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Abstract

Background: Neuroimaging segmentation is increasingly important for diagnosing and planning treatments for neurological
diseases. Manual segmentation is time-consuming, apart from being prone to human error and variability. Transformers are a
promising deep learning approach for automated medical image segmentation.

Objective: This scoping review will synthesize current literature and assess the use of various transformer models for neuroimaging
segmentation.

Methods: A systematic search in major databases, including Scopus, IEEE Xplore, PubMed, and ACM Digital Library, was
carried out for studies applying transformers to neuroimaging segmentation problems from 2019 through 2023. The inclusion
criteria allow only for peer-reviewed journal papers and conference papers focused on transformer-based segmentation of human
brain imaging data. Excluded are the studies dealing with nonneuroimaging data or raw brain signals and electroencephalogram
data. Data extraction was performed to identify key study details, including image modalities, datasets, neurological conditions,
transformer models, and evaluation metrics. Results were synthesized using a narrative approach.

Results: Of the 1246 publications identified, 67 (5.38%) met the inclusion criteria. Half of all included studies were published
in 2022, and more than two-thirds used transformers for segmenting brain tumors. The most common imaging modality was
magnetic resonance imaging (n=59, 88.06%), while the most frequently used dataset was brain tumor segmentation dataset (n=39,
58.21%). 3D transformer models (n=42, 62.69%) were more prevalent than their 2D counterparts. The most developed were
those of hybrid convolutional neural network-transformer architectures (n=57, 85.07%), where the vision transformer is the most
frequently used type of transformer (n=37, 55.22%). The most frequent evaluation metric was the Dice score (n=63, 94.03%).
Studies generally reported increased segmentation accuracy and the ability to model both local and global features in brain images.

Conclusions: This review represents the recent increase in the adoption of transformers for neuroimaging segmentation,
particularly for brain tumor detection. Currently, hybrid convolutional neural network-transformer architectures achieve
state-of-the-art performances on benchmark datasets over standalone models. Nevertheless, their applicability remains highly
limited by high computational costs and potential overfitting on small datasets. The heavy reliance of the field on the brain tumor
segmentation dataset hints at the use of a more diverse set of datasets to validate the performances of models on a variety of
neurological diseases. Further research is needed to define the optimal transformer architectures and training methods for clinical
applications. Continuing development may make transformers the state-of-the-art for fast, accurate, and reliable brain magnetic
resonance imaging segmentation, which could lead to improved clinical tools for diagnosing and evaluating neurological disorders.

(J Med Internet Res 2025;27:e57723) doi: 10.2196/57723
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Introduction

Neuroimaging refers to the visualization of the structure and
function of the brain. It is one of the most important tools in the
understanding of different neurological disorders. Generally,
neuroimages can be obtained using 3 principal imaging
modalities, where each modality shows the complexities of the
brain from a different perspective. Of the 3, magnetic resonance
imaging (MRI) is still the most frequently used due to high
contrasting ability of brain tissues, high spatial resolution, and
no risk of radiation exposure [1-3]. For different brain regions
to be viewed, multiple MRI sequences are needed, such as T1,
T1ce, T2, and fluid-attenuated inversion recovery, as presented
in Figure 1 [4]. The second neuroimaging modality is computed
tomography (CT), which can produce high-resolution images.
On the other hand, it has limited soft tissue characterization,
and its radiation risk makes it unsuitable for repetitive use [3,5].

The third neuroimaging modality is positron emission
tomography (PET), which integrates nuclear medicine to
visualize metabolic activity [2]. PET has high sensitivity,
making it effective in detecting metastases, finding
abnormalities, and imaging deep structures. However, it has
limited resolution, and repeated use causes radiation risk [3,5].
Finding changes in brain tissue through neuroimaging analysis
is critical for detecting and monitoring neurological disorders
[6] and brain tumors [7]. Segmentation is a useful process in
outlining regions of interest in medical images [8], which
enables the quantitative assessment of atrophy, growths, and
anatomical differences that depict conditions like Alzheimer
disease, schizophrenia, and brain tumors among other
neurodegenerative diseases [2]. Because of this, segmentation
is applied broadly in different medical applications in diagnosis,
tissue classification, radiotherapy treatment, and surgical
planning [2,9].

Figure 1. Magnetic resonance imaging modalities of brain tumor. FLAIR: fluid-attenuated inversion recovery; T1: T1-weighted imaging; T2: T2-weighted
imaging; T1ce: T1-weighted contrast-enhanced imaging.

Segmentation techniques can be classified into 3 categories:
manual, semiautomated, and fully automated. Manual
segmentation is the standard for segmentation because it is
believed to be the most accurate [10]. The technique, however,
is laborious, time-consuming, and subjective, since it depends
on human judgment, and this may result in variation in the
results because of the different interpretations. Due to this, there
has been a great deal of research into automated segmentation
techniques to replicate the results from manual segmentation
but with a higher level of efficiency and consistency [2]. To do
this, 2 early paradigms were used: intensity-based approaches,
which include thresholding, edge-detection, and region-based
[8], and traditional machine learning paradigms, including
support vector machine, k-nearest neighbor clustering, and
random forest [8,11]. Each of these methods has been applied
in 1 or more ways, but their applicability and performance within
the task of image segmentation remain limited [11,12]. Since
then, deep learning (DL) methods have transformed medical
imaging applications and became a strong alternative to classical
techniques.

