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Abstract

Background: Machine learning (ML) has the potential to enhance performance by capturing nonlinear interactions. However,
ML-based models have some limitations in terms of interpretability.

Objective: This study aimed to develop and validate a more comprehensible and efficient ML-based scoring system using
SHapley Additive exPlanations (SHAP) values.

Methods: We developed and validated the Explainable Automated nonlinear Computation scoring system for Health (EACH)
framework score. We developed a CatBoost-based prediction model, identified key features, and automatically detected the top
5 steepest slope change points based on SHAP plots. Subsequently, we developed a scoring system (EACH) and normalized the
score. Finally, the EACH score was used to predict perioperative stroke. We developed the EACH score using data from the
Seoul National University Hospital cohort and validated it using data from the Boramae Medical Center, which was geographically
and temporally different from the development set.

Results: When applied for perioperative stroke prediction among 38,737 patients undergoing noncardiac surgery, the EACH
score achieved an area under the curve (AUC) of 0.829 (95% CI 0.753-0.892). In the external validation, the EACH score
demonstrated superior predictive performance with an AUC of 0.784 (95% CI 0.694-0.871) compared with a traditional score
(AUC=0.528, 95% CI 0.457-0.619) and another ML-based scoring generator (AUC=0.564, 95% CI 0.516-0.612).

Conclusions: The EACH score is a more precise, explainable ML-based risk tool, proven effective in real-world data. The
EACH score outperformed traditional scoring system and other prediction models based on different ML techniques in predicting
perioperative stroke.

(J Med Internet Res 2025;27:e58021) doi: 10.2196/58021
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Introduction

The risk scoring systems have been proposed to prognosticate
critical medical conditions, aiming to identify high-risk patients
who are likely to experience adverse outcomes [1-6].
Traditionally, risk-scoring systems have been developed using
conventional statistical approaches, based on the assumption
of linearity between variables and outcomes [7,8]. This method
has provided a comprehensive understanding of patient risk
profiles, but it may not fully capture complex, nonlinear
interactions, potentially leading to less accurate risk assessments.
Furthermore, the clinical variables incorporated into these
systems were typically ascertained through univariate analysis,
enriched by insights from expert opinions, or selected from a
range of risk factors established in previous literature [8].
Consequently, these systems faced limitations in rapidly
integrating state-of-the-art medical knowledge alongside medical
advancements [9-11]. With the rapid expansion and increasing
diversity of medical data, these limitations have become more
pronounced [10].

To address these limitations, machine learning (ML) techniques
have emerged as promising avenues for creating new and diverse
risk models by leveraging extensive electronic medical records
[12,13]. Despite their exceptional predictive performance, the
lack of interpretability has limited their adoption in real-world
medical practice [14]. Recent efforts in ML have addressed the
“black box” issue of existing models by presenting data in a
more understandable fashion [15]. For instance, an ML-based
automated scoring model was developed by integrating the
Random Forest (RF) algorithm and logistic regression methods
[16]. This model was designed to be easy to understand and
apply to various clinical situations, such as in-hospital mortality
and out-of-hospital cardiac arrest [16,17]. However, these
approaches still rely on scoring methods rooted in traditional
statistics, using variables selected by the ML models [16].
Furthermore, the generalizability and scalability of ML models

are hampered by limited external validation. Therefore, there
is a compelling need to develop and validate a fully automated
ML-based scoring system that can address nonlinearity
assumptions.

In response to these challenges, this research aimed to develop
and validate an Explainable Automated nonlinear Computation
scoring system for Health (EACH) score. This system addresses
nonlinearity assumptions and enhances explainability. In
addition, we applied the EACH score to predict perioperative
stroke to assess its performance in real-world clinical practice
and examined its performance compared with traditional scores
and other ML-based scoring systems.

