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Abstract

Background: In recent years, with the rapid development of machine learning (ML), it has gained widespread attention from
researchers in clinical practice. ML models appear to demonstrate promising accuracy in the diagnosis of complex diseases, as
well as in predicting disease progression and prognosis. Some studies have applied it to ophthalmology, primarily for the diagnosis
of pathologic myopia and high myopia-associated glaucoma, as well as for predicting the progression of high myopia. ML-based
detection still requires evidence-based validation to prove its accuracy and feasibility.

Objective: This study aims to discern the performance of ML methods in detecting high myopia and pathologic myopia in
clinical practice, thereby providing evidence-based support for the future development and refinement of intelligent diagnostic
or predictive tools.

Methods: PubMed, Cochrane, Embase, and Web of Science were thoroughly retrieved up to September 3, 2023. The prediction
model risk of bias assessment tool was leveraged to appraise the risk of bias in the eligible studies. The meta-analysis was
implemented using a bivariate mixed-effects model. In the validation set, subgroup analyses were conducted based on the ML
target events (diagnosis and prediction of high myopia and diagnosis of pathological myopia and high myopia-associated glaucoma)
and modeling methods.

Results: This study ultimately included 45 studies, of which 32 were used for quantitative meta-analysis. The meta-analysis
results unveiled that for the diagnosis of pathologic myopia, the summary receiver operating characteristic (SROC), sensitivity,
and specificity of ML were 0.97 (95% CI 0.95-0.98), 0.91 (95% CI 0.89-0.92), and 0.95 (95% CI 0.94-0.97), respectively.
Specifically, deep learning (DL) showed an SROC of 0.97 (95% CI 0.95-0.98), sensitivity of 0.92 (95% CI 0.90-0.93), and
specificity of 0.96 (95% CI 0.95-0.97), while conventional ML (non-DL) showed an SROC of 0.86 (95% CI 0.75-0.92), sensitivity
of 0.77 (95% CI 0.69-0.84), and specificity of 0.85 (95% CI 0.75-0.92). For the diagnosis and prediction of high myopia, the
SROC, sensitivity, and specificity of ML were 0.98 (95% CI 0.96-0.99), 0.94 (95% CI 0.90-0.96), and 0.94 (95% CI 0.88-0.97),
respectively. For the diagnosis of high myopia-associated glaucoma, the SROC, sensitivity, and specificity of ML were 0.96
(95% CI 0.94-0.97), 0.92 (95% CI 0.85-0.96), and 0.88 (95% CI 0.67-0.96), respectively.

Conclusions: ML demonstrated highly promising accuracy in diagnosing high myopia and pathologic myopia. Moreover, based
on the limited evidence available, we also found that ML appeared to have favorable accuracy in predicting the risk of developing
high myopia in the future. DL can be used as a potential method for intelligent image processing and intelligent recognition, and
intelligent examination tools can be developed in subsequent research to provide help for areas where medical resources are
scarce.

Trial Registration: PROSPERO CRD42023470820; https://tinyurl.com/2xexp738

(J Med Internet Res 2025;27:e57644) doi: 10.2196/57644
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Introduction

Myopia is currently widely regarded as a significant public
health issue, leading to substantial vision loss and serving as a
risk factor for a range of other serious ocular diseases. It is
estimated that by 2050, 4.758 billion people (49.8% of the world
population) and 938 million people (9.8% of the world
population) will suffer from myopia and high myopia,
respectively [1]. A recent meta-analysis study proposed that the
global economic burden due to productivity losses from
uncorrected myopia and myopic macular degeneration is
estimated to reach US $250 billion [2]. Therefore, the prevention
of high myopia as well as the diagnosis and treatment of
pathological myopia remain a formidable societal challenge.

High myopia is defined as the spherical equivalent ≤–6.0 diopter
[3] when the accommodation of the eye is relaxed. However,
increased severity of myopia and elongation of the eye’s axial
length could alter the posterior segment structures, causing
posterior scleral staphyloma, myopic macular degeneration, and
optic neuropathy related to high myopia, potentially leading to
the loss of best-corrected visual acuity [3]. High myopia-related
fundus lesions stand as an important contributing factor to
blindness across the world as well as in China [4]. The detection
of high myopia hinges primarily on artificial auxiliary
techniques, like refraction detection, fundus examination,
measurement of axial length, and fundus photography.
Nevertheless, manual examination and analysis by
ophthalmologists are still essential, necessitating a significant
investment of time and effort [5]. Additionally, in regions with
limited medical resources, the shortage of ophthalmologists and
medical equipment impedes the early and accurate identification
of high-risk patients with high myopia, resulting in missed
opportunities for optimal treatment. Therefore, forecasting the
risk of high myopia and precisely diagnosing pathological
myopia are currently major research focus.

With the rapid advances in computing technology and the
ongoing refinement of statistical theory, machine learning (ML)
has gradually been promoted and applied in clinical practice.
For instance, ML can not only improve image quality, reduce
misregistration, and simulate attenuation correction imaging in
core cardiology [6], but also be used for cancer screening
(detection of lesions), characterization and grading of tumors,
and prognosis prediction, thus facilitating clinical
decision-making [7]. Since fundus images are noncontact,
noninvasive, low-cost, easily accessible, and easy to process,
ML has been extensively used to diagnose common retinal
diseases, including diabetic retinopathy [8-10], macular
degeneration [10], and glaucoma [11-13]. ML has been applied
to various image-processing tasks. Novel techniques for
analyzing fundus images of high myopia and pathological
myopia are continuously emerging [14,15]. However, the
accuracy of these ML detections has not been systematically
studied. Consequently, the present study was executed to
comprehensively describe the accuracy of ML in detecting
different degrees of lesions in high myopia, furnishing an
evidence-based reference for subsequent lesion management.