DL is a subclass of machine learning that involves artificial
neural networks with multiple layers. These networks are
designed to progressively learn hierarchical representations and
features of data, which both eliminates the need for manual
feature engineering [2] and enables the extraction of complicated
patterns from large datasets [13]. Different DL architectures

have been used for medical image segmentation, but the most
widely used and popular one is convolutional neural networks
(CNNs), which have achieved state-of-the-art performances in
different medical imaging tasks, including segmentation [12,14].
U-Net [15] is another notable model that was specially designed
for biomedical image segmentation and has produced very good
results in its field [16-18]. Some other notable models include
SegNet [19], ResNet [20], DenseNet [21], 3D-ConvNet [22],
and DeepLab [23]. These models have served as a solid
foundation for the imaging field and have resulted in a plethora
of variants, each developed for specific imaging modalities,
anatomical structures, and segmentation tasks. Transformers
[24] are a type of neural network architectures that mainly rely
on self-attention mechanisms. They were first proposed in 2017
and have since yielded state-of-the-art results in the field of
natural language processing [25]. More recently, transformers
have also shown success when applied to a wide array of
computer vision tasks, one of which is segmentation [26].
Although CNNs have achieved impressive performances in
image-related tasks, they may not capture global and long-range
dependencies well due to the small kernel size [26,27].

Transformers have recently gained popularity in imaging due
to their self-attention mechanism, which can model these
long-range dependencies—especially useful in brain
segmentation [27]. The great success of transformers has
motivated the construction of vision transformers (ViT) [28],
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which forego the use of convolutional layers and rely instead
on a multihead self-attention mechanism [13,29]. This
architecture divides an image into fixed-size patches, linearly
embeds them, and processes them through a transformer
network, thereby allowing it to model long-range dependencies
with reduced inductive bias [27,30]. Recently, ViT architectures
specifically designed for medical image segmentation have been
explored and resulted in models like TransUnet [31] and
Swin-UNet [32] for general-purpose use and models like
TransBTS [33] and Swin-UNETR [34] with the backbone for
brain tumor segmentation [29,30]. Special study deserves
transformer use in neuroimaging, as the structures of the brain
are complicated. Neural networks based on transformers can
model long-range dependencies and spatial relationships of the
brain images [27], which is very important in brain
segmentation.

Although transformers have shown very promising results in
many medical imaging tasks, their use in neuroimaging
segmentation remains an evolving field that had not been
systematically reviewed. Existing literature reviews have either
examined the use of transformers for general medical image
segmentation without focusing specifically on brain
segmentation [25,29,30] or have reviewed brain segmentation
techniques using various DL methods without emphasizing the
role of transformers [2,13]. One more difference that exists
between this review and others is the focus on applying
transformers to neuroimage segmentation, which is a central
task in neurological disorder diagnosis and treatment. For
example, compared with more general surveys such as those
by Shamshad et al [29] and Xiao et al [26], which address a
wide range of tasks or organ systems, our work specifically
focuses on the unique challenges and developments within brain
image segmentation. Thus, this scoping review will seek to fill
the gap by focusing solely on transformer applications in
neuroimage segmentation, an area of paramount importance for
the diagnosis and treatment of neurological disorders. A scoping
review on this topic is appropriate because the application of
transformers in this area is relatively new and fast-developing;
hence, it allows for comprehensively mapping the current
research landscape and identifying knowledge gaps.

The main purpose of this scoping review is to synthesize and
critically evaluate the existing literature on the use of different
transformer models for neuroimaging segmentation. This review
aims at summarizing the types of transformer models applied,
their performance, applications in various neurological
conditions and imaging modalities, limitations of the current
literature, and highlighting the existing gaps in research.

Methods

Study Design
The approach of this scoping review follows the PRISMA-ScR
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses extension for Scoping Reviews) guidelines
(Multimedia Appendix 1) [35]. Our primary research question
was “What are the current applications, performance, and
limitations of transformer models in neuroimaging
segmentation?”

The goal was the extraction of key themes within recent
literature related to transformer use in neuroimaging
segmentation that will guide future research and clinical
applications. Only the literature starting from 2019 was
considered, since the rapid evolution in the development of
transformer models for medical imaging is a key recent
development in this field.

We defined transformer models as DL architectures relying on
self-attention mechanisms, capable of processing sequential
data and capturing long-range dependencies. From the
neuroimaging perspective, we considered those studies where
these models were applied to different modalities of brain
imaging, focusing on MRI due to its prevalence in neurological
diagnostics.

Our review process followed a systematic search in 4 major
databases: Scopus, IEEE Xplore, PubMed, and ACM Digital
Library. We present a comprehensive review of methodologies,
results, strengths, and limitations of the included studies to
derive useful insights that bridge technical developments with
their implications in the clinical domain of neuroimage
segmentation.

Search Strategy
Studies were retrieved on May 22, 2023, through searching the
following databases: IEEE Xplore, ACM Digital Library,
Scopus, and PubMed. The search was limited to 5 years, from
2019 to 2023, to prioritize recent research and consisted of
search queries related to transformers such as “transformer,”
“deep learning,” and “self-attention”; queries related to
neuroimaging such as “brain,” “neuroimaging,” “MRI,” “CT,”
and “PET”; and queries related to the medical field such as
“health care,” “medical,” “health.”