Perioperative stroke significantly impacts postoperative
morbidity and mortality. Patients who experience perioperative
stroke are more likely to develop postoperative delirium, have
prolonged hospitalization, increased in-hospital mortality, and
be discharged to nursing facilities [18-20]. However, the
detection of perioperative stroke is challenging due to the effects
of anesthetic and analgesic medications, which contribute to a
low rate of hyperacute thrombolytic treatment [21]. Therefore,
to reduce the risk of perioperative stroke, it is essential to use
more effective tools for identifying high-risk patients and to
implement close monitoring of these patients. To apply the
EACH score in predicting perioperative stroke, we aimed to
develop and validate a more accurate and explainable prediction
model that can be easily adapted to real-world practice.

Methods

Overview
We developed and validated the EACH, designed to automate
the development of clinical scoring models for predefined health
outcomes. The development and application of EACH were
segmented into several steps, as illustrated in Figure 1. We tried
to follow the guideline for developing reporting machine
learning prediction models in biomedical research [22].
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Figure 1. Visual guide to the sequential steps and their detailed execution. SHAP: SHapley Additive exPlanations.

Step 1: Model Training and Hyperparameter
Optimization
When implementing the EACH score, the initial step involved
training the CatBoost model with hyperparameter optimization
for each set of clinical data, followed by determination of
important features using SHapley Additive exPlanations (SHAP)
values [23].

Step 2: The Detection of Slope Change Point in Plots
of SHAP Values and Selection of the Top 5 Steepest
Slope Change Points
In this step, we harnessed the power of automation to identify
the critical features that influence the accuracy of the prediction
model. The process began with the generation of SHAP value

plots for each feature, which visually represented the impact of
these features on the model predictions. The key advantage of
our approach is the automated detection of the slope change
points within these plots. The slope change points are significant
shifts in the importance of each variable, indicating where the
influence of the variable undergoes a notable change.

The algorithm identified the 5 most pronounced slope change
points for each feature. These critical points indicate where the
model’s sensitivity to feature values is dramatically altered,
thus playing a pivotal role in subsequent feature scoring. Figure
2 illustrates this method by contrasting linear and nonlinear
cases, where the latter demonstrates the effectiveness of the
method in recognizing complex nonlinear relationships often
present in clinical data.
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Figure 2. Differential slope change comparison: linear versus nonlinear cases.

By isolating these key intervals, we delineated the feature value
ranges that were most influential on the model’s predictions,
thus allowing for a more accurate SHAP-based scoring system.

Step 3: SHAP-Based Scoring System Development
The third step shows how to generate scores using the SHAP
values for each variable. The score was calculated by adding
the SHAP values of the data points obtained from each section
to accurately quantify the impact of individual intervals for each
feature. This was for the model’s sensitive interpretation of the
different ranges within the variable and was reflected in the
final scoring system.

Step 4: Data Transformation and Handling Missing
Data

Normalization of Scores Across Features
In this step, we focused on standardizing the scoring system
across all features. This normalization process ensured that the
scores from different features were comparable and
appropriately weighted within the overall scoring model.

Normalization is based on the total range of scores across all
features, thereby aligning them on a unified scale.

Handling Missing Data With Interval Averaging
If the actual values for a particular interval were unavailable,
our model adopted a fallback strategy that uses the average of
values in adjacent intervals. If there is no data in the interval
immediately next to the missing value, the entire range of the
interval was used to preserve the integrity of the model’s risk
assessment in the face of data sparsity.

Clinical Study Design
In applying the EACH score to assess stroke risk during the
perioperative period in noncardiac surgeries, we approached
our clinical study design with a focus on real-world applicability.
This study was structured using 3 datasets: training, internal
validation, and external validation. The training and internal
validation datasets were derived from patient records at Seoul
National University Hospital (SNUH) from 2016 to 2019. For
a broader perspective and to assess the performance of the model
in different settings, we included a geotemporal external
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validation using data from surgeries performed at the Boramae
Medical Center (BMC) between 2020 and 2021.