Methods

Study Registration
This study was implemented as per the PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-Analyses)
2020 guidelines and prospectively registered with PROSPERO
(ID: CRD42023470820). The PRISMA checklist is available
in Multimedia Appendix 1.

Inclusion and Exclusion Criteria
We established detailed inclusion and exclusion criteria for this
systematic review. To enhance visualization, these criteria are
presented in tabular form (Textbox 1).

Textbox 1. Inclusion and exclusion criteria.

Inclusion criteria

• Study type: (1) case-control, cohort, nested case-control, and case-cohort studies and (2) studies reported in English.

• Machine learning (ML): studies that fully constructed ML models for the prediction or diagnosis of high myopia, the diagnosis of pathological
myopia, or the diagnosis of high myopia-associated glaucoma.

• Outcome measures: at least one of the following outcome indicators were reported: receiver operating characteristic (ROC), c-index, sensitivity,
specificity, accuracy, recovery rate, accuracy rate, confusion matrix, F1-score, and calibration curve.

• Datasets: (1) some studies lacked independent validation sets, and only k-fold cross-validation was leveraged to verify the effect of the constructed
mode; and (2) in some publicly available datasets, particularly those involving medical imaging, different studies have reported the efficiency
of varying ML methods.

Exclusion criteria

• Study type: (1) meta, review, guide, expert opinion; and (2) studies with too few samples (less than 20 cases).

• ML: literature that only executed the risk factor analysis but did not develop a complete ML mode.

• Outcome measures: none of the following outcomes were reported: ROC, c-index, sensitivity, specificity, accuracy, recovery rate, accuracy rate,
confusion matrix, F1-score, and calibration curve.
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Data Sources and Search Strategy
PubMed, Cochrane, Embase, and Web of Science were
thoroughly retrieved up to September 3, 2023, using the form
of MeSH (Medical Subjects Headings) + free term, without any
restrictions on region or publication period. The specific search
strategy is depicted in Multimedia Appendix 2.

Study Selection and Data Extraction
Duplicates were excluded from the retrieved literature, and titles
and abstracts were reviewed to delete obviously irrelevant
studies. The full texts of the remaining studies were then
downloaded and thoroughly read to determine the final included
studies in the systematic review. A standard electronic data
extraction spreadsheet was prepared prior to extracting data.
The extracted data encompassed the title, first author, type of
study, year of publication, author’s country, patient source,
target event, number of cases of the target event, the total
number of cases, number of training set cases, the total number
of training set cases, method of validation set generation, number
of events in the validation set, total number of cases in the
validation set, type of models, and modeling variables.

Two researchers (HZ and LF) independently screened the
literature and extracted data. Upon completion, their findings
were cross-checked. A third reviewer (JH) was consulted for
resolution in case of any dissents.

Risk of Bias in Studies
The risk of bias in the eligible studies was appraised by two
independent reviewers (HZ and LF) using the prediction model
risk of bias assessment tool [16]. This tool is comprised of a
large number of questions in four domains (participants,
predictors, outcomes, and analysis), which reflect overall bias
risk and applicability. The 4 domains involve 2, 3, 6, and 9

specific questions, respectively, and each question may be
answered by yes or probably yes, no or probably not, or no
information. Following the quality evaluation, a cross-check
was carried out. In the event of any disputes, a third researcher
(JH) was consulted for resolution.

Synthesis Methods
In some of the original studies included in our research, there
was not only 1 validation set. Therefore, the number of models
included in the meta-analysis does not equal the number of
studies. The meta-analysis of sensitivity and specificity was
executed using a bivariate mixed-effects model [17]. Sensitivity
and specificity were meta-analyzed as per the diagnostic 2×2
table. However, most included studies did not provide the
diagnostic 2×2 table. In such cases, the following two
approaches were used to calculate the diagnostic 2×2 table: (1)
it was computed based on sensitivity, specificity, and precision,
combined with the number of cases; and (2) sensitivity and
specificity were extracted based on the optimal Youden index,
and then combined with the number of cases for calculation.
The meta-analysis was implemented using R (version 4.2.0; R
Foundation for Statistical Computing).

Results

Study Selection
A total of 4214 records were retrieved from the databases, of
which 582 were duplicates. After reading the titles and abstracts,
3561 studies unrelated to ML in high myopia were excluded,
leaving 71 studies. Of these, 13 only conducted image
segmentation without constructing ML models, 5 did not provide
full extractable outcome indicators, and 8 analyzed risk factors.
Ultimately, 45 studies were incorporated into this review. The
literature screening process is depicted in Figure 1.