Study Eligibility Criteria
This review only included papers whose primary purpose was
on the use of transformers for the segmentation of neuroimages.
Our search included journal papers, conference papers, and
dissertations that focused on applying transformer models to
imaging scans (eg, MRI and CT) of the human brain. We
excluded all studies that (1) used transformers for the
segmentation of nonneuroimaging, raw brain signals, or
electroencephalogram data; (2) were not in English, review
papers, conference abstracts, preprints, protocols, and conference
abstracts; (3) focused on neuroimaging tasks other than
segmentation (eg, classification and prediction); and (4) were
published before 2019.

Study Selection
For this review, we used a 3-step study selection process. First,
we used EndNote (Clarivate) to remove duplicate studies
returned by our initial search. Next, 3 independent reviewers
(MI, AA, and MA) screened the titles and abstracts of the
remaining papers to exclude irrelevant studies. We then obtained
full texts of the studies that passed the initial screening, and the
same 3 reviewers (MI, AA, and MA) examined them against
our predefined inclusion criteria. Any disagreements between
reviewers during the screening processes were resolved through
in-person discussions until a consensus was reached.
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Data Collection
The data extraction for this review is done in Microsoft Excel
by 2 independent groups of 2 reviewers (MI and AA and MA
and OE) to share the workload for extraction and resolve
conflicts between the groups. Disagreements in data extraction
were resolved through consensus during face-to-face
discussions. Data extractions fall into 3 broad categories: study
characteristics, neuroimaging acquisition, and transformer
features.

Synthesis of included data was done using a narrative approach.
Descriptive texts, tables, and figures describe and show the
summary and characteristics of the data. Microsoft Excel was
used to manage and synthesize the data. First, we depict the
characteristics of each included study concerning publication
year, type of publication, and country of origin. Then, we
describe the neuroimaging acquisition of these studies by
including the imaging modality, dataset, dataset accessibility,
and neurological condition. Finally, it explains the transformer
architecture of the included studies: the number of parameters,
transformer type, hybrid component, and the training and
evaluation methodology used along with loss function,
optimizer, and metrics.

Ethical Considerations
This scoping review synthesized and analyzed publicly available
research studies. No direct human participant research was
conducted; therefore, approval from an institutional review
board or a research ethics committee was unnecessary. There
was no collection, use, or dissemination of personal data from

human participants in this study. Data extracted and analyzed
in this review had been sourced from published studies,
previously subjected to ethical review processes as part of their
original publication. The review followed ethics in research
practices, in that the representation of the included studies was
true to form, and the methodology for the selection of studies
and extraction was transparent. No individual participant data
were accessed or reported in this review; hence, privacy and
confidentiality were ensured. Since this study did not involve
direct contact with human participants, issues regarding
informed consent and protection of privacy and compensation
of participants were therefore not relevant in this study. No
images or supplementary material showing identifiable
information of any individual were used in this review.

Results

Overview
A total of 1246 publications were retrieved from the initial
search of the selected databases. In the first round of screening,
261 duplicates were identified and removed through the use of
EndNote X9, leaving 985 publications remaining. In the second
round, 761 publications were excluded through the analysis of
their titles and abstracts against our predefined inclusion or
exclusion criteria. The remaining 224 publications continued
to the third round of screening, which included a detailed
full-text read-through and resulted in the exclusion of 156
publications. Of the 1246 initial publications, only 68 studies
met our criteria and were thereby included in this review. Figure
2 depicts the full screening process in more detail.

Figure 2. PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews) flowchart of the study
selection process.
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Characteristics of the Included Studies
Table 1 depicts the characteristics and metadata of each included
study, including the publication year, country, and type. Included
studies ranged between 2019 and 2023. Over half of the included
studies were published in 2022, followed by 32.84% (n=22) in
2023. Studies included peer-reviewed papers (n=48, 71.64%)

and conference papers (n=19, 29.36%). The included studies
spanned a total of 13 countries, with China being by far the
largest contributor in this domain, representing 68.66% (n=46)
of the total studies. Following China, we can find the United
States (n=5, 7.46%), the United Kingdom (n=4, 5.97%), and
India (n=3, 4.48%), with other countries contributing 1 paper
apiece.

Table 1. Characteristics of the studies used in this review, including the year, type, and country of publication.

ReferencesStudies, n (%)Features

Year of publication

[36-57]22 (32.84)2023

[58-91]34 (50.75)2022

[33,34,92-99]10 (14.93)2021

[100]1 (1.49)2019

Type of publication

[34,36-51,53-76,80,83,86,87,91,92,96]48 (71.64)Journal paper

[33,52,77-79,81,82,84,85,88-90,93-95,97-100]19 (29.36)Conference paper

Country of publication

[33,37-42,44,46-48,50,54-67,69,72,74-77,79-84,86,88,90-94,96,99]46 (68.66)China

[34,52,85,92,100]5 (7.46)United States

[53,68,71,97]4 (5.97)United Kingdom

[49,95,98]3 (4.48)India

[36,43,45,51,70,73,78,87,89]9 (13.43)Other

Neuroimaging Acquisition and Neurological Condition
Table 2 depicts the different imaging modalities used, the
datasets used, and the different neurological conditions across
the included studies. The included studies included a range of
6 different modalities, with MRI being by far the most common
with 88% (n=59), followed by CT with 10.45% (n=7), and the
remaining modalities with 1 each. Over half of the included
studies used only 1 dataset (n=40, 59.70%) for training and
evaluation purposes, followed by 23.88% (n=16) using 2
datasets. Of the 44 unique datasets used across the included

studies, 70.45% (n=31) are public or open-source datasets, and
29.55% (n=13) are private datasets obtained directly from
medical institutions. Regarding the public dataset category, the
brain tumor segmentation dataset (BraTS dataset) is by far the
most widely used, with 58.21% (n=39) of total studies using its
variants (including BraTS 2015, 2017, 2018, 2019, 2020, and
2021), followed by Medical Segmentation Decathlon and
low-grade glioma-Kaggle with 5.97% (n=4) each. The main
neurological condition of the included studies was the
segmentation of brain tumors, with 71.64% (n=48) of studies
conducting research specifically in this area.