A key aspect of our data preparation involved addressing
missing values in preoperative variables. Recognizing the
potential impact of incomplete data on the model’s accuracy,
we used a methodological imputation approach. For continuous
variables, missing values were imputed using their mean,
whereas categorical variables were imputed using the mode
[24].

Patients were excluded from the study if the surgery lasted less
than 20 minutes, if they were younger than 18 years or weighed

less than 30 kg or more than 140 kg, if their height was outside
the 135 cm to 200 cm range, or if they had a previous history
of stroke. The developmental set consisted of 36,502 patients
from Seoul National University Hospital. After applying the
exclusion criteria, 404 patients from Boramae Medical Center
were included in the external validation set (Figure 3).
Perioperative stroke was defined as an ischemic brain infarction
occurring within 30 days postoperatively and was identified
through new ischemic lesions on diffusion-weighted imaging
[18,21]. An experienced neurologist [M-YO] confirmed the
stroke diagnosis by reviewing the imaging outcomes.

Figure 3. Flowchart of study population.

Data Collection

Demographics and Comorbidities
We recorded patients' age, sex, physical metrics (height, weight,
and body mass index [BMI]), and a range of preexisting
conditions, including hypertension, diabetes (with or without
insulin medication), previous cardiovascular events, asthma,
chronic obstructive pulmonary disease, liver and kidney
diseases, and tuberculosis.

Surgical Information
Surgical risk was classified according to the American Society
of Anesthesiologists (ASA) standards. Information on whether
the surgery was emergent and the type was collected.

Preoperative Laboratory Findings
A comprehensive set of laboratory results were collected,
including hemoglobin levels, renal function indicators (blood
urea nitrogen, creatinine, and estimated glomerular filtration
rate), nutritional markers (albumin), electrolytes (sodium and

potassium), glucose levels, liver enzymes (aspartate
aminotransferase and alanine aminotransferase), platelet count,
and coagulation status assessed by partial thromboplastin time.

Revised Cardiac Risk Index
This traditional scoring system is used to assess the risk of major
adverse cardiac events including stroke in noncardiac surgery.
The Revised Cardiac Risk Index (RCRI) is composed of the
factors mentioned above, such as type of surgery, history of
ischemic heart disease, congestive heart failure, cerebrovascular
disease, preoperative treatment with insulin, and a preoperative
creatinine level greater than 2 mg/dL [13]. The RCRI was used
as the comparative score.

Prediction Model Based on Other ML Techniques
We developed prediction model based on several ML
algorithms, including Support Vector Machine (SVM) [25],
Decision Tree Classifier (DTC) [26], RF [27], and CatBoost
[28] to compare the performance with the EACH score. The
developmental dataset was systematically divided into a training
set comprising 70% of the data for model development, and the
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remaining 30% formed the test set used to assess model
performance. Hyperparameter optimization for each model was
performed using grid-search cross-validation to identify the
optimal settings that maximize the discriminative power of the
model [29].

External Validation
External validation was conducted using the BMC cohort to
assess the prediction performance of the EACH score, which
was developed to predict perioperative stroke based on the
SNUH cohort. The data used for validation were entirely
separate from the data used during the development of the
EACH score. BMC cohort was geographically, and temporally
different cohort from the development set, SNUH cohort.

Statistical Analysis
Continuous variables were analyzed using the Student t test and
the Mann-Whitney U test to determine the significance of
differences between the 2 groups.

Categorical variables in both datasets were evaluated using the
chi-square test to investigate the presence of significant
associations or discrepancies between the categories. All tests
were 2-sided, and statistical significance was set at P<.05. ML
modeling was performed in python 3.8 using the Scikit-Learn
package [30]. The area under the receiver operating
characteristic curve (AUC), accuracy, sensitivity, positive

predictive value (PPV), and negative predictive value (NPV)
were calculated to evaluate the performance of the prediction
model [31].