Figure 1. Flowchart of literature screening.
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Study Characteristics
The included studies were published from 2010 to 2023. Four
of the studies [18-21] were about the prediction of high myopia,
and the predicted variables were mainly derived from life
characteristics, environmental and genetic factors, and routinely
interpretable ocular clinical characteristics. Five of the studies
[22-26] were about the diagnosis of high myopia, of which 1
study [22] also involved the diagnosis of pathological lesions
of high myopia. Six studies focused on the diagnosis of high
myopia-associated glaucoma [27-32]. Out of the included
studies, 31 studies focused on the diagnosis of pathological
myopia, primarily using optical coherence tomography and
fundus imaging to construct artificial intelligence models. Of
these, 26 studies [4,15,22,33-55] were based on DL (deep

learning), while 5 studies [56-60] required manually coded ML
for construction. Additionally, it was noted that in the 45 original
studies, all 45 studies included binary classification tasks, with
9 studies [4,33,34,38,39,49,50,52,61] additionally incorporating
multiclassification tasks. Regarding validation methods, 31
studies provided an external validation set, and 23 used a
combination of internal and external validation sets. In terms
of the generation method of validation set, 6 studies
[23,24,34,40,47,59] used k-fold cross-validation, 29
[15,19-22,25-29,35-38,41,42,45,48-58,61] used random
sampling, and 6 [4,18,32,33,44,60] applied a combination of
k-fold cross-validation and random sampling. The detailed
characteristics of the eligible studies are shown in Tables 1 and
2.
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Table 1. Fundamental features of included studies.

Total number of casesTarget eventsPatient sourceStudy typeCountry of authorsYear of publicationFirst author

1395 fundus photographs, 895
patients

Diagnosis of
pathologic myopia

MulticenterRetrospective
study

China, United
States

2022Tang et al
[33]

20,870 patientsDiagnosis and pre-
diction of patholog-
ical myopia

Single centerNested case-con-
trol study

China2023Li et al [56]

313 patients with high myopia
and 457 eyes

Diagnosis of
pathologic myopia

Single centerRetrospective
study

China2021Du et al [57]

965 children with 1878 eyes
and 7456 fundus photographs

Prediction of high
myopia

MulticenterProspective studySingapore2023Foo et al
[18]

860 eyesDiagnosis of
pathologic myopia

MulticenterRetrospective
study

Korea2021Kim et al
[58]

2258 patientsDiagnosis of
pathologic myopia

Registry databaseRetrospective
study

Singapore2013Zhang et al
[59]

6078 photographsDiagnosis of
pathologic myopia

Single centerRetrospective
study

China2023Zhu et al
[34]

1853 photographsDiagnosis of
pathologic myopia

Single centerRetrospective
study

China2022Wu et al [35]

1041 patients with pathologic
myopia and with 2342 eligible

OCTa macular images

Diagnosis of
pathologic myopia

Single centerRetrospective
study

China2021Ye et al [36]

7606 patients with 10,347
fundus photographs

Diagnosis of
pathologic myopia

Single centerRetrospective
study

China2023Wang et al
[37]

15,765 patientsPrediction of my-
opia and high my-
opia

Wenzhou large-
scale survey

Prospective, longi-
tudinal, observa-
tional study

China2022Wang et al
[19]

858 photographsDiagnosis of
pathologic myopia

Single centerRetrospective
study

China2021Wan et al [4]

1750 photographsDiagnosis of
pathologic myopia

Single centerRetrospective
study

China2023Wan et al
[38]

125,421 patients with 251,349
photographs

Diagnosis of high
myopia + patholog-
ical myopia

Multicenter +
registry database

Retrospective mul-
ticohort study

Singapore2021Tan et al
[22]

1514 fundus photographsDiagnosis of
pathologic myopia

Multicenter +
registry database

Retrospective mul-
ticohort study

China2023Sun et al
[39]

910 patients with 910 imagesDiagnosis of
pathologic myopia

Single centerRetrospective
study

Japan2020Sogawa et al
[40]

1327 patients with 2400 high
myopia eyes and 9176 OCT
images

Diagnosis of
pathologic myopia

Single centerRetrospective
study

Japan2022Du et al [41]

576 patientsDiagnosis of
pathologic myopia

Single centerProspective cohort
study

China2023Hou et al
[60]

29,230 patients with 57,148
fundus photographs

Pathologic myopiaMulticenterRetrospective co-
hort study

China2022Li et al [52]

2731 participants with 2731
eyes

Diagnosis of glau-
coma in high my-
opia

MulticenterCase-control studyChina2021Li et al [27]

1063 patientsPrediction of high
myopia

Single centerProspective studyChina2019Chen et al
[20]

492 patients with 690 eyesPrediction of high
myopia

Single centerRetrospective
study

Korea2021Choi et al
[23]

800 imagesDiagnosis of
pathologic myopia

Registry databaseRetrospective
study

China, Taiwan2021Cui et al [42]
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Total number of casesTarget eventsPatient sourceStudy typeCountry of authorsYear of publicationFirst author

1,285,609 participantsPrediction of high
myopia

MulticenterRetrospective
study

China2023Guan et al
[24]

2866 patients with 3945 OCT
images

Diagnosis of
pathologic myopia

MulticenterRetrospective
study

China2022He et al [61]

1200 photographsDiagnosis of
pathologic myopia

Registry databaseRetrospective
study

Belgium2021Hemelings et
al [15]

840 photographsDiagnosis of
pathologic myopia

Registry databaseRetrospective
study

Pakistan2021Rauf et al
[44]

367 eyesDiagnosis of
pathologic myopia

Single centerRetrospective
study

Korea2022Park et al
[45]