J Med Internet Res 2025 | vol. 27 | e57723 | p. 5https://www.jmir.org/2025/1/e57723
(page number not for citation purposes)

Iratni et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 2. Description of features used in the included studies, including modalities, datasets, dataset types, and neurological conditions.

ReferencesStudies, n (%)Features

Imaging modality

[33,34,36-51,54-69,71-85,87,88,90,92,93,95-99]59 (88.06)MRIa

[52,53,71,75,86,89,94]7 (10.45)CTb

[73]1 (1.49)PETc

[70]1 (1.49)Interventional ultrasound

[100]1 (1.49)Electron microscopy

[91]1 (1.49)Digital subtraction angiography

Number of datasets used

[34,36,39,40,42-50,53,57,63-65,69,70,74,77,78,80,83-88,90-95,97-100]40 (59.7)1

[33,37,38,41,51,56,58,59,61,67,68,73,76,82,89,96]16 (23.88)2

[54,55,60,62,66,71,72,75,79,81]10 (14.93)3+

[52]1 (1.49)Not mentioned

Dataset accessibility

—d31 (70.45)Public

—13 (29.55)Private

Dataset

[33,34,37,40-42,44-46,48,50,51,54,56,60-62,64-66,68,69,71,72,74,76,77,79-83,90,92,93,95,97-99]39 (58.21)Public: BraTSe

[39,62,85,88]4 (5.97)MSDf

[58,59,96]3 (4.48iseg-2017

[43,73]2 (2.99)ADNIg

[59,96]2 (2.99)MRBrainSh

[49,63,66,84]4 (5.97)LGGi-Kaggle

[51,54,75]3 (4.48)ISLESj

[71,78,81]3 (4.48)WMHk

[55,58,68,70,71,73,75,81,87,89,91,100]12 (17.91)Other

[36,38,47,53,57,67,82,86,94]9Private

[52]1 (1.49)Not stated

Neurological condition

[33,34,37-42,44-46,48-51,54,56,60-72,74,76,77,79-85,88,90,92,93,95,97-99]48 (71.64)Brain tumor

[51,52,75,94]4 (5.97)Ischemic stroke

[43,73,81]3 (4.48)Alzheimer disease

[36,57]2 (2.99)Parkinson disease

[53,86,89]3 (4.48)Intracerebral hemorrhage

[91]1 (1.49)Intracranial aneurysms

[55]1 (1.49)Autism

[78]1 (1.49)Brain lesions

[47,58,59,87,96,100]6 (8.96)Healthy brain

aMRI: magnetic resonance imaging.
bCT: computed tomography.
cPET: positron emission tomography.
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dNot available.
eBraTS: brain tumor segmentation dataset.
fMSD: Medical Segmentation Decathlon.
gADNI: Alzheimer’s Disease Neuroimaging Initiative.
hMRBrainS: magnetic resonance brain image segmentation.
iLGG: low-grade glioma.
jISLES: ischemic stroke lesion segmentation.
kWMH: white matter hyperintensities.

Transformer-Based Techniques Types, Training
Parameters, and Evaluation
The proposed neuroimage segmentation techniques used various
artificial intelligence (AI) techniques. In this review, we focused
on the deep transformer–based techniques that have gained more
attention recently. From the proposed models, we can find
transformer-based, CNN with transformer-based, and generative
adversarial network with transformer-based techniques. At the
same time, the methods based on TransBTS, TransUNet,
SeinUNet, and U-Net with transformer are the most used models
for neuroimage segmentation. Figure 3 illustrates these models
in terms of architecture. Table 3 depicts the characteristics of
transformer models used within the included studies. From
Table 3, we can find that 58.21% (n=39) of the included studies
did not explicitly report the number of parameters of their
proposed models. Of the studies that did, however, the majority

of the transformer models proposed had between 20 and 40
million parameters (n=10, 14.93%), followed by 1 and 19
million (n=8, 11.94%). A majority of studies implemented a
3D segmentation network (n=42, 62.69%), with 37.31% (n=25)
being 2D. An overwhelming 85.07% (n=57) of included studies
proposed transformer models that are hybrid, with only 14.93%
(n=10) of them being standalone transformer models. ViT was
the most used transformer architecture, with 55.22% (n=37) of
studies using it as its main component. Another significant
transformer model is the Swin transformer, with 20.89% (n=14),
followed by TransUnet, with 5.97% (n=4). Of the 57 hybrid
transformer models, 55 (96.49%) studies opted for a
combination of CNN with their transformer, and of those 55
CNN-transformer models, 56.36% (n=31) were U-Net based,
and 9.09% (n=5) were ResNet based. Both generative
adversarial network (n=2, 3.51%) and autoencoders (n=2,
3.51%) were also combined with transformers.

Figure 3. Various transformer-based architectures used for neuroimage segmentation. (A) U-Net+transformer, (B) TransBTS, (C) TransUNet, (D)
SwinUnet, (E) UNETR, and (F) transformer.
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Table 3. Proposed methods based on the weight of the models, type of data used, and type of transformer technique used.