Ethical Considerations
This study was approved by the institutional review board (IRB)
of Seoul National University Hospital on April 7, 2020 (IRB
Number, 2003-067-1108), and Boramae Medical Center on
January 7, 2021 (IRB Number, 30-2021-4). The IRB determined
that participant consent was waived in this retrospective study.
We tried to follow the tripod guideline [32].

Results

Baseline Characteristics of the Study Cohorts
Our retrospective observational cohort study used data from
SNUH comprising the training set (25,551 cases) and the
internal validation set (10,951 cases) and the data of 404 patients
from BMC to externally validate the prediction model in a
geographically and temporally different population. The baseline
characteristics of patients in the SNUH and BMC cohorts are
summarized in Table 1. Patients in the SNUH cohort were
younger than those in the BMC cohort. The prevalence of
diabetes was slightly higher in the BMC cohort. Hemoglobin,
creatinine, and albumin levels were higher in patients in the
SNUH cohort, whereas glucose levels were slightly higher in
patients in the BMC cohort.
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Table 1. Baseline characteristics.

P valueBMCb cohortSNUHa cohortCharacteristics

<.00110 (2.48)139 (0.38)Number of strokes, n (%)

<.00162.44 (14.57)56.91 (15.23)Age (years), mean (SD)

.48204 (50.50)16,265 (55.44)Sex, male, n (%)

.01160.7 (8.61)161.97 (8.7)Height (cm), mean (SD)

.1063.36 (11.91)63.46 (12.01)Weight (kg), mean (SD)

.0424.49 (3.93)24.12 (3.73)BMI (kg/m2), mean (SD)

.71Preoperative ASAc, n (%)

—d25 (6.19)10,778 (29.53)1

—298 (73.76)21,283 (58.31)2

—74 (18.32)4172 (11.43)3

—7 (1.73)252 (0.69)4

—0 (0)17 (0.05)5

.5319 (4.7)2132 (5.84)Emergency surgery, n (%)

.06168 (41.58)11,395 (31.22)Preoperative hypertension, n (%)

.9092 (22.77)5543 (15.19)Preoperative diabetes, n (%)

>.9926 (6.44)729 (2.00)Preoperative cardiovascular accident, n (%)

>.998 (1.98)230 (0.63)Preoperative asthma, n (%)

.157 (1.73)234 (0.64)Preoperative COPDe, n (%)

.6942 (10.40)1437 (3.94)Preoperative liver disease, n (%)

.9739 (9.65)1179 (3.23)Preoperative kidney disease, n (%)

.9126 (6.44)366 (1.00)Preoperative tuberculosis, n (%)

.51212 (52.48)19,787 (54.21)Surgery typef, n (%)

<.00112.08 (1.93)12.90 (1.86)Hemoglobin (g/dL), mean (SD)

.86247.54 (87.81)245.18 (79.48)Platelet (×103/µL), mean (SD)

.3416.88 (11.59)15.82 (9.18)Blood urea nitrogen (mg/dL), mean (SD)

<.0010.43 (1.55)1.01 (1.34)Creatinine (mg/dL), mean (SD)

<.0013.75 (0.6)4.05 (0.47)Albumin (g/dL), mean (SD)

<.001138.85 (3.07)140.17 (2.66)Sodium (mmol/L), mean (SD)

<.0013.81 (0.54)4.24 (0.41)Potassium (mmol/L), mean (SD)

.01121.52 (45.85)114.88 (39.92)Glucose (mg/dL), mean (SD)

<.00111.96 (1.12)103.58 (14.86)Prothrombin time, n (%)

<.00127.66 (3.9)31.45 (5.56)Partial thromboplastin time (sec), mean (SD)

.9725.32 (52.62)25.33 (69.93)Aspartate aminotransferase (IU/L), mean (SD)

.0128.68 (32.74)25.44 (52.62)Alanine aminotransferase (IU/L), mean (SD)

