology
Public trust in institutions and technology is one of the biggest
barriers to the growth of big data analytics and AI innovation
[108]. Among the most cited trust concerns are safety and
security, state overreach, inequalities and bias, and unknown
unknowns [108]. Similarly, establishing and maintaining trust
is paramount to effective health care delivery [109]. Historically,
there have been high levels of public trust in health care
institutions, yet this has eroded over the years to the point of
crisis in countries such as the United States and the United
Kingdom [109].

Unfortunately, trust has long been an issue in OUD treatment
settings due to experiences of institutional stigma,
discrimination, and conflict [110]. For example, self and social
stigma and mistrust of services may result in individuals not
disclosing substance use or related social risks such as
homelessness or criminal justice involvement [111,112].
Individuals with OUD may also be concerned about their
geolocation data being used to penalize them if shared with the
police [113]. In other words, people with OUD have had issues
of trust relating to safety and security, state overreach,
inequalities and bias, and unknown unknowns long before the
public in relation to AI. This is justified, as marginalized groups
and those whose behaviors are stigmatized or criminalized stand
to risk more when trusting their data to public institutions than
those in mainstream society [114-116].

One consequence of mistrust is the systematic refusal of a
specific group to provide data or consent to data sharing. This
results in data absenteeism, excluding them from public health
surveillance-based service planning. Data absenteeism is more
likely to occur among marginalized or multiply disadvantaged
groups, such as people who use drugs, people experiencing
homelessness, or those involved with criminal justice [117,118].
The consequence for some groups with OUD is that their needs
remain unidentified or planned for at the policy level [117].

There is also evidence to show that some groups miss out on
timely data-driven interventions as a result of data absenteeism
[119].

Three important considerations need to be addressed when
building trust among people with OUD in relation to big data
analytics and AI: Do they have a say on the research questions
asked using their data? Will the health gains, profits, or benefits
from using their data be accessible to them? Will they be
disadvantaged by unanticipated socially biased policy decisions
based on the data they have provided? The British Colombia
Provincial Overdose Cohort is a large linked administrative
health dataset on people who have had a drug overdose event
[67]. This big data initiative is unique in its active engagement
of people with OUD to identify research questions of importance
to the affected community, providing responses to the three key
trust questions mentioned here [67,120].

Furthermore, policy makers, treatment funders, and providers
must take steps to protect people seeking OUD treatment from
being disadvantaged should they decline consent to participate
in big data initiatives or wish for their data to be withdrawn.
The ongoing engagement and consent of people who use drugs,
multiple disadvantaged groups, and their advocates is critical
to ensuring the impact of data absenteeism is managed and
attenuated.

Digital Exclusion and Bias
People who use drugs and other marginalized and minoritized
groups are particularly vulnerable to digital exclusion [121].
Digital exclusion refers to the barriers some face in participating
fully in society due to a lack of access or inability to use digital
technologies [122]. It is a form of social inequality rooted in
the unequal distribution of digital resources. Digital exclusion
also contributes to data absenteeism. Rather than declining to
share data, the individual has not had the skills, technology, or
opportunity to create a digital identity or to generate digitally
captured data [122]. Furthermore, these groups are easily
ignored in digital co-design and public engagement in data use
and AI initiatives [123].

Algorithmic bias in big data analytics describes a systematically
repeating predictive or output error that results in prejudicial
outcomes against individuals, groups, or social categories due
to race, gender, sexuality, socioeconomic grouping, culture, or
geographic location [124,125]. AI algorithms are based on
existing data that reflect structural inequalities in society,
including digital exclusion and prevailing implicit and explicit
societal biases against people who use drugs [112].
Consequently, people who use drugs are particularly vulnerable
to algorithmic bias [112,126].

The identification of algorithmic bias requires proactive and
prospective performance monitoring. An algorithm may, for
example, be functional in a general sense in triggering a risk
alert for an unwanted clinical outcome yet perform poorly for
a specific demographic. Where such discrepancies are identified,
more detailed information could be collected for this segment
to enable retraining of the model to improve both fairness and
accuracy [125]. Similarly, when an algorithm triggers the
necessity for clinical contact, the clinician should be provided
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with guidance on how to interpret the thresholds for action
through transparency on the difference between the person’s
demographics compared with the algorithmic training cohort
[125]. A criticism of the NarxCare overdose risk score is that
it has a prominent location within the patient’s EHR, embedding
itself into the consultation, yet is not incorporated into the
workflow, in that there are no clinically validated score
thresholds to trigger an action [28].

Conclusion
OUD remains a challenging global public health crisis. AI and
big data analytics offer new opportunities for data-driven
improvements in policy, treatment options, quality, and access.
However, there are significant implementation challenges that

services need to be prepared for. These technologies expose
both patients and services to increased scrutiny and surveillance.
We need to ensure that we have made sufficient investments in
services to be able to improve and respond to big data and AI
outputs. Furthermore, we need to be able to advise our patients,
who are already mistrustful of institutions and technology, on
the risks and benefits of data sharing. Finally, we need to
constantly appraise the limits, validity, legitimacy, and potential
for bias in using AI algorithms in our practice. Our clinical
expertise and critical scientific skills are needed more than ever
to balance against the tempting automaticity of AI and big data
analytics. The 8 challenges identified here must be addressed
if these new technologies are to be used ethically, effectively,
and equitably.
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OEND: opioid overdose education and naloxone distribution
OUD: opioid use disorder
TRE: Trusted Research Environments
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