ReferencesStudies, n (%)Features

Number of parameters (in millions)

[41,42,45,51,68,76,79,82]8 (11.94)1-19

[33,37,39,56,58,62,63,65,69,88]10 (14.93)20-39

[42,52,60,86]4 (5.97)40-59

[34,47,85]3 (4.48)60-100

[53,80,97]3 (4.48)100-120

[42,54]2 (2.99)120+

[36,38,40,43,44,46,48-50,55,57,59,61,64,66,67,70-75,77,78,81,83,84,87,89-96,98-100]39 (58.21)Not mentioned

Dimensionality

[40,43,45,48,49,53,54,58,63,70,75,77,78,84,86,88,89,91,94,99,100]25 (37.31)2D

[33,34,36-39,41,42,44,46,47,50-52,55-57,59-62,64,69,71-74,76,79-83,85,87,90,92,93,95-98]42 (62.69)3D

Transformer model

[38,42,54,55,61,75,78,82,89,100]10 (14.93)Standalone

[33,34,36,37,39-41,43-53,56-60,62-74,76,77,79-81,83-88,90-99]57 (85.07)Hybrid

Type of transformer

[33,36,38,40,44,46,47,49-55,57-60,65,66,71,73,75,81-83,85,87,88,90,91,93,95-99]37 (55.22)ViTa

[34,37,42,43,56,62,67-69,72,74,76,77,89]14 (20.89)Swin

[61,78]2 (2.99)SwinUnet

[45,70,84,94]4 (5.97)TransUnet

[64,92]2 (2.99)TransBTS

[39,41,48,63,79,80,86,100]8 (11.94)Other

Type of hybrid component

[33,34,36,37,39-41,43-53,56-60,62-70,72-74,76,77,79,83-88,90-99]55 (96.49)CNNb

[34,36,37,40,43,45,46,48-51,53,56,57,60,62-64,70,76,83-86,88,90-94,97]31 (56.36)U-Net

[59,60,66,67,94]5 (9.09)ResNet

[43,60]2 (3.51)GANc

[71,81]2 (3.51)Autoencoder

aViT: vision transformer.
bCNN: convolutional neural network.
cGAN: generative adversarial network.

Table 4 depicts the loss function used, the optimizer used, and
the different evaluation methods used across each included
study. The loss function was not mentioned in 11.94% (n=8)
of the included studies. Of the studies that mentioned it, the
most popular loss function is a combination of cross-entropy
and Dice loss with 40.30% (n=27) of included studies, followed
by Dice loss with 19.40% (n=13). Adam is the most used
optimizer, with 47.76% (n=32) of included studies using it,

followed by AdamW at 14.92% (n=10). However, the optimizer
was not mentioned in 22.39% (n=15) of studies. In terms of
evaluation, over half of the included studies used at least two
evaluation metrics (n=34, 50.75%), followed by 1 metric (n=11,
16.42%). Of these evaluation metrics, the Dice score is by far
the most used, with 94.03% (n=63) of all studies using it,
followed by HD95, 52.24% (n=35), and sensitivity, 28.36%
(n=19).
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Table 4. Experimental setups and evaluation for the proposed transformer-based techniques.

ReferencesStudies, n (%)Features

Loss function1

[34,37,38,41,45-49,59,79,80,87]13 (19.4)Dice loss

[43,44,50,61,63,65,77,90,96]9 (13.43)Cross-entropy

[39,40,42,51,54,56,57,60,62,69,72,76,78,81-86,91,93-95,97-99]27 (40.3)Dice cross-entropy

[33,52,53,55,58,66,68,71,74,89]10 (14.93)Other

[36,67,70,73,75,88,92,100]8 (11.94)Not mentioned

Optimizer

[33,37,40,41,44,49,53,55,60-62,65-69,72,75,76,78,80,86-88,91-93,95,97-99]32 (47.76)Adam

[42,48,51,52,56,74,81,82,85,89]10 (14.92)AdamW

[47,50,54,57,83,94,97]7 (10.45)SGDa

[38,79]2 (2.99)Ranger

[63]1 (1.49)RMSpropb

[64]1 (1.49)Apollo

[34,36,39,43,45,46,58,59,70,71,73,84,90,96,100]15 (22.39)Not mentioned

Evaluation metrics

[33,34,36-42,44-66,68-72,74-99]63 (94.03)Dice score

[33,34,40-42,44-48,50,51,54,56-58,61,62,64,65,72,74,76,78,79,81,82,85,90,92,93,95,97-99]35 (52.24)HD95c

[43,44,46,47,53-55,57,60,64,69,75,83,86,87,89,90,93,94]19 (28.36)Recall or sensitivity

[45,49,52-54,63,66,68,77,87,89,91]12 (17.91)IoUd

[43,44,47,53,55,60,75,87,89,90]10 (11.94)Precision

[43,49,55,67,73,86]6 (8.96)Accuracy

[47,86,89,90,93]5 (7.46)Specificity

[43,67,71,89,100]5 (7.46)AUCe

[43,78,89]3 (4.48)F-measure

[44,53,57,90]4 (5.97)Jaccard index

[47,63,66,78,91]5 (7.46)Other

aSGD: stochastic gradient descent.
bRMSprop: root mean square propagation.
cHD95: Hausdorff distance at the 95th percentile.
dIoU: Intersection Over Union.
eAUC: area under the curve.