.8483.83 (24.82)83.79 (27.25)Estimated glomerular filtration rate (mL/min/1.73 m²), mean (SD)

aSNUH: Seoul National University Hospital.
bBMC: Boramae Medical Center.
cASA: American Society of Anesthesiologists classification.
dNot applicable.
eCOPD: chronic obstructive pulmonary disease.
fSurgery types included intrathoracic, intra-abdominal, and supra-inguinal vascular surgery.
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Scoring System Based on Clinical Feature Intervals
The entire scoring system is presented in Multimedia Appendix
1. Scores ranging from 0 to 100 were assigned to the clinical
features based on specific intervals determined by the slope
change points. For example, albumin levels less than 4.1 g/dL
were associated with a higher risk of perioperative stroke.
Specifically, the highest score of 55.4 was assigned to the
2.4-3.5 g/dL range, indicating a particularly elevated risk for
some low albumin levels. Similarly, hemoglobin levels were
segmented, with the highest score of 51.5 assigned to the
5.0-11.0 g/dL range. In addition, the 18.6-20.7 kg/m² interval
of BMI received a score of 51.8, suggesting a higher risk
associated with specific BMI levels. However, age was divided
into intervals, with scores increasing incrementally from 49.0
for the 18-49 years age group to 51.8 for those aged 64-97 years
old. Creatinine levels did not differ significantly between

intervals. These results suggest that continuous variables could
impact predictive performance in various nonlinear patterns and
that this pattern is well reflected in the EACH scoring system.
Categorical variables were scored on the basis of their relative
importance in predicting perioperative stroke.

Comparative Analysis of the Performance of EACH
Scores Relative to Other ML Models
The EACH score demonstrated superior performance compared
with other ML-based models, such as RF and CatBoost, as
detailed in Table 2. The EACH score had the highest AUC
(0.829) and sensitivity (0.881). The SVM, DTC, RF, and
CatBoost models exhibited competitive yet slightly lower AUCs
of 0.500, 0.501, 0.802, and 0.822, respectively. In the external
validation, the EACH model consistently maintained high
performance. It achieved an AUC of 0.784 and attained the
highest sensitivity at 0.900 (Table 2).

Table 2. Comparison between the performance of Explainable Automated nonlinear Computation scoring system for Health (EACH) score and that
of other machine learning models.

NPVcPPVbSpecificitySensitivityAccuracyAUCaModels

Internal validation

0.9990.0030.2680.8880.9540.500Support Vector Machine

0.9990.0070.5660.8200.9610.501Decision Tree Classifier

0.9990.0090.6390.8560.6400.802Random Forest

0.9990.0100.6860.7700.6860.822CatBoost

0.9990.0100.6540.8810.6550.829EACHd score

External validation

0.9890.0490.6550.7000.9550.500Support Vector Machine

0.9990.0050.6210.8210.9640.503Decision Tree Classifier

0.9880.0710.8020.6000.7970.744Random Forest

0.9960.0680.6880.9000.6930.782CatBoost

0.9960.0670.6830.9000.6880.784EACH score

aAUC: area under the receiver operating characteristic curve.
bPPV: positive predictive value.
cNPV: negative predictive value.
dEACH score: Explainable Automated nonlinear Computation scoring system for Health.

Comparative Analysis of the Performance of the EACH
Explainable Score Relative to Traditional Scores
We compared the effectiveness of the EACH score with that of
a traditional scoring system based on classical statistical methods

and ML algorithms (Figure 4). The EACH score demonstrated
superior performance compared with the RCRI, a scoring system
used to predict perioperative stroke based on classical logistic
regression analysis (AUC=0.528 vs AUC=0.784).
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Figure 4. Comparison of receiver operating characteristic curves.

Comparative Analysis of the Performance of the EACH
Score Relative to Other ML-Based Scoring Systems
In addition, we compared the performance of the EACH score
with that of the ML-based score generation system, AutoScore

(eg, RFn=12, n=24). The performance of AutoScore increased with
the number of features: with 9 features, the AUC was 0.501;
with 12 features, the AUC was 0.564; and with 24 features, the
AUC was 0.773. However, the EACH score surpassed the
performance of AutoScore, demonstrating a superior AUC of
0.784 (Figure 4).