• 17,330 photographs
• 17,330 photographs

Diagnosis of
pathologic myopia
and diagnosis of
pathologic myopia

Single centerRetrospective
study

China2021Lu et al [46]

32,419 patients with 37,659
images

Diagnosis of
pathologic myopia

MulticenterRetrospective
study

China2021Lu et al [47]

80 photographsPathologic myopiaSingle centerRetrospective
study

Singapore2010Liu et al [54]

1139 patients with 5917 im-
ages

Diagnosis of
pathologic myopia

Single centerRetrospective
study

China, United
States

2022Li et al [48]

260 eyes and 260 imagesDiagnosis of glau-
coma in high my-
opia

Single centerRetrospective
study

Korea2023Lee et al
[28]

2607 eyesDiagnosis of glau-
coma in high my-
opia

Single centerRetrospective
study

Korea2023Kim et al
[29]

274 patientsDiagnosis of glau-
coma in high my-
opia

Single centerRetrospective
cross-sectional
study

Korea2023Jeong et al
[30]

1298 patientsPrediction of high
myopia

Single centerCase-control studyChina2022Huang et al
[21]

1131 patients with 3441 im-
ages

Diagnosis of
pathologic myopia

Single centerRetrospective
study

China, United
Kingdom

2023Huang et al
[49]

4432 eyes and 7020 imagesdiagnosis of patho-
logic myopia

Single centerRetrospective
study

Japan2021Du et al [50]

84 patients with 84 eyes and
252 photographs

diagnosis of patho-
logic myopia

MulticenterCase-control studyItaly2023Crincoli et al
[51]

242 patients and 242 eyesDiagnosis of glau-
coma in high my-
opia

MulticenterCase-control studyJapan2014Asaoka et al
[31]

593 eyesDiagnosis of glau-
coma in high my-
opia

Single centerRetrospective
study

United States, Ger-
many

2023Bowd et al
[32]

546 patientsPrediction of high
myopia

Single centerRetrospective
study

China2022Zhao et al
[25]

80 photographsDiagnosis of
pathologic myopia

Single centerRetrospective
study

Singapore2010Liu et al [53]

319 patients with 932 imagesPrediction of high
myopia

Single centerRetrospective
study

China2020Dai et al [26]

481 photographsDiagnosis of
pathologic myopia

Registry databaseRetrospective
study

India2019Baid et al
[55]

aOCT: optical coherence tomography.

J Med Internet Res 2025 | vol. 27 | e57644 | p. 6https://www.jmir.org/2025/1/e57644
(page number not for citation purposes)

Zuo et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 2. Fundamental features of included studies.

Modeling variablesModel typeTotal number of cases
in test set

Total number of cases
in validation set

Generation of validation setTotal number of cas-
es in training set

Fundus photographsDLa238 fundus pho-
tographs

238 fundus pho-
tographs

5-fold cross-validation + random
sampling

727 fundus pho-
tographs

Clinical featuresACPb, MLcUnclear1382 patientsRandom sampling2069 patients

Fundus photographsML-based

radiomics analy-
sis method

Unclear138 eyesRandom sampling319 eyes

Fundus photographs
+ clinical features

DL99 children with 189
eyes and 821 pho-
tographs

196 children with 376
eyes and 1511 fundus
photographs

Internal validation (5-fold cross-
validation + random sampling) +
multicenter external validation

769 children with
1502 eyes and 5945
photographs

Fundus photographsSVMd, MLunclear258 eyesRandom sampling602 eyes

SNPe + clinical fea-
tures + fundus pho-
tographs

SVM, MLunclearunclearStratified 20-fold cross-validation2258 patients

Fundus photographsDL1826 photographsunclearStratified 20-fold cross-validation4252 photographs

Fundus photographsDL370 photographsunclearRandom sampling1483 photographs

Fundus photographsDL450 photographs468 photographsInternal validation (random sam-
pling) + external validation（multi-
center）

1874 photographs

Fundus photographsDL1828 patients with
2137 photographs

775 patients with 821
photographs

Random sampling5003 patients with
7389 photographs

Clinical featuresLRf, GBDTg,

NNh

6168 patients (prog-
nostic cohort)

4415 patientsInternal validation (random sam-
pling) + external validation(prospec-
tive)

11,350 patients

Fundus photographsDLUnclear100 photographs5-fold cross-validation + random
sampling

758 photographs

Fundus photographsDL174 photographs174 photographsRandom sampling1402 photographs

Fundus photographsDL213,475 photographs11,303 photographsInternal validation (random sam-
pling) + external validation（multi-
center）

226,686 photographs

Fundus photographsDL714 fundus pho-
tographs

400 fundus pho-
tographs

Multicenter400 fundus pho-
tographs

Fundus photographsDLUnclearUnclear5-fold cross-validationUnclear

Fundus photographsDLUnclear1311 photographsrandom sampling7865 photographs

Clinical features +
metabolic characteris-
tics

XGBoosti,
SVM, LR

Unclear60 patients10-fold cross-validation + random
sampling

516 patients

Fundus photographsDCNNj, DL16,554 photographs7302 photographsInternal validation (random sam-
pling) + external validation（multi-
center）