Strengths and Limitations of Transformer-Based
Techniques
Transformers have revolutionized the area of neuroimage
segmentation by offering unparalleled capabilities in modeling
complex features in medical imaging. It has the ability to model
both local and global information, which substantially improves
the accuracy of segmentation and therefore becomes very useful

in various neurological applications. As shown in Table 5, the
common strengths of transformer-based techniques include a
high mean Dice score, effective fusion of multimodal MRI, and
robust performance across diverse and complex datasets.
However, these models also have substantial limitations in terms
of high computational and memory costs, sensitivity to small
areas of tumors, and possible overfitting on smaller datasets.
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Table 5. Strengths and limitations of common transformer-based techniques.

LimitationsStrengthsReferences

ViTa

[33,36,38,
40,44,46,
47,49-55,
57-60,65,
66,71,73,
75,81-83,
85,87,88,
90,91,93,
95-99]

•• Computationally intensive.Effectively models local and global features in 3D MRIb data.
•• High computational and memory cost.High mean Dice score.

• •Demonstrates consistent improvements in segmentation perfor-
mance.

Memory constraints when lowering patch resolution.
• Complexity in integrating CNNd and transformer fea-

tures.• Effective in emphasizing informative brain regions.
•• Sensitivity to small tumor areas in LGGe.Uses symmetry of brain structures for improved feature learning.

• •Outperforms state-of-the-art SSLc methods and medical image
segmentation models on benchmarks.

Overlap in feature dimensions between CNN and trans-
former branches.

•• Misclassification of voxels in LGG.Incorporates gradient-based scoring for attentive reconstruction.
• •Effective multimodal MRI fusion. Imbalance in dataset affecting performance.

•• Need for extensive validation on more diverse datasets.Enhanced long-term dependencies within individual modalities.
• Complementary contextual information among modalities.

Swin

[34,37,42,
43,56,62,
67-69,72,
74,76,77,
89]

•• Slight decrease in performance for specific areas like tu-
mor core segmentation in some instances.

Capable of learning multiscale contextual information, enhancing
performance across various tasks.

•• ViTs have many parameters and structures, making them
complex and resource-intensive.

Combines advantages of ViT and CNNs, balancing both local and
global feature learning.

• •Maintains high-resolution features, crucial for precise segmentation
tasks.

Potential risk of overfitting on smaller datasets due to
high model complexity.

•• Existing neural network algorithms may often extract
redundant features, reducing overall efficiency.

Performs efficient tri-level preprocessing, including noise removal
improving input quality for better results.

• •Incorporates advantages of 3D Swin transformer, improving per-
formance in 3D medical image analysis.

Limited exploration in preprocessing and postprocessing
techniques, which might enhance model performance
further.

SwinUnet

[61,78] •• Requires verification of the improvement with diverse
and larger datasets.

Improves the efficiency of using limited labeled data.
• Competitive performance in Dice score, Hausdorff distance, and

other segmentation metrics. • Lower recall and F1-scores compared to other CNN-
based methods.

TransUnet

[45,70,84,
94]

•• Some models within the study showed poor performance.High effectiveness in model design.
•• Cross-application limitations in certain scenarios.Combines the strengths of U-Net and transformer models.

• •Achieves higher Dice scores compared to U-Net and transformer. High data requirements for effective training.
•• Limited dataset size affecting generalization.Effectively learns global context features in images.

TransBTS

[64,92] •• Increased network depth leads to higher parameter counts,
increasing computational requirements.

Residual basis blocks reduce feature loss and enhance feature ex-
traction.

•• May struggle with unseen patterns in the testing phase,
affecting performance robustness.

Combines CNN and transformer for improved segmentation per-
formance, leveraging both local and global information.

• Attention mechanisms enhance the model’s ability to focus on
relevant features, improving accuracy.

Other transformer types

[39,41,48,
63,79,80,
86,100]

•• High computational complexity.Effectively capture both local and global context in medical im-
ages. • Significant memory use.

• Enhance segmentation accuracy. • Requires substantial hardware resources.
• Robust across diverse and complex datasets. • Extensive data preprocessing is needed.
• Improve semantic information representation. • Limited scalability to very large datasets.
• Combine multiresolution information effectively. • Sensitive to variations in input data quality.

aViT: vision transformer.
bMRI: magnetic resonance imaging.
cSSL: self-supervised learning.
dCNN: convolutional neural network.
eLGG: low-grade glioma.
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Discussion

Principal Findings
The main purpose of this scoping review is to conduct a
thorough investigation into the use of different transformer
models in the field of neuroimaging, specifically segmentation.
From the gathered data, it is clear that the use of transformers
in neuroimaging experienced a great boost in research from
2021 to 2022, with over half of the included studies being
published in 2022 compared to only 10 studies in 2021. It is
also important to note that for the year 2023, only the studies
up to May 22 were included; yet, this constitutes a total
percentage of the included studies of 32.84% (n=22) and could
very well be even higher when the whole year is considered.

From the studies included in this review, it is clear that MRI is
by far the most popular image modality for applying transformer
models to neuroimaging segmentation. This can be attributed
to how common the use of MRI is in the diagnosis of
neurological illnesses, especially for brain tumors [27], wherein
it is able to provide functional, structural, and metabolic
information [27] through the use of its different modalities (T1,
T2, T1ce, and fluid-attenuated inversion recovery). MRI is
particularly suitable for neuroimaging segmentation purposes
because of the high spatial resolution and soft tissue contrast,
both being critical for any form of precise segmentation it
exhibits, since it is able to show good detailed visualization of
structures in the brain and distinction between different tissues
of the brain sizes [1,2].