Risk Stratification Using the EACH Score: Low-
Versus High-Risk Patients for Perioperative Stroke
The 2 patients representing low and high perioperative stroke
risk based on the EACH score are shown in Table 3. The table
illustrates how the EACH score model assigned risk scores to
individual patient characteristics, leading to a cumulative risk

assessment. In assigning scores to patients, the low-risk case,
characterized by younger age (42.77 years) and moderate BMI

(24.02 kg/m2), tended to have lower ASA scores, no emergency
operation, and no premorbidities. The laboratory results included
slightly higher hemoglobin levels (13 g/dL) and higher platelet

counts (293 ×103/µL), resulting in a lower total score (1379.16)
indicative of a lower risk profile. Conversely, the high-risk
patient was characterized by older age (71.07 years), lower BMI

(22.84 kg/m2), higher ASA scores, emergency operation, and
surgery with a high risk for cardiovascular complications. The
patient had lower hemoglobin levels (12 g/dL), lower platelet

counts (92 ×103/µL), lower albumin levels (3 g/dL), and higher
glucose (115 mg/dL) levels. These factors contributed to the
higher total score (1517.29) of this patient, indicating a
higher-risk profile. The key distinguishing factors in risk
assessment included age, ASA score, surgery type, and
laboratory values. The model integrated a wide range of clinical
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variables into a single risk assessment metric. The ability of the
EACH score to distill complex clinical data into a quantifiable

stroke risk assessment provides a clear and actionable tool for
perioperative stroke risk stratification.

Table 3. Comparative risk stratification using Explainable Automated nonlinear Computation scoring system for Health score: low versus high-risk
patients for perioperative stroke.

High risk scoreActual valueLow risk scoreActual valueCharacteristic

51.8271.0749.0242.77Age

48.52148.521Sex, male

49.91156.349.78160.4Height

53.0255.848.6061.8Weight

48.8522.8448.8524.02BMI

53.76446.171Preoperative ASAa

52.95147.100Emergency operation

49.30049.300Preoperative hypertension

49.83049.830Preoperative diabetes

47.39047.390Preoperative cardiovascular accident

50.00050.000Preoperative asthma

49.59049.590Preoperative COPDb

50.17149.810Preoperative liver disease

49.80049.800Preoperative kidney disease

49.80049.800Preoperative tuberculosis

100100Surgery typec

49.491249.6613Hemoglobin

50.669249.80293Platelet

49.27849.2714Blood urea nitrogen

50.40050.400Creatinine

55.35350.544Albumin

50.4113750.41137Sodium

50.75353.464Potassium

54.0811547.3981Glucose

52.1311.652.1311.9Prothrombin time

46.542846.5428Partial thromboplastin time

52.376447.3014Aspartate aminotransferase

50.307849.6422Alanine aminotransferase

50.839049.06120Estimated glomerular filtration rate

1517.29—d1379.16—dTotal scoring

aASA: American Society of Anesthesiologists.
bCOPD: chronic obstructive pulmonary disease.
cSurgery type included several type of surgeries Intrathoracic, intraabdominal, and supra-inguinal vascular surgery.
dNot applicable.

Discussion

Principal Findings
In this study, we developed and validated a comprehensible
automated scoring system, the EACH score, using CatBoost.

This system, when applied to predict perioperative stroke,
showed superior performance compared with other ML models.
It also outperformed the traditional risk score, the RCRI score,
and other ML-based risk-scoring systems, such as AutoScore.
Furthermore, the EACH score effectively discriminated between
patients with high- and low-risk perioperative stroke.
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Recent advancements in ML-based models have shown
promising performance by integrating diverse datasets,
irrespective of their linearity or nonlinearity. These models have
the potential to overcome the limitations inherent in traditional
statistical methods. However, broader application of these
models is often restricted because of their lack of explainability
and insufficient external validation [33,34].