29,213 photographs

OCTl images + clini-
cal features

FCNkUnclear508 participants with
508 eyes

Random sampling2223 participants
with 2223 eyes

Genetic factors + clin-
ical features

LRUnclear425 patientsRandom sampling638 patients

OCT imagesCNNm, DL58 patients with 90
eyes and 180 images

Unclear5-fold cross-validation434 patients with
600 eyes and 1200
images

Fundus photographsDL200 images200 imagesRandom sampling400 images

Clinical featuresRFn, LR, SVM400 patientsUnclearInternal validation (5-fold cross-
validation)

1600 participants
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Modeling variablesModel typeTotal number of cases
in test set

Total number of cases
in validation set

Generation of validation setTotal number of cas-
es in training set

OCT imagesDL340 photographs680 photographsRandom sampling2380 images

Fundus photographsDL400 photographs400 photographsRandom sampling400 photographs

Fundus photographsDL400 photographs40 photographs10-fold cross-validation + random
sampling

400 photographs

3D OCT imagesDL37 eyes37 eyesrandom sampling293 eyes

Fundus photographsDL1642 photographs3284 photographsUnclear11,502 photographs

Fundus photographsDL372 photographs707 photographsUnclear2457 photographs

Fundus photographsDL732 patients with
1000 images

UnclearInternal validation (5-fold cross-
validation) + external validation
(multicenter)

32,010 images

Fundus photographsSVM, DL40 photographsUnclearRandom sampling40 photographs

OCT macular imagesDL91 patients with 174
eyes and 412 pho-
tographs

210 patients with
1167 photographs

Internal validation (random sam-
pling) + external validation
(prospective)

838 patients with
4338 images

OCTAo and OCT im-
ages

DL49 photographs46 photographsRandom sampling165 images

OCT imagesDL720 eyes471 eyesInternal validation (random sam-
pling) + external validation

1416 eyes

OCT imagesDecision treeUnclearUnclearUnclearUnclear

Genetic + clinical fea-
tures

DLUnclear973 patientsRandom sampling325 patients

OCT imagesDL604 photographs501 photographsInternal validation (random sam-
pling) + external validation
(prospective)

2264 images

Fundus photographsDL1844 photographs1036 photographsRandom sampling4140 photographs

OCT imagesDL51 photographs25 photographsRandom sampling176 photographs

HRT parametersRFUnclearUnclearUnclearUnclear

OCT imagesCNN159 eyes87 eyes5-fold cross-validation + random
sampling

347 eyes

Fundus photographsDLUnclear232 photographsRandom sampling928 fundus pho-
tographs

Fundus photographsSVM or DL40 photographsUnclearRandom sampling40 photographs

Fundus photographsDL140 photographsUnclearRandom sampling792 photographs

Fundus photographsCNN27 photographs80 photographsRandom sampling374 photographs

aDL: deep learning.
bACP: algorithm of conditional probability.
cML: machine learning.
dSVM: support vector machine.
eSNP: single nucleic polymorphism.
fLR: logistic regression.
gGBDT: gradient boosted decision tree.
hNN: neural network.
iXGBoost: extreme gradient boosting
jDCNN: deep convolutional neural networks
kFCN: fully connected network
lOCT: optical coherence tomography.
mCNN: convolutional neural networks
nRF: random forest
oOCTA: optical coherence tomography angiography.
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Risk of Bias in Studies
This review incorporated 67 models. There were 36 retrospective
studies [4,15,22-26,28-30,32-42,44-50,52-55,57-59,61] that
constructed 39 models, indicating a high bias in the choosing
of study participants. Five case-control studies [21,27,31,51,56]
constructed 13 models, also showing high bias in the selection
of study participants. Since the predictors were evaluated in the
context of a known outcome in the case-control studies, there
was a high bias in the assessment of predictive factors. Twelve
studies [19,20,23,24,27,30,31,56-60] constructed 22 models
based on manually coded ML, with a high bias in predictive
factors. In terms of statistical analysis, 2 studies [21,45] with 5
models did not meet the requirement of having an event per
variable>20%, indicating a high risk of bias. In the statistical
a n a l y s i s ,  3 2  m o d e l s  i n  3 4  s t u d i e s
[4,15,18,21-23,25,26,28,29,32-42,44-55,61] could not estimate
event per variable due to the use of the DL method. Additionally,
10 studies [19,20,24,27,30,31,56,58-60] with 29 models in ML
did not report on the complexity of the data, rendering it difficult
to determine their bias risk. Five studies [20,27,30,31,60] with
11 models were identified as having a high risk of bias in
statistical analysis because they did not perform cross-validation
to adjust the stability of models with different parameters. In
summary, in terms of research participants, 14 models had a
low risk of bias; 52 models had a high risk of bias, and 1 model
had an unclear risk of bias. In terms of predictors, 37 models
had a low risk of bias and 30 models had a high risk of bias. In

terms of outcomes, all 67 models had a low risk of bias. In terms
of statistical analysis, 3 models had a low risk of bias, 16 models
had a high risk of bias, and 48 models had an unclear risk of
bias.