Another reason for the popularity of MRI in the included studies
is the availability of brain MRI scans sourced from the widely
used BraTS datasets [101]. This yearly and open-source dataset
contains a wide variety of different MRI modalities that are
manually annotated, making it a very important resource for
developing and benchmarking segmentation methods based on
different transformer models. This is why it is no surprise that
it is by far the most used dataset in the included studies.

When it comes to neurological conditions, a majority of included
studies in this review focused on the use of transformers in brain
tumor segmentation. This can be attributed to multiple factors,
including the availability of MRI scans from the BraTS dataset
that are specifically for brain tumor segmentation. Brain tumors
are also highly prevalent among all ages and have a high fatality
rate [102], making it a prime area for research into new methods
of diagnosis and treatment. In addition, brain tumors are fairly
complex and irregular in both location and shape [27], which
makes manual segmentation a very tedious and time-consuming
process that would benefit greatly from increased research into
more automated methods for segmentation. The BraTS dataset
is also a factor, as it provides a large variety of MRI scans that
are specifically for brain tumor segmentation. Transformers are
particularly useful for brain tumor segmentation due to their
self-attention mechanism, which allows them to account for
different variations in tumor characteristics, such as size and
shape, during the segmentation process [26].

Most included studies proposed and developed models with 3D
segmentation networks, specifically for 3D imaging data. In

terms of neuroimaging, 3D scans are more common in part due
to the 3D nature of MRI scans. Since MRI is the most common
imaging modality used in neuroimaging, it makes sense that it
is preferable to develop models for 3D imaging data in order
to avoid the loss of information. Even though 3D models are
typically more accurate for 3D imaging segmentation, they are
computationally expensive [26], which is why some proposed
models in the included studies chose to instead extract 2D slices
from 3D imaging data. While this technique is suitable, reducing
a 3D scan into 2D slices can lead to a degradation of volume
and spatial characteristics native to 3D data [103].

CNN-transformer hybrid models were used far more than
standalone transformer models in the included studies,
specifically in the form of a U-Net and transformer combination.
These combinations capitalize on the strengths of both CNN
and transformers while minimizing their weaknesses. CNN is
particularly useful in extracting local features and spatial
information from the provided scans; however, it often struggles
to capture long-range dependencies due to its small kernel size
[26,27]. On the other hand, transformers are able to model these
long-range dependencies due to their self-attention module,
making them very useful for neuroimaging segmentation,
especially in the case of brain tumors [27]. This is why most
included studies opted to use the use of CNN to capture local
features and transformers to capture global features to increase
the performance of their models in the task of segmentation
[102].

Research and Practical Implications
This scoping review provides an overview of the available
research regarding the use of transformers in the context of
neuroimaging segmentation. These findings underline important
implications for future research and applications in this area.

It is a notable finding of this review that many studies apply
transformers, specifically to brain tumor segmentation, which
might hint at the potential of transformers in assisting diagnosis
and treatment planning in this field. As shown here, transformers
are well-suited for this task. However, further research is needed
to assess the real-world clinical usefulness of transformers for
brain tumor segmentation. While brain tumors are an important
challenge, the focus on this single application at this level would
seem indicative of the current lack of large and good-quality
datasets in many other big neurological diseases and conditions,
such as Alzheimer and Parkinson disease, and strokes. Making
publicly available manually annotated datasets of different
neurological conditions would motivate new research and
developments on the application of transformers in this field.
On top of this, the heavy reliance of studies on the BraTS dataset
shows that there is a need to diversify datasets in order to
validate different models correctly. Most of the included studies
favored hybrid use by combining CNN and transformers, which
illustrates the complementary strengths of these architectures
for neuroimaging segmentation. Success in hybrid techniques
shows that further exploration of novel integrations between
transformers, CNNs, and other modules could become a
promising direction to achieve better performances on more
complex medical image analysis problems. Improved accuracy
in neuroimaging segmentation, through the ability of transformer
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models to extract local and global features, allows for more
accurate identification of neurological conditions such as brain
tumors. This will provide earlier diagnosis and treatment.
Moreover, automation with these models will save much time
of the clinicians in performing manual segmentation so that
they can concentrate on the care of patients and other important
tasks. Treatment planning may also be improved with
transformer models, where the potential for more accurate and
consistent segmentation results helps a lot in this respect.
Moreover, these models can also potentially be integrated into
clinical workflows without much hassle by developing
user-friendly interfaces and collaboration between AI researchers
and clinicians to ensure these tools are adopted and effectively
used in practice.

Strengths and Limitations
This scoping review has numerous key strengths with regard
to the analysis of transformer applications in neuroimaging
segmentation. First, it gives a broad overview of the
fast-evolving field by capturing recent works from 2019 through
2023. Second, it allows focusing on current research so that the
review reflects the state-of-the-art in transformer applications
for medical imaging. It is a systematic approach, covering 4
major databases; hence, wide and comprehensive coverage of
the literature reviewed. The inclusion of journal papers and
conference papers facilitates a wide view of both consolidated
and emergent research. Third, this review gives elaborate
insights into various aspects of transformer use in neuroimaging:
imaging modality, dataset, neurological condition, and metric
for performance evaluation. This level of analysis provides rich
information relevant to both researchers and practitioners within
the field. Finally, the review’s focus on brain tumor
segmentation, while a limitation in some respects, also serves
as a strength by providing an in-depth look at transformer
applications in a critical area of medical imaging with significant
clinical implications.