Comparison With Previous Work
To address these issues, Xie et al [16] developed AutoScore, a
scoring generator that combines RF-based approaches with
traditional logistic regression. However, AutoScore may not
fully capture complex clinical relationships or accurately
represent biological contexts owing to methodological
limitations and reliance on logistic regression [16,17].

The uniqueness of the present study lies in the development of
an entirely ML-based scoring system. The EACH score is
adaptable to a variety of data types without relying on predefined
assumptions. In this system, the range of each continuous
variable was determined by the inflection point on the plot using
SHAP values. SHAP values demonstrate the key features and
the absolute and relative predictive values of each feature within
the model and are widely used to enhance the explainability of
ML models [14,23]. The inflection point on the plot of SHAP
values could be assumed to be a significant change of its
predictive impact on outcome [35]. Using the above
characteristics of SHAP values, we revealed that the importance
of each feature did not increase linearly with its value, but rather
showed various relationships. Consequently, the EACH score
uniquely reflects the varying significance of identical features,
thereby influencing the performance of the prediction model in
a distinct manner. Another strength of the EACH score is its
robust handling of missing data. If the data for an interval were
missing, they were replaced with the average of the surrounding
intervals’ values, maintaining score completeness and accuracy
[24,36].

When applied to the real-world clinical data, EACH
outperformed the traditional score and other ML-based systems.
This demonstrates that this approach could contribute to the
construction of a novel risk assessment tool that achieves high
predictive accuracy and is intuitive for clinicians to interpret
and apply in real-world practice.

Using the EACH score, clinicians can better differentiate
between high-risk and low-risk patients. This allows for the
allocation of limited medical resources to high-risk groups,
enabling closer monitoring of perioperative stroke occurrence
and improving prognosis through timely treatment.

Furthermore, the EACH score can indirectly provide optimal
targets for minimizing perioperative stroke risk for key
correctable laboratory indicators such as albumin, electrolyte,
and glucose by highlighting detailed trends in blood tests that
increase risk nonlinearly. For instance, the EACH score
identifies an albumin level of 4.1 to 4.4 mg/dL as being
associated with the lowest perioperative stroke risk. Adjusting
albumin levels to this range could potentially reduce the
incidence of perioperative stroke.

To date, there has not been a prediction model that provides
treatment strategies for optimal thresholds of preoperative
laboratory indicators. The EACH score would be helpful for
clinicians in decision-making to reduce perioperative stroke in
complex preoperative environments by providing the transparent
and straightforward explanation of how it works. Nevertheless,
it is crucial to interpret these findings cautiously within the
context of each patient's individual situation and clinical context.

Limitations
In addition, we addressed the second common limitation in the
application of ML-based prediction models by validating the
EACH score in external cohorts from a secondary medical center
with different geographical locations, patient volumes, and
characteristics from the developmental cohorts. The superior
performance of the EACH score in the external validation cohort
added robustness to its reliability. Despite these advancements,
it is important to acknowledge that the efficacy of the EACH
score is contingent on the quality and comprehensiveness of
the input data. Incomplete or biased data can result in skewed
results. However, the EACH score showed excellent
performance even with imbalanced data, such as perioperative
stroke, which is a rare disease [19,21]. Nevertheless, there is a
need for ongoing updates and validation of the model across
diverse clinical settings. Furthermore, because the current dataset
comprises only Asian patients, it is imperative to prospectively
validate the EACH score in multiracial cohorts to ensure its
generalizability.

Conclusion
The EACH score represents a substantial advancement in the
development of efficient, explainable, and automated ML-based
risk assessment tools. The universal format of the EACH score
is easily applicable to various medical scenarios, thereby
reducing the need for labor-intensive data collection. Once
integrated with electronic medical records, it generates specific
predictions of different adverse outcomes [11,37]. Future
developments should aim to enhance its user-friendliness for
clinicians, potentially through the creation of intuitive interfaces
or decision support tools that simplify the interpretation of
results [38-40].
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