Meta-Analysis of ML for Binary Classification Tasks

Pathological Myopia
Twenty studies [26,34-37,39,41,45,47-54,56,58,60,61] reported
ML for diagnosing pathological myopia. Modeling algorithms
included algorithms of conditional probability, support vector
machines (SVMs), logistic regression (LR), extreme gradient
boosting, convolutional neural networks (CNNs), and deep
convolutional neural networks (DCNNs). The overall sensitivity,
specificity, positive likelihood ratio (PLR), negative likelihood
ratio (NLR), diagnostic odds ratio (DOR), and summary receiver
operating characteristic (SROC) were 0.91 (95% CI 0.89-0.92),
0.95 (95% CI 0.94-0.97), 19.7 (95% CI 13.8-28.2), 0.10 (95%
CI 0.08-0.12), 201 (95% CI 122-331), and 0.97 (95% CI
0.95-0.98), respectively. The Deek funnel plot indicated no
substantial evidence of publication bias in the included ML
models. Assuming that the prior probability of pathological
myopia was 20% if the result of ML was pathological myopia,
then the probability of true pathological myopia would be 83%.
If the result of ML was nonpathological myopia, then the
probability of true pathological myopia would be 2% (ie, the
probability of true nonpathological myopia was 98%; Figure 2
and Figures S1-S3 in Multimedia Appendix 3).
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Figure 2. Forest plot for the meta-analysis of sensitivity and specificity of machine learning in detecting pathological myopia
[26,34-37,39,41,45,47-54,56,58,60,61]. Note: the pooled sensitivity and specificity of 44 models from 20 machine learning studies on the diagnosis of
pathological myopia were 0.91 (95% CI 0.89-0.92) and 0.95 (95% CI 0.94-0.97), respectively.

Five studies [53,54,56,58,60] reported conventional ML
(non-DL) for diagnosing pathological myopia. Modeling
algorithms included algorithms of conditional probability, SVM,
extreme gradient boosting, and LR. The overall sensitivity,
specificity, PLR, NLR, DOR, and SROC curve were 0.77 (95%
CI 0.69-0.84), 0.85 (95% CI 0.75-0.92), 5.2 (95% CI 2.8-9.8),
0.27 (95% CI 0.18-0.39), 20 (95% CI 7-51), and 0.86 (95% CI
0.75-0.92), respectively. The Deek funnel plot indicated the
presence of publication bias in the conventional ML (non-DL)

models. Assuming that the prior probability of pathological
myopia for conventional ML (non-DL) was 20% if the result
of conventional ML (non-DL) was pathological myopia, then
the probability of true pathological myopia would be 57%. If
the result of conventional ML (non-DL) was nonpathological
myopia, then the probability of true pathological myopia would
be 6% (ie, the probability of true nonpathological myopia was
94%; Figure 3 and Figures S4-S6 in Multimedia Appendix 3).
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Figure 3. Forest plot for the meta-analysis of sensitivity and specificity of conventional machine learning (non-deep learning) in detecting pathological
myopia [53,54,56,58,60]. Note: the pooled sensitivity and specificity of 6 models from 5 conventional machine learning (non-deep learning) studies on
the diagnosis of pathological myopia were 0.77 (95% CI 0.69-0.84) and 0.85 (95% CI 0.75-0.92), respectively.

Fifteen studies [26,34-37,39,41,45,47-52,61] mentioned DL for
diagnosing pathological myopia. Modeling algorithms included
CNN and DCNN. The overall sensitivity, specificity, PLR,
NLR, DOR, and SROC were 0.92 (95% CI 0.90-0.93), 0.96
(95% CI 0.95-0.97), 23.7 (95% CI 16.5-34.0), 0.09 (95% CI
0.07-0.11), 271 (95% CI 168-437), and 0.97 (95% CI 0.95-0.98),
respectively. The Deek funnel plot revealed no remarkable
publication bias in the DL models. Assuming that the prior

probability of pathological myopia for DL was 20% if the result
of DL was pathological myopia, then the probability of true
pathological myopia would be 86%. If the result of DL was
nonpathological myopia, then the probability of true pathological
myopia would be 2% (ie, the probability of true nonpathological
myopia was 98%; Figure 4 and Figures S7-S9 in Multimedia
Appendix 3).
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Figure 4. Forest plot for the meta-analysis of sensitivity and specificity of deep learning in detecting pathological myopia [26,34-37,39,41,45,47-52,61].
Note: the pooled sensitivity and specificity of 38 models from 15 deep learning studies on the diagnosis of pathological myopia were 0.92 (95% CI
0.90-0.93) and 0.96 (95% CI 0.95-0.97), respectively.

High Myopia
Six studies [4,18,20,23-25] discussed ML for diagnosing and
forecasting high myopia. Modeling algorithms included DCNN,
CNN, LR, SVM, random forest (RF), and linear mixed models.
The sensitivity, specificity, PLR, NLR, DOR, and SROC were
0.94 (95% CI 0.90-0.96), 0.94 (95% CI 0.88-0.97), 16.2 (95%
CI 7.7-33.8), 0.06 (95% CI 0.04-0.11), 255 (95% CI 79-822),
and 0.98 (95% CI 0.96-0.99), respectively. The Deek funnel
plot indicated no substantial evidence of publication bias in the
included ML models. Assuming that the prior probability of
high myopia for ML was 20% if the result of ML was high
myopia, then the probability of true high myopia would be 80%.
If the result of ML was non-high myopia, then the probability

of true high myopia would be 2% (ie, the probability of true
non-high myopia was 98%; Figure 5 and Figures S10-S12 in
Multimedia Appendix 3).