While this scoping review offers a number of strengths, its
limitations need to be acknowledged so as to strike a balance.
First, the review was on transformers in neuroimaging
segmentation alone, excluding other medical imaging tasks or
organs. This narrow focus allows for an in-depth analysis of
transformer applications in brain imaging but may not be
representative of the full spectrum of use that transformers have
seen in medical imaging. This limitation could be reduced by
expanding the scope of future reviews to multiple organ systems
or imaging tasks, giving a wider look at transformer applications
in medical imaging.

Second, the review was focused on studies published in the
English language, published from 2019 up to 2023. This
narrowing was necessary, as most current works are favored in
this novelty area of transformer use in medical imaging. In so
doing, this review criterion may have left out important
non-English language publications or early applications of
transformers. This is likely a limitation in the representation of
research trends worldwide. In this respect, future studies can
be designed to include more languages, also extending the date
range to capture more diverse sets of publications and track the

evolution of transformer use in medical imaging over an
extended period.

Third, the fact that 58.21% (n=39) of the works included in this
review were based on the BraTS dataset introduces a certain
bias in the domain toward the segmentation of brain tumors.
Though it is a very critical area, it might not be useful to
represent transformers completely for other neurological
conditions. Future research needs to give more emphasis to
developing and publicly releasing manually annotated datasets
about more neurological conditions to address this limitation.
This will further encourage diverse applications of transformers
in neuroimaging and provide a wider understanding of the
capability of transformers across different pathologies.

The review demonstrated a high dominance by studies from
China, with 46 (68.66%) studies of the total (see Multimedia
Appendix 2 for detailed analysis). This aligns with broader
publication patterns in AI research where Chinese institutions
contribute approximately 40% of global publications. While
this distribution reflects documented trends in international
research output, future reviews might benefit from more
diversified search strategies to ensure comprehensive coverage
of global research activities in this field.

Finally, no formal quality or risk-of-bias assessment of the
included studies was performed. Although this represents a
common approach when it comes to scoping reviews, this limits
the degree to which strong conclusions can be drawn about the
relative effectiveness of various approaches to transformers.
Future systematic reviews or meta-analyses may involve quality
assessments to support more robust evidence in terms of the
efficacy of transformer models in neuroimaging segmentation.

Future Directions
These findings point to a variety of promising directions for
future research on the application of transformers to
neuroimaging segmentation. First, future studies should develop
novel integrations between transformers, CNNs, and other
advanced modules that will further improve performance for
complex medical image analysis tasks. This might be achieved
by investigating various hybrid models leveraging the strengths
of transformers and more traditional DL methods. Second, the
extension of transformer applications to more neurological
conditions other than brain tumors, which would allow a wider
grasp of the potential capability of transformers across different
pathologies. More clinical applications are likely to follow from
here. Third, the development of new transformer-based methods
or their combination with emerging techniques like diffusion
models could further improve efficiency and robustness for both
2D and 3D brain segmentation. Fourth, future studies shall be
done to bridge the current limitations in dataset diversity. This
may be in creating and publishing manually annotated datasets
for a wider range of neurological conditions that can enable
transformers to apply to neuroimaging in more diversified ways.
Finally, the translation of research findings into clinical practice
remains a high unmet need. This transition will require extensive
validation of transformer models on diverse, real-world datasets
and close collaboration between AI researchers and clinicians.
Such collaboration could result in the development of more
clinically relevant models and user-friendly interfaces, which
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would expedite the translation of these advanced technologies
into routine clinical practice.

Conclusions
This scoping review has thoroughly investigated the applications
of transformers in neuroimaging segmentation and discovered
a highly evolving field with great potential. The results of this
paper have shown that transformer models, especially combined
with CNNs in hybrid architectures, are also very promising for
the task of brain MRI segmentation. Some of the big advantages
of transformers include the modeling of long-range dependencies
in images through self-attention mechanisms while still being
able to perform local feature extraction. Such a combination
uniquely allows for more accurate and detailed segmentation
in highly complex neurological pathologies, like brain tumors.

There is clearly a trend toward 3D transformer models and
hybrid CNN-transformer architectures, dominated by ViT as
the variant of transformer used most frequently. These
approaches also obtain superior performance on benchmark
datasets, such as brain tumor segmentation tasks. However,
reliance on the BraTS dataset highlights a requirement for more
diverse data sources to ensure that performance could be
validated across more multiple neurological conditions.

While this is promising, there are still important issues in the
field: high computational costs associated with transformer
models, overfitting on smaller datasets, and validation in larger
clinical settings. Another issue is the geographical concentration
of research output that highlights the need for greater diversity
in the origins of studies worldwide to improve the
generalizability of findings.

The future prospect of transformer models will unlock the
potential that neuroimaging segmentation demands. Refining
both architectures and training methods and integration into
clinical workflows, transformations may provide state-of-the-art
for fast, accurate, and reproducible brain-MRI segmentation,
hence advancing clinical diagnosis and evaluation techniques
for a better outcome in regard to patients with neurological
disorders.

Although transformers have shown great improvement in
neuroimaging segmentation, much potential is yet to be realized.
Future work will need to be focused on present limitations, the
extension of applications across a wider range of neurological
conditions, and narrowing the gap between research and clinical
practice to ensure that transformers are a valuable and impactful
technology in medical imaging analysis.
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