Three studies [4,23,25] focused on diagnosing high myopia,
while 3 studies [18,20,24] focused on predicting high myopia.
Due to the limited number of studies included, we did not
perform a meta-analysis for the diagnostic and prediction tasks.
In the validation sets of the diagnostic tasks, sensitivity ranged
from 0.91 to 1.00 and specificity ranged from 0.85 to 1.00, while
in the validation sets of the prediction tasks, these values were
0.85-0.94 and 0.86-0.94, respectively. We found that both
diagnostic and prediction tasks demonstrated highly favorable
performance.
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Figure 5. Forest plot for the meta-analysis of sensitivity and specificity of machine learning in detecting high myopia [4,18,20,23-25]. Note: the pooled
sensitivity and specificity of 9 models from 6 machine learning studies on the diagnosis and prediction of high myopia were 0.94 (95% CI 0.90-0.96)
and 0.94 (95% CI 0.88-0.97), respectively.

High Myopia–Associated Glaucoma
Six studies [27-32] mentioned ML for diagnosing high
myopia-associated glaucoma. Modeling algorithms included
Lagrange multiplier, fully connected network, radial basis
function network, decision tree, RF, and CNN. The sensitivity,
specificity, PLR, NLR, DOR, and SROC curve were 0.92 (95%
CI 0.85-0.96), 0.88 (95% CI 0.67-0.96), 7.6 (95% CI 2.4-23.8),
0.09 (95% CI 0.04-0.20), 84 (95% CI 13-555), and 0.96 (95%
CI 0.94-0.97), respectively. The Deek funnel plot indicated no

substantial evidence of publication bias in the included ML
models. Assuming that the prior probability of high
myopia–associated glaucoma was 20% if the result of ML was
high myopia-associated glaucoma, then the probability of true
high myopia–associated glaucoma would be 65%. If the result
of ML was non-high myopia–associated glaucoma, then the
probability of true high myopia–associated glaucoma would be
2% (ie, the probability of true non-high myopia–associated
glaucoma was 98%; Figure 6 and Figures S13-S15 in
Multimedia Appendix 3).
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Figure 6. Forest plot for the meta-analysis of sensitivity and specificity of machine learning in detecting high myopia-associated glaucoma [27-32].
Note: the pooled sensitivity and specificity of 9 models from 6 machine learning studies on the diagnosis of high myopia-associated glaucoma were
0.92 (95% CI 0.85-0.96) and 0.88 (95% CI 0.67-0.96), respectively.

Review of ML for Multiclassification Tasks
Out of the included studies, 9 [4,33,34,38,39,49,50,52,61] used
ML for multiclassification tasks. Due to significant variations
in the diagnostic differences across these multiclassification
tasks, a quantitative analysis was not feasible. Five studies
[33,34,38,39,50] focused on fundus images–based DL to detect
different types of myopic atrophy maculopathy in high myopia,
with an accuracy ranging from 88% to 97%. Two studies [49,61]

used optical coherence tomography (OCT) image–based DL to
detect different types of myopic traction maculopathy in high
myopia, with an accuracy ranging from 91% to 96%. One study
[4] used fundus image–based DL to differentiate between
normal, low-risk high myopia, and high-risk high myopia, with
an accuracy of 99%. One study [52] applied fundus image–based
DL to distinguish between normal, fundus tessellation, and
pathologic myopia, with an accuracy of 94%, as illustrated in
Table 3.
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Table 3. Results of machine learning for multiclassification tasks.

Accuracy rate, %Generation of validation setModeling variablesTypes of artificial intelligenceDiagnostic purposeYearFirst author

945-fold cross-validation +
random sampling

Fundus photographsCNNsa; DLbClassification of at-
rophic macular le-
sions in myopic

2022Tang et al
[33]

90Stratified 20-fold cross-vali-
dation

Fundus photographsNeural network; DLClassification of at-
rophic macular le-
sions in myopic

2023Zhu et al
[34]

995-fold cross-validation +
random sampling

Fundus photographsDCNNsc; DLNormal, low, and
high risk of high
myopia

2021Wan et al [4]

95-97Random samplingFundus photographsDLClassification of at-
rophic macular le-
sions in myopic

2023Wan et al
[38]

89.2External validation (multi-
center)

Fundus photographsDLClassification of at-
rophic macular le-
sions in myopic

2023Sun et al
[39]

94Internal validation (random
sampling) + external valida-
tion (multicenter)

Fundus photographsDCNN; DLDifferential diagno-
sis of normal, leop-
ard print fundus, and
pathological myopia

2022Li et al [52]

91-96Random samplingOCTd imagesDLDifferential diagno-
sis of tractive macu-
lar degeneration and
neovascular macular
degeneration in high
myopia, and others

2022He et al [61]

96Internal validation (random
sampling) + external valida-
tion (prospective)

OCT imagesDLClassification of
tractive macular de-
generation in high
myopia

2023Huang et al
[49]

88Random samplingFundus photographsDLClassification of at-
rophic macular le-
sions in myopic

2021Du et al [50]

aCNN: convolutional neural network.
bDL: deep learning.
cDCNN: deep convolutional neural network.
dOCT: Optical Coherence Tomography.

Discussion

Summary of the Main Findings
This study comprehensively described the accuracy of ML in
detecting high myopia, high myopia-associated glaucoma, and
pathologic myopia. ML demonstrated exceptionally favorable
performance in detecting high myopia, while DL was highly
accurate in diagnosing pathologic myopia.

Comparison With Previous Reviews
Previous studies have also explored the detection accuracy of
ML in this field. A systematic review has reported that fundus
image– or OCT image–based DL can effectively diagnose and
classify myopic maculopathy. Additionally, ML examination
of the optic disc area can detect myopic maculopathy that may
not be easily identified during clinical examination [14]. A
recent meta-analysis based on only 11 studies evaluated the
performance of DL in identifying pathological myopia based
on fundus images. The SROC, specificity, and sensitivity were

found to be 0.9905, 0.959 (95% CI 0.955-0.962), and 0.965
(95% CI 0.963-0.966), respectively [62]. In the previous
meta-analysis, the 11 original studies all constructed fundus
images-based DL models, and studies on conventional ML
(non-DL) were not incorporated. The number of studies included
in our review was further expanded, with a total of 20 studies
on the performance of ML in diagnosing pathological myopia.
Moreover, subgroup analysis was executed between
conventional ML (non-DL) and DL. Our finding also indicated
that DL demonstrated exceptionally favorable efficiency in
detecting pathological myopia.

As the understanding of the etiology of myopia deepens,
growing evidence reveals risk factors for the onset or
progression of myopia, including age, sex, parental myopia,
susceptibility genes, and outdoor activities. For high myopia,
early prediction appears to be more beneficial. Among the
included studies, one incorporated 135 myopia-related single
nucleotide polymorphisms to forecast the progression and onset
of high myopia. ML for the prediction of high myopia was
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mainly based on genetic factors, environmental factors, and
ocular clinical characteristics. ML showed an SROC of 0.96,
sensitivity of 0.91, and specificity of 0.87, respectively [20],
suggesting that ML methods can effectively identify high-risk
individuals with high myopia, thus effectively preventing this
condition, especially in minors.

Glaucoma is a significant contributor to irreversible vision
impairment and blindness all over the world. A 10-year study
in Chinese individuals over the age of 40 years found that every
1 mm increase in axial length increased the risk of open-angle
glaucoma by 1.72 times. In comparison to emmetropic and
hyperopic eyes, highly myopic eyes had a 7.3 times higher risk
of developing open-angle glaucoma [63]. Due to the changes
in retinal structure caused by myopia, diagnosing glaucoma in
myopic patients, especially those with high myopia, is
challenging. Six studies were included to evaluate the diagnosis
of high myopia glaucoma. Of them, 3 studies [28,29,32] used
fundus OCT image-based DL techniques, while the remaining
3 [27,30,31] used non-DL ML (Lagrange multiplier, fully
connected network, radial basis function network, decision tree,
RF) approaches using OCT parameters, Heidelberg Retina
Tomograph parameters, and ocular biometric parameters of
patients. The findings indicated that ML yielded highly
promising results in the detection of high myopia glaucoma.

It was also noted that different ML methods, conventional ML
and DL, showed significant differences in their ability to identify
positive or outcome events. Conventional ML is often used to
construct models with interpretable clinical features. Lately,
various image-based ML methods have emerged. However, a
significant challenge in this context is the requirement for
manual annotation to facilitate ML. From this standpoint,
manual annotation poses a formidable barrier to effectively
mitigating the risk of bias. DL, on the other hand, enables
intelligent processing of medical images and has been widely
applied in various fields, including detecting diabetic retinopathy
[8-10], retinopathy of prematurity [64,65], age-related macular
degeneration [10], and glaucoma [11-13]. With the rapid
development of ML, imaging data are increasingly becoming
a valuable source for medical analysis. Multiple studies have
demonstrated that images from various sources, including fundus
images [66], external eye appearance [67], and refractive images
[68], can effectively estimate a patient’s spherical refractive
error, indicating the potential of imaging data in predicting the

risk of myopia. This study also finds that image-based DL is
more accurate than conventional ML, providing a theoretical
basis for the creation of future intelligent tools.

Additionally, the dataset used in ML demands considerable
attention. Many studies are hampered by a limited number of
cases, raising concerns about the robustness of the findings.
Additionally, validation methods often depend heavily on
internal validation, which may not fully capture the model’s
generalizability. Hence, incorporating comprehensive patient
data is essential for building a robust large-scale database, which
will enable the development of ML models that are applicable
to a broader population. Among the studies included, 7
[15,22,39,42,44,55,59] established ML models based on publicly
available large databases.

Limitations
Although our review includes a larger number of studies than
previous meta-analyses and provides an evidence-based basis
for subsequent studies, this study has limitations. First, there
were few studies on the prediction of high myopia, which limits
the interpretation of our results, and clinically interpretable
variables for predicting high myopia were not explained.
Second, we did not conduct a subgroup analysis on the type of
ML (conventional ML vs DL) owing to the insufficient number
of included studies based on high myopia glaucoma and high
myopia. Third, the majority of the models included in this study
were assessed as having a high risk of bias, which may impact
the interpretation of our results. Most included studies adopted
a retrospective design, which might lead to selection bias.

Conclusions
In conclusion, this study comprehensively reviews and
meta-analyzes the performance of ML in the diagnosis and
prediction of high myopia, high myopia-associated glaucoma,
and pathological myopia, providing valuable guidance and
references for future research. Challenges exist within the
emerging field of myopia prediction. With the development of
new analytical methods and the accumulation of real medical
datasets, future research holds the promise of improving the
prediction of myopia onset and progression. This advancement
brings us closer to the ultimate goal of identifying high-risk
individuals promptly and implementing targeted interventions
in clinical practice